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Abstract—Sharding is a promising way to achieve blockchain
scalability, increasing the throughput by partitioning nodes into
multiple smaller groups, splitting the workload. However, when
tackling the increasingly important smart contracts, existing
blockchain sharding protocols do not scale well. They usually
require complex multi-round cross-shard consensus protocols
for contract execution and extensive cross-shard communication
during state transmission, mainly because that each shard stores
and executes an isolated, disjoint subset of contracts. In this
paper, we present Jenga, a novel sharding-based approach for
efficient smart contract processing. Its main idea is to break the
isolation between shards by orchestrating the logic storage, state
storage, and execution of smart contracts. In Jenga, all shards
share the logic for all contracts. Therefore, multiple contracts
involved in a smart contract transaction can be executed together
by the same shard within one round. Moreover, different shards
store distinct states (named state shards), several "orthogonal"
execution channels are established based on the state shards,
where each channel overlaps with all shards. Each node simulta-
neously belongs to a shard and an "orthogonal" channel, different
channels execute different contracts. Therefore, via the overlapped
nodes, the contract states can be directly broadcast between
the state shards and the execution channels without additional
cross-shard communication. We implement Jenga and evaluation
results show that it provides outstanding performance gains in
terms of throughput and transaction confirmation latency.

I. INTRODUCTION

Blockchain has been instrumental for enabling decentralized
digital currencies, such as Bitcoin [20]. With the wide-spread
adoption of smart contracts, the applications of blockchain
have been expanded to broader scenarios (e.g., DeFi [1],
Metaverse [10], etc.). Smart contracts are self-enforcing, self-
executing programs governing an interaction between mutually
distrusting parties [22]. A smart contract can be deployed in
blockchain, where all blockchain nodes (aka miners) store
its state (aka data) and execution logic (aka function) [12].
Smart contracts stand in an increasingly important position
in blockchain systems. More and more transactions invoke
smart contracts (named smart contract transaction) to handle
complex logic. It is observed that smart contract transactions
take around 70% of all the recent Ethereum [28] transactions,
and this proportion is expected to grow in the future [22].

Scalability is an urgent concern in blockchain [26], and
sharding is a promising technique that can significantly im-
prove the scalability of blockchain [17]. In legacy blockchain
systems, each node stores the whole blockchain state and
processes all transactions, and every consensus message needs
to be broadcast in the whole network [13]. In contrast, sharding
divides nodes into multiple groups called shards, each storing

a distinct subset of the whole blockchain state, executing
distinct transactions and reaching consensus in parallel [29].
Via such parallelization, sharding increases the scalability of
legacy blockchain in terms of storage, computation, network,
and transactions per second (TPS) [29].

However, most existing sharding works [14], [15], [17],
[27], [29], [30] focus exclusively on handling the simplest kind
of transactions—account-to-account transfer of funds, while
ignoring how to efficiently handle smart contract transactions.
There are considerable differences between processing smart
contract transactions and processing regular fund transfer
transactions. Typically, a smart contract has complex execution
logic, and executing it requires multiple states from accounts
and contracts. Furthermore, a smart contract transaction usu-
ally invokes multiple different contracts. As a result, compared
to the regular transfer transaction which contains two account
states and one step, a smart contract transaction usually
requires multiple execution steps between different contracts to
execute the whole complex logic it has invoked. Additionally,
the processing of a smart contract transaction involves more
states.

Only a few existing proposals focus on handling smart
contracts in blockchain sharding, and their solutions impose
various limitations. For instance, some works [4], [9], [25]
require all smart contracts to be processed in one specific
shard, resulting in poor ability to process transactions in
parallel. To improve the scalability, some solutions allow smart
contracts to be deployed and processed in different shards.
However, among them, some can only tackle smart contract
transactions involving single contract and one step execution
[2], [7], [22]. Other solutions support processing transactions
with multiple contracts [11], [23]. Nevertheless, they pro-
cess contract transactions with complex, multi-round cross-
shard consensus protocols, causing performance degradation
in terms of throughput and latency.

Why existing blockchain sharding systems suffer from low
throughput and high latency when handling smart contracts?
We find that one potential reason is the isolation between
shards. Particularly, different smart contracts are deployed
in distinct shards, meaning that the state, logic and execution
of a smart contract are maintained in only one shard, and the
smart contracts maintained by different shards are isolated
from each other [29]. This causes two performance prob-
lems. First, processing smart contract transactions requires
complex multi-round consensus protocols (Figure 1a, Phase
2), which reduces the efficiency of smart contract execution



Fig. 1: Illustration for the basic procedure of contract transac-
tion processing. (a): procedure in existing systems (e.g., [23]).
(b): procedure in Jenga.

(e.g., more than 50% throughput degradation in [13]). A smart
contract transaction usually invokes multiple interdependent
smart contracts, and the execution logic of these smart con-
tracts is usually maintained separately on different shards.
Therefore, to commit a smart contract transaction, related
shards need to perform multiple rounds of contract execution,
consensus, and cross-shard intermediate result delivery, which
is extremely inefficient. Second, due to the isolation between
shards, processing a smart contract transaction usually requires
fetching and returning multiple related states on different
shards [27], [29] (Figure 1a, Phase 1, 3. It requires both cross-
shard communication and intra-shard message broadcast). This
process involves a lot of cross-shard communication, reducing
the efficiency of state acquisition and return (e.g., cross-
shard communication reduces 25% of transaction throughput
in [21]).

To enable efficient smart contract processing in blockchain
sharding, following challenges need to be addressed. First,
how to reduce the performance loss caused by multi-round
cross-shard consensus protocols during the execution of smart
contracts. Second, how to reduce the performance loss caused
by cross-shard communication during state acquisition and
return. Moreover, while solving the above two challenges, it
is necessary to maintain each node with limited storage and
computation overhead for better scalability. We address the
above challenges via orchestrating the smart contracts’ logic
storage, state storage and execution in blockchain sharding, as
will be explained next.

Orchestrating Logic Storage. To address the first challenge,
we require each shard to maintain the execution logic
of all contracts (Figure 2, right, lowest layer). Under such
design, multiple contracts can be executed together in one
shard, needless for multi-round cross-shard executions. As a
result, once a certain shard obtains the relevant states of a
contract transaction, all relevant contracts can be executed

Fig. 2: Illustration for our intuition and main ideas. Left: in tra-
ditional blockchain sharding, different contracts are deployed
to distinct shards as an entity, a contract’s state, logic and
execution is maintained by one shard. Right: we deconstruct
the smart contract deployment and restructure the state, logic
and execution for smart contracts.

within the same shard in one round (Figure 1b, Phase 2).
To ease the storage overhead for each node, the states of
a contract is solitarily stored in only one shard (Figure
2, right, middle layer). Since the logic storage overhead is
not large (see Section VII-F), our system greatly reduces the
performance loss caused by multi-round cross-shard consensus
without introducing excessive storage burden.

Orchestrating State Storage and Execution. To address
the second challenge, we set up multiple contract execution
channels "orthogonally" across the shards storing isolated
states (aka state shards) (Figure 2, right, upper 2 layers). Under
such design, any execution channel can overlap all state shards.
As a result, no extra cross-shard communication is required
to transmit messages between any state shard and execution
channel. Specifically, each node simultaneously belongs to a
certain state shard and an "orthogonal" execution channel.
The states obtained in multiple state shards can be directly
broadcast to the corresponding execution channel through
certain overlapped subgroups of nodes. After executing the
contract, the nodes in the channel directly return the results
to the relevant state shards through corresponding overlapped
subgroups. This design eliminates the cross-shard communica-
tions during state acquisition and return, improving the system
efficiency (Figure 1b, Phase 1,3. It requires only intra-shard
broadcast).

With the above challenges addressed, we propose our sys-
tem, named Jenga. Instead of treating contract as an indivisible
entity (as do all the works mentioned above, see Figure 2,
left), Jenga orchestrates the state storage, logic storage, and
execution of smart contracts (Figure 2, right). To simplify the
multi-round cross-shard consensus during contract execution,
all contracts’ logic are copied to all shards. To ease the



storage overhead on each node, different shards store distinct
states. To eliminate the cross-shard communication during
state acquisition and return, nodes in different "orthogonal"
channels execute contracts. Based on these designs, Jenga
increases system throughput and reduces transaction confir-
mation latency without too much storage overhead.

We implement a prototype of Jenga and several other
baselines. We conduct extensive and large-scale experiments in
Amazon EC2. Experimental results show that Jenga achieves
significant performance gain compared with several state-of-
the-art sharding based protocols. Compared with the most re-
cent work [13], Jenga improves 1.5 times of system throughput
and saves 65.2% per-node storage overhead at a large network
size of 2880 nodes.

II. BACKGROUND AND MOTIVATION

A. Blockchain and Smart Contract

Blockchain has drawn increasingly attentions from both re-
search and industry areas [20], [28]. The proposal of Ethereum
[28] has made the dissemination of smart contracts, thus
expanding the application scenarios of blockchain to a new
level. A smart contract is a self-executing contract with the
terms of the agreement being directly written into lines of
code [12]. A smart contract can be deployed in blockchain
by its contract creator. When a smart contract is deployed,
each node in the blockchain stores its execution logic (aka
functions) and states (aka data). Accounts (aka clients) inter-
acting with the blockchain can invoke the deployed contracts
by initiating a smart contract transaction. The nodes in the
blockchain obtain the account and contract states involved in
the transaction, execute the relevant contract logic, and update
the corresponding states.

B. Sharding-Based Blockchain and Its Limitations

Traditional blockchain cannot scale its transaction process-
ing capacity with the number of nodes in the network [3].
The main reason is that the consensus in traditional blockchain
involves all nodes in the network, meaning each node needs
to store and execute all transactions, and every consensus
message needs to be broadcast in the whole network. It causes
poor scalability in storage, computation and network, finally
leading to unscalable system throughput [14], [17], [22].

One of the most promising approaches to increase
blockchain throughput is to split the set of nodes into a number
of smaller committees (aka shards) [17]. Each shard maintains
a disjoint subset of states, executes different transactions in
parallel, and reaches intra-shard consensus. Sharding has been
an active research topic recently, both in industry [4], [7], [11],
[23]–[25] and academia [9], [13]–[15], [17], [22], [29], [30].

However, most of those works only focus on how to
efficiently process the simplest kind of transactions (transfer
of funds from one account to another), but ignore how to
efficiently process smart contract transactions in blockchain
sharding systems. Existing sharding systems have various
drawbacks when tackling smart contracts, as will be introduced
next.

C. Existing Solutions for Smart Contract in Sharding Systems

Only handful systems target at handling smart contracts in
sharding-based blockchain, and their solutions suffer various
problems. For example, in [4], [9], [25], all smart contracts
are required to be processed in a specific shard. In such
protocols, before initiating a smart contract transaction, the
account needs to transfer its state to that specific shard, and
transfer the state back after processing is completed. The
scalability of this kind of design is poor, as the system’s
ability to process smart contracts will not increase as the
number of shards increases. In [2], [7], [22], smart contracts
can be deployed in different shards, but their designs only
support processing smart contract transactions with single
intermediate step (e.g., calling one function of one smart
contract). However, a contract transaction usually consists of
multiple steps (detailed explained in Section II-D), limiting
the application scenarios of their designs.

The Cross-Shard Function Call [23] proposed by Ethereum
supports the processing of smart contract transactions with
multiple steps (Figure 1, left). Different smart contracts are
randomly deployed in distinct shards. Each shard stores the
state and logic of different smart contracts in isolation, and
executes distinct smart contracts. For example, if smart con-
tract A is deployed on shard 1, then only shard 1 has the state
and logic of contract A, and contract A can only be executed
on shard 1. When processing smart contract transactions,
each transaction will be split into multiple sub-transactions.
Different shards execute their related sub-transactions in the
order of execution, reach a consensus on the execution results,
and transmit the sub-transaction execution results to the shard
responsible for executing the next sub-transaction. After all
the sub-transactions are executed, the contract transaction is
considered to be successfully processed, and it can finally be
committed into the block. This design achieves high scalability
in terms of storage and computation. However, before a
smart contract transaction can be committed, their protocol
requires multiple rounds of consensus and multi-step cross-
shard communication to validate and process all related sub-
transactions. This seriously degrades the sharding performance
in terms of throughput and confirmation latency.

A most recent work aiming at improving the above solution
is Pyramid [13]. It allows shards to merge, so that some nodes
store the information (i.e., state and logic) of multiple shards
and execute transactions for multiple shards. For some smart
contract transactions, nodes in the merged shards can verify
and process them directly. After processing the transactions in
the merged shards, one more round of cross-shard consensus
is required to commit the transactions. This protocol reduces
multiple rounds of cross-shard consensus when processing
smart contract transactions. However, as the nodes are work-
ing on multiple shards, their design imposes huge storage
and computation overhead to the nodes, which weakens the
sharding scalability. Moreover, in their design, only part of the
shards are merged, meaning that there are still certain amount
of contract transactions require multiple rounds of cross-shard
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(a) Trends in smart contract
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100K sampled block periods

4 6 8 10 12

Number of Shards

0

2000

4000

6000

8000

T
ra

n
s

a
c

ti
o

n
 p

e
r 

S
e

c
o

n
d

Processing Transfer Transaction

Processing Contract Transaction

(b) TPS comparison of process-
ing transfer and contract trans-
actions

0 2 4 6 8 10

Sampled Block Number 10
5

0

2

4

6

8

10

12

A
v

e
ra

g
e

 N
u

m
b

e
r 

o
f 

S
te

p
s

(c) Trends of average steps
involved in a smart contract
transaction; the number is
averaged over 100K sampled
block periods
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Fig. 3: Measurement studies to motivate our work.

consensus to process.
Therefore, we aim to propose a sharding-based blockchain

system for efficiently processing smart contract transactions
with low overhead. To better motivate the design of our
approach, we conduct measurement studies to show that (a) it
is necessary to handle smart contract transactions efficiently,
(b) how inefficient it is to process smart contract transactions
in existing sharding-based blockchain, and (c) the possible
reasons for the inefficiency of processing smart contract trans-
actions in sharding-based blockchain.

D. Motivation

We conduct measurement studies based on real trace of
Ethereum. We first demonstrate the need for efficient process-
ing of smart contract transactions by showing the usage of
smart contracts in Ethereum. We randomly sampled 1 million
blocks (out of the most recent 10 million blocks) up to March
2021 [31]. According to the results of Figure 3a, in recent
sampled blocks, smart contract transactions reached about
70% of total transactions. Moreover, the proportion of smart
contract transactions in total transactions is showing an upward
trend. The experiment in [22] also shows similar results. These
results suggest that the use of smart contracts will continuously
increase in the future, confirming that the need for efficient
processing of smart contract transactions will become more
urgent.

We now show how inefficient the existing sharding systems
are when dealing with smart contracts. We implement a
prototype of the Cross-Shard Function Call protocol. Figure 3b
compares the system throughput at different system sizes for
processing transfer transactions and smart contract transactions
(see Section VII for evaluation details). As shown in the figure,
the throughput in processing smart contract transactions is only
around 1/3 of that in processing transfer transactions.

Finally, we clarify the possible reasons for the inefficiency
of processing smart contract transactions in sharding-based
blockchain. One of the main reason is that a smart con-
tract transaction typically involves many smart contracts and
contains multiple steps (e.g., in the train-hotel problem, a
transaction may invoke a smart contract for booking a train
ticket, followed by another smart contract for booking a
hotel). Another reason is that the logic, state and execution of

different smart contracts are solitarily maintained by distinct
shards. As a result, processing smart contract transactions
in blockchain sharding requires more complex multi-round
consensus and extensive communication across shards than
processing transfer transactions. Specifically, when processing
a smart contract transaction, a significant amount of cross-
shard communication is required to obtain (return) state in-
formation on multiple shards, before (after) executing smart
contracts. More importantly, multiple rounds of cross-shard
consensus are required to execute all the logic contained in a
smart contract transaction.

We conduct experiments to justify that smart contract
transactions typically contain multiple intermediate steps and
smart contracts, and produce large amount of cross-shard
communication. The results in Figure 3c and 3d show that
in recent sampled blocks, the average number of steps and
contracts involved in a smart contract transaction is 10 and 4.7,
respectively. Moreover, the figures show an upward trend in
the average number of steps and contracts involved in a smart
contract transaction, indicating that more and more complex
smart contract transactions are likely to be available in the
future. Figure 3e shows the ratio of cross-shard communica-
tion in total communication when processing smart contract
transactions under various number of shards. The results show
that there are a large portion of cross-shard communication,
and the number of cross-shard communication increases as the
number of shards rises. In the case of 12 shards, the cross-
shard ratio exceeds 90%.

III. SYSTEM AND THREAT MODEL

A. System Model
In Jenga, there are N nodes, S state shards and S execution

channels in the system. Like other systems [13], [15], [17],
the nodes in Jenga are connected by a partially synchronous
peer-to-peer network [8], in which there is a certain unknown
upper bound ∆ of message transmission delay in the network
[16]. Similar to existing systems [13], [29], [30], each node
has a unique public/secret key pair, given by a Public-Key
Infrastructure (PKI). A public key represents the identity of a
node. It will be broadcast through the network and recorded
in an identity chain (as many existing sharding systems do,
e.g., [13], [15]) once a node joins.



Jenga adopts the account model (similar to Ethereum)
to represent the ledger state, in which each account (and
smart contract) has its own states. The accounts send various
transactions to the network, nodes in different shards record
the states (e.g., balance) for different accounts and contracts.
The states of a certain account or contract is maintained by
only one shard.

B. Threat Model

There are two kinds of nodes in Jenga: honest and malicious.
The honest nodes obey all the protocols in Jenga. However,
malicious (Byzantine) nodes may deviate the protocols in
arbitrary manners, such as sending arbitrary messages, sending
messages with different values to different nodes, or failing
to send any or all messages. The fraction of total malicious
nodes in the system is denoted as f . In other words, fN nodes
are controlled by Byzantine adversaries. Furthermore, similar
to existing sharding systems [13], [29], [30], we assume that
the Byzantine adversaries are slowly-adaptive, i.e., the set of
malicious nodes and honest nodes are fixed during each epoch
(e.g., one day) and can be changed only between epochs.

IV. SYSTEM OVERVIEW

A. Objective

Our objective is to design a blockchain sharding system that
efficiently handle smart contract transactions. The proposed
system needs to not only support processing smart contract
transactions with single step, but also handle more complex
smart contract transactions efficiently. We design the system
from the perspective of orchestrating smart contracts to break
the isolation between shards. It simplifies the cross-shard
communication and multi-round consensus during the smart
contract transaction processing, thus improving the system
performance. More importantly, the proposed system should
not bring too much storage and computation overhead to the
nodes, so as to ensure the sharding scalability.

To achieve the above goals, we propose two core designs.
First, to simplify the multi-round cross-shard consensus during
the execution of smart contracts, we propose a design that or-
chestrates the contract’s logic storage. This design requires the
execution logic of all smart contracts to be stored on all shards.
Therefore, any shard can locally execute all smart contracts
related to a transaction in one round. Second, to simplify the
large amount of cross-shard communication that occurs when
fetching (returning) state information before (after) executing
smart contracts, we propose a design that orchestrates the
contract’s state storage and execution. We "orthogonalize" the
state storage and execution of each shard, where any state
shard can be directly connected to any execution channel
through an overlapped subgroup of nodes. Thus, state informa-
tion can be passed between the state shards and the execution
channels directly via intra-shard broadcasts, without any extra
cross-shard communication. We next describe the intuition for
our designs and what the design entails.

B. Orchestrating Logic Storage

Intuition. In the existing sharding systems [11], [23], one
contract is solitarily deployed to only one shard, and different
smart contracts are deployed to distinct shards. As a result,
shards do not know any information about each other’s smart
contracts. Therefore, a smart contract transaction needs to
be split into several sub-transactions according to the smart
contract information held by different shards. Relevant shards
need to execute all the sub-transactions, conduct multiple
rounds of consensus and transmit intermediate results in
multiple rounds to commit a smart contract transaction, which
is inefficient.

A straightforward idea to ameliorate the above problem is
to require a shard maintain information about other shards
[13]. This approach breaks the isolation between shards to a
certain extent. Since a shard maintains more contracts, some
smart contract transactions can be executed directly inside one
shard without being split. However, for a shard maintains
the information of n shards, the storage and computation
overheads of the nodes inside it are n times higher. This
causes huge storage and computation overhead for each node,
reducing the sharding scalability.

Is there a smarter way to orchestrate contracts so that
smart contract transactions can be processed efficiently without
compromising the sharding scalability too much? We give an
affirmative answer. Instead of treating each smart contract as
an indivisible entity, we deconstruct its state storage, logic
storage, and execution. When a smart contract is deployed,
a node stores its logic (its function, code) and state (data).
The first observation is that over time, the amount of logic
maintained by each node will be much less than the total
maintained storage. The reason is that nodes need to record
huge amounts of smart contract transactions and frequently
record state changes. In contrast, logic information only needs
to be stored at deployment time and is not recorded as
frequently. The second observation is that, any shard can
easily execute a smart contract if it has the logic of that
contract. Therefore, can we allow each node to maintain
additional logic information, thus improving the smart contract
process efficiency without adding too much storage overhead?
Based on this intuition, we propose Network-Wide Logic
Storage.

Network-Wide Logic Storage. In our design, when a smart
contract is deployed, all shards store the logic for all con-
tracts. However, to reduce per-node storage overhead, the
state information of a contract is randomly (e.g., based on
hash) stored by a particular shard. When a client sends a
smart contract transaction, the shards associated with it locks
the states required by that transaction and transmit the states
to a particular shard (e.g., based on the transaction hash)
for execution. Since each shard maintains the logic of all
smart contracts, the execution shard after obtaining all relevant
states can directly execute all smart contracts involved in that
transaction, and return the execution results (state updates) to
the relevant shards. Eventually, the relevant shards obtain the



states, unlocks them and commit the transaction to the block.

C. Orchestrating State Storage and Execution

Intuition. Another problem with existing solutions is that they
require significant amount of cross-shard communication to
fetch and return states on multiple shards during transaction
processing. Specifically, a smart contract transaction usually
requires multiple contracts’ states located on multiple shards.
When a shard processes the transaction, related states must be
transmitted from other shards to it via additional cross-shard
communication. Then the state will be broadcast within that
shard for consensus.

Is there a way to transmit information between arbitrary
shards without the extra cross-shard communication? We give
a positive answer. We find that if the execution of contracts on
one shard and the state storage on other shards are overlapped,
then information between arbitrary state shards and execution
shards can be transmitted directly through intra-shard broad-
casts (instead of cross-shard communication then intra-shard
broadcast). This eliminates the extra overhead caused by cross-
shard communication. Based on this intuition, we propose
Orthogonal Lattice Structure.
Orthogonal Lattice Structure. On top of the shards storing
states (state shards), we orthogonally erect a corresponding
number of execution channels. Each channel overlaps with
all shards. State shards store the state of contracts, while
execution channels execute contracts. Specifically, when a
smart contract is deployed, its state information is randomly
stored by a state shard. The execution of all smart contracts
inside a smart contract transaction is randomly handled by
one execution channel. A node belongs to both a state shard
and an execution channel that overlaps with it. The set of
nodes belonging to the same overlapped part forms a subgroup.
When processing a smart contract transaction, the states on the
state shards are broadcast directly to a particular execution
channel via some overlapped subgroups of nodes. After the
execution channel finishes the contract execution, the states
are then broadcast back to the state shards via the overlapped
subgroups. This design eliminates cross-shard communication
for state fetch and return, and does not impose additional
storage and computational overhead on the node.

V. SYSTEM DESIGN

A. Network-Wide Logic Storage

In Jenga, all shards store the logic of all contracts. A
client who wants to create a smart contract can deploy the
contract by initiating a contract-deploying transaction into the
network. The contract-deploying transaction is broadcast to
the entire network. Each shard internally verifies the contract-
deploying transaction via intra-shard consensus and commit
the transaction into a block. Every shard needs to store the
logic information of that smart contract, while only one shard
needs to store its states. Specifically, the states of a certain
contract is randomly (e.g., based on the smart contract’s hash)
stored to a shard. Noting that different shards also maintain
the states for different accounts, as all existing systems do.

B. Orthogonal Lattice Structure

In Jenga, each execution channel overlaps with all state
shards. Different shards store distinct states, and different "or-
thogonal" execution channels process different smart contract
transactions. When a contract is deployed, its state is randomly
maintained by a certain shard (named state shard). However,
this shard is not responsible for executing that smart contract.
Since the logic of that smart contract is stored on all shards,
any shard can execute it if the shard has that smart contract’s
state. So we assign the execution of the smart contract to one
of the execution channels "orthogonal" to the state shard. Any
two state shard and the execution channel are connected by
a subgroup of nodes. That is, any single node exists on both
a state shard and an execution channel orthogonal to it, and
connects to the peers in that shard (channel). In this way,
through a certain subgroup, any information between a state
shard and an execution channel can be transmitted via intra-
shard broadcast directly, rather than first passing the message
from a shard to another through cross-shard communication
then broadcast it in that shard. However, how to decide which
node belongs to which execution channel and which smart
contract should be executed by which execution channel in a
decentralized system?

Determining the Execution Channel. To determine which
execution channel a node should belong to, we use unbiased
distributed randomness. There are many ways to generate
distributed randomness, e.g, the verifiable random function
(VRF) [19], verifable delay function (VDF) [5], and trusted
execution environment [9]. It can be considered as a separated
module in a sharding system and is orthogonal with our work,
thus we do not discuss in detail. In our system, the distributed
randomness determines both which state shard and execution
channel a node belongs to. Specifically, each node i XOR
its public key and the distributed randomness to get a new
random number ri. The new random number ri is then modulo
N to get a random number rNi . Each node divides rNi by
the number of nodes that should be inside each shard (i.e.,
N/S), and the integer part of the result obtained is the state
shard to which the node belongs. The random number rNi is
divided by the number of shards (i.e., S) in the system, and
the remainder of the result is the execution channel to which
the node belongs. Such an allocation method implements an
architecture in which the state shard is "orthogonal" to the
execution channel. It also ensures that the number of state
shards is the same as the number of execution channels, and
the number of nodes inside each state shard is the same as the
number of nodes inside each execution channel.

Another problem is that how to decide which execution
channel a smart contract should be executed by. In existing
systems, a specific smart contract can only be executed by
a specific shard. However, in Jenga, each execution channel
stores the logic of all contracts. Therefore, any execution
channel can execute any smart contract. As a result, our system
no longer uses the hash of a smart contract to determine the
execution channel of a smart contract. Correspondingly, we



Fig. 4: Basic workflow of Jenga’s cross-shard consensus.
Pre-prepare contains procedure 1) and 2). Prepare contains
procedure 3) and 4). Commit contains procedure 5).

use the hash of the smart contract transaction to determine
the execution place of all smart contracts contained in it, and
all smart contracts inside that transaction are executed by the
same execution channel. Due to the randomness of the trans-
action hash, this design can better balance the computational
load on each execution channel.

C. Cross-Shard Consensus Protocol

Based on the above design points, we now propose the
cross-shard consensus protocol to commit smart contract
transactions. A cross-shard consensus protocol is required in
a blockchain sharding system, as processing a smart con-
tract transaction usually involves several shards. The protocol
eliminates the complex multi-round consensus during smart
contract execution, as well as the extensive cross-shard com-
munication during state fetching and return. Thus, our protocol
effectively improves the efficiency of processing smart contract
transactions in blockchain sharding systems. Our cross-shard
consensus protocol consists of three phases: pre-prepare, pre-
pare, and commit. The basic workflow of Jenga’s cross-shard
consensus is illustrated in Figure 4.

Phase 1: Pre-Prepare. In this phase, state shards determine
the related states involved in a smart contract transaction via
consensus, and broadcast them into the execution channel
via subgroups. Cross-shard consensus starts with the client
initiating a smart contract transaction (which invokes several
smart contracts). Before sending the transaction, the client
decides locally which contracts, accounts, and states are in-
cluded in the smart contract transaction. This decision can be
reached through dynamic program analysis (code simulation),
similar to [23]. This information is then recorded inside
the transaction. When sending the transaction, the client is
required to pay amount of transaction fee to prevent malicious
behaviour (explained later). The transaction is then sent to
the shards where the relevant states are stored. Since the
shard in which the smart contract state is stored is determined
by the hash of the smart contract, any shard can easily
verify whether it should handle a particular smart contract
transaction. The relevant shard verifies the transaction via

intra-shard consensus and determines the state maintained by
its own shard with respect to that transaction.
Intra-Shard Consensus. We adopt Byzantine Fault Tolerant
(BFT) consensus as our intra-shard consensus protocol (both in
state shards and execution channels). To improve the consen-
sus efficiency (both intra-shard and inter-shard), we adopt BLS
aggregated signatures [6]. By aggregating the independent
signatures generated by each node into one multi-signature,
nodes only need to verify the correctness of the aggregated
signature to determine whether the consensus result is valid
or not. Such a design can be easily scaled to thousands of
nodes.
State Determination. There are two outcomes of the state
determination: (a), the state is available. In this case, the
state shard reaches intra-shard consensus, sets the available
state to unavailable and uses the transaction hash to determine
which execution channel to send the state to. The state and its
transaction hash are then broadcast directly in the execution
channel through the subgroup of the state shard that overlaps
with the execution channel. (b), the state is not available.
In this case, the state shard reaches intra-shard consensus,
broadcasts the AbortRequest message and the transaction hash
to the execution channel through the subgroup. Since the
execution channel is determined by the hash of a single trans-
action. Therefore, for a transaction, all the state information on
different state shards will be broadcast to the same execution
channel through different subgroups.
Transaction Fee. We leverage transaction fee to prevent clients
from sending transactions indiscriminately. Without paying
transaction fee, a client can intentionally send malicious trans-
actions (e.g., a transaction containing wrong states to make
the nodes lock wrong states). This damages the liveness of
the system. Therefore, in Jenga, clients are required to pay a
fee in advance when initiating a transaction. The amount of
fee is related to the execution volume (similar to Ethereum’s
gas scheme [28]). With the fee scheme, if a malicious client
sends a transaction that intentionally involves the wrong state
or pays an insufficient fee, the node will find such an exception
during the execution (e.g., a state that should be used in the
contract is not included in the transaction). Once an exception
is detected, the transaction is aborted and rolled back in all
related shards, and all fees are deducted.

Phase 2: Prepare. In this phase, the execution channel
executes all contracts related to a transaction, reaches intra-
shard consensus, and broadcasts the execution results back
to the state shards via different subgroups. A smart contract
transaction is also sent to the execution channel that executes
it. After the execution channel receives the result of the first
state determination associated with a transaction, it starts a
counter c for that transaction. c represents the number of
states associated with the transaction, which can be derived
by parsing the smart contract transaction. The counter is
subtracted by one for each valid state successfully obtained.
Eventually, if c=0, the execution channel starts executing
all smart contracts within the transaction, reaches intra-shard



consensus, and returns the execution results (state updates)
and the transaction hash directly to the corresponding state
shards through different subgroups. Otherwise (e.g., due to
timeout or invalid states), the execution channel returns the
Abort information and transaction hash via subgroups directly
to all the related state shards after reaching consensus.

Phase 3: Commit. In this phase, the state shards get execution
results from the execution channel via subgroups, update the
states via consensus, and commit the smart contract transac-
tion. Each related state shard gets feedback on the execution
channel from the corresponding subgroup. This information
is broadcast directly into the shard via the subgroup. If a
valid state update is received, the shard internally commits the
transaction to the block via intra-shard consensus, and adds the
block to the blockchain. At the same time, the shard update
the stored state and restore the state to available. If a valid
Abort message is received, the transaction is aborted.

D. Other Components

We now add brief remarks about the other components in
the system beyond our main designs. First, the bootstrapping
phase of the system is out of the scope of our paper. In real
blockchain projects, the bootstrapping can be done in either a
centralized [25] or decentralized [29] manner. Second, in order
to prevent Sybil attack, Jenga uses PoS (Proof of Stake) as the
access mechanism for nodes. Similarly, blockchain systems
can also use PoW mechanism as an access threshold [13], [29].
Third, we use a combination of VRF and VDF to generate
verifiable, unbiased, and unpredictable distributed randomness
to assist the sharding reshuffle process (e.g., decide which
node belongs to which shard/channel) in each epoch (typically
1 day) [13], [29]. Fourth, our system is orthogonal to the
processing of traditional transfer transactions. The normal
transfer transactions are processed still via the traditional
cross-shard transaction processing scheme (e.g., [25], [27]).

VI. SECURITY ANALYSIS

We first analyze the failure probability for each shard and
each subgroup. Based on the above analysis, we then calculate
the failure probability of the system during each epoch. Under
negligible system failure probability, we finally proof the
safety and liveness for our cross-shard consensus protocol.

A. Shard Failure Probability

We first analyze the failure probability for each shard (i.e.,
fraction of malicious nodes in each shard is no less than 1/3)
in each epoch, as the nodes will be reshuffled for each new
epoch [9], [13], [29]. We do not analyze the reshuffle phase
itself as it is orthogonal to our system. Noting that, in Jenga,
the size for each shard and the number of nodes in each shard
are all the same as those of a channel. Therefore, a channel can
be considered as another form of a shard, and the following
analysis can be applied to any channel as well.

Similar to previous works [9], [13], [29], we use the
hypergeometric distribution function to calculate the failure
probability of each shard. In particular, let X be a random

variable representing the number of Byzantine nodes assigned
to a shard (channel) of size k = N/S, given the overall
network size of N nodes among which up to fN nodes are
Byzantine. The upper bound of the probability for the shard
failure in each epoch can be computed by:

pshard = Pr[X ≥ ⌊k/3⌋] =
k∑

x=⌊k/3⌋

(
fN
x

)(
N−fN
k−x

)(
N
k

) . (1)

B. Subgroup Failure Probability

We now analyze the failure probability for each subgroup.
Unlike the shard, the malicious nodes within each subgroup
need not be limited to less than 1/3, since consensus is not
required within the subgroup. The role of the subgroup is to
broadcast consensus results between the state shards and the
execution channels. Since a message sent by an honest node
will eventually be received by any other honest node (Section
III-A), it is only necessary to ensure that there is at least one
honest node within each subgroup to ensure the security of
the message broadcast.

The failure probability within each subgroup can also be
calculated by hypergeometric distribution. Specifically, let Y
be a random variable representing the number of Byzantine
nodes in a subgroup of size j = k/S, given the shard size
of k = N/S nodes. Because the fraction of malicious nodes
in each shard are restricted less than 1/3, there are up to k/3
Byzantine nodes in each shard. Therefore, the upper bound of
the probability for the subgroup failure can be computed by:

psubgroup = Pr[Y ≥ ⌊j⌋] =
j∑

y=⌊j⌋

(
k/3
y

)(
k−k/3
j−y

)(
k
j

) . (2)

C. Epoch Security

Similar to [29], the upper bound of the failure probability
for the whole system in each epoch can now be calculated. The
calculation should consider both the shard failure probability
pshard and the subgroup failure probality psubgroup. Therefore,
the upper bound of the system failure probability in each epoch
is:

psystem = 2S · pshard + S2 · psubgroup, (3)

because there are S state shards, S execution channels, and
S2 subgroups in the system.

By carefully adjusting the number of nodes N and the
number of shards (channels) S, we can bound the failure
probability of the system to be negligible, as will be illustrated
in Section VII-C.

D. Protocol Security Analysis

Under negligible system failure probability, our cross-shard
consensus protocol achieves safety and liveness, as we will
prove next.

Theorem 1 (Safety). The cross-shard consensus achieves
safety if there are no more than 1/3 fraction of malicious nodes
in each shard (channel).

Proof. Given no more than 1/3 malicious nodes in each shard
(channel), the intra-shard BFT consensus (in all the three



phases) can be guaranteed as secure. Therefore, an intra-
shard consensus result along with the BLS signature is honest.
Meanwhile, the consensus result cannot be modified or forged
because the signature can be used to detect forgery and
tampering. Moreover, there exists at least one honest node in
each subgroup. Therefore, the communication among shards
and channels can be safely proceeded, which guarantees that
all related shards (channels) can receive the valid consensus
results. Moreover, the procedure of our cross-shard consensus
is similar to the 2PC (two-phase commit) protocol in other
distributed systems [2], [9], [13]. Therefore, honest nodes in
all related shards and channels always agree on the same
valid consensus results, i.e., our protocol guarantee atomicity
and consistency for transactions. Therefore, the cross-shard
consensus protocol achieves safety.

Theorem 2 (Liveness). The cross-shard consensus achieves
liveness if there are no more than 1/3 fraction of malicious
nodes in each shard (channel).

Proof. According to the system model in Section III-A, as
the nodes are connected by a partially synchronous network
and each shard (channel) has no more than 1/3 malicious
nodes, the BFT protocol adopted as the intra-shard consensus
of each shard (channel) can achieve liveness. According to
Theorem 1, each involved shard always makes progress, and
any transaction sent to the shards will eventually be committed
or aborted. Such eventual availability means that no malicious
node can block the consensus indefinitely. Therefore, the
cross-shard consensus protocol achieves liveness.

VII. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement Jenga in Go language with 8,000+ LoC
based on Harmony [25], a well-known blockchain sharding
project within top 100 market cap in cryptocurrency. Har-
mony’s implementation is based on Ethereum and it adopts
a similar smart contract framework with Ethereum. However,
Harmony only supports smart contracts to be deployed on one
specific shard (see in Section II-C), while our implementation
allows smart contracts to be deployed in individual shards,
improving the scalability of the system. Since Ethereum is
a widely adopted system and our system uses Ethereum as
the underlying architecture, other Ethereum-based systems can
easily apply our work to improve their throughput for smart
contracts.

We also implement the prototype of three benchmark sys-
tems that support handling multi-step smart contracts for com-
parison, namely Single Shard, CX Func, and Pyramid. Single
Shard represents those systems in which only one specific
shard can handle smart contract transactions [4], [9], [25], CX
Func represents the Cross-Shard Function Call proposed by
Ethereum [23], and Pyramid is the Pyramid system proposed
in [13]. Their main ideas are referred to in Section II-C. We
implement their different cross-shard consensus of processing
smart contract transactions. In addition, to ensure fairness
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Fig. 5: System throughput and throughput breakdown.

of the comparison, we adopt the same intra-shard consensus
protocol as Jenga in all the benchmark systems.

B. Evaluation Setup

We deploy Jenga on Amazon EC2 with up to 48 r5.24xlarge
instances, each with a 96-core processor and a 25-Gbps
communication link. We conduct evaluations at a scale of
up to 12 shards and 2880 nodes. Similar to most running
blockchain testbeds [13], [29], we consider a latency of 100
ms for every message and a bandwidth of 20 Mbps for each
node. In a consensus round, each node can verify up to
4096 transactions, each of which is 512 bytes. We randomly
sample 1 million smart contract transactions in the most
recent 1 million Ethereum blocks up to March 2021 [31] for
evaluations. The fraction of total malicious nodes f is set as
20%, similar to previous works [15], [17]. We compare Jenga
with Single Shard, CX Func, and Pyramid.
TABLE I: Choice of number of nodes per shard and corre-
sponding failure probability.

Number of Shards 4 6 8 10 12
# of Nodes per Shard 180 200 210 230 240

System Failure Probability 1.6 6.1 5.1 5.3 2.8
(·10−6)

C. Choice of Shard Size

We should adjust the shard size to limit the system failure
probability to be negligible, as described in Section VI. The
rule for selecting the shard size is: the failure probability is less
than 2−17 ≈ 7.6·10−6 [13]. This failure probability guarantees
that one failure will occur in about 359 years if the sharding
system reshuffles in one-day epochs. We determine the number
of nodes per shard based on Equation 1, 2 and 3. Table I shows
the choice of shard size under different number of shards and
the corresponding failure probability. Results show that our
choice of shard size makes the probability of failure less than
7.6 · 10−6 at any scale, ensuring the safety of the system. The
following experiments will be conducted based on the shard
size determined by Table I.

D. Throughput

We first evaluate the system throughput (i.e., TPS), the
results are shown in Figure 5a. Compared to the baselines,
Jenga achieves up to 14.3 times the throughput of Single
Shard at a scale of 12 shards. And since Single Shard is
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Fig. 6: Confirmation latency and latency breakdown.

not scalable, Jenga can be expected to perform even better
than it as the number of shards increases. Moreover, Jenga
reaches at most 2.3 times the throughput of CX Func and
reaches 1.5 times the throughput of Pyramid at a scale of
12 shards. The performance improvement compared to CX
Func is mainly because Jenga does not require multiple rounds
of cross-shard consensus and large amount of cross-shard
communication. Jenga outperforms Pyramid because of the
following two reasons: first, Jenga does not require cross-shard
communication; second, in Pyramid, merged shards cannot
cover all transactions, there are still amount of transactions that
need to be processed via multi-round cross-shard consensus.
Jenga scales throughput at most 1.8 times when doubling the
shard number (e.g., 6 to 12 shards), indicating that Jenga has
good throughput scalability. Due to the poor performance of
Single Shard, we will no longer compare Jenga with Single
Shard in our subsequent experiments.
Breakdown. We breakdown the system to see how our main
design points affect throughput gains. As shown in Figure 5b,
the design of Network-Wide Logic Storage contributes more
throughput gain. With logic of the smart contract deployed
network-wide, Jenga compacts multiple rounds of cross-shard
execution when processing transactions into single step, which
gives up to 2.1× throughput gain. Orthogonal Lattice Structure
brings about 1.2× throughput gain by eliminating cross-shard
communication.

E. Confirmation Latency

Figure 6a shows the comparative results of the transaction
confirmation latency (the delay between the time that a trans-
action starts to be processed until the transaction is committed,
similar to previous works [13], [29]). Compared to CX Func
and Pyramid, Jenga reduces latency by up to 55.6% and 33.8%
at a scale of 12 shards, respectively. As the number of shards
increases, the confirmation latency increases as well. This is
mainly because that as the number of shards increases, the
number of nodes inside each shard also increases, so the intra-
shard consensus takes longer time to finish. Another reason
is that with a higher number of shards, the processing of
transactions involves more shards, thus causing more cross-
shard communication.
Breakdown. Figure 6b shows the improvement in transaction
confirmation latency brought by our main design points.
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Specifically, at a scale of 12 shards, the Network-Wide Logic
Storage design reduces the transaction confirmation latency by
51.5%. The reduction in latency is mainly due to the design
of Network-Wide Logic Storage reducing the latency caused
by multiple rounds of cross-shard consensus during execution.
The Orthogonal Lattice Structure reduces confirmation latency
by 15.8%, as the cross-shard communication during state
fetching and return is eliminated.
Remarks on the Performance Improvement. Compared with
Network-Wide Logic Storage which provides remarkable per-
formance gain (both throughput and latency), the performance
gain brought by Orthogonal Lattice Structure is not very
significant. We speculate the main reason is that, to simplify
the implementation, we use the client to relay cross-shard
communication in baselines. This implementation reduces the
cross-shard communication [9] in baseline systems, improving
the baseline performance. However, it is not secure enough, as
the clients can be malicious [9], [27], [29]. We presume that
Jenga would deliver more performance gains if the baseline
systems use more secure schemes for cross-shard communi-
cation (e.g., cross-shard broadcast [15], [17] or routing via
nodes [18], [25], [29]). We consider such implementation and
comparisons as our future work.

F. Storage Overhead

We compare the storage overhead per node and show the
results in Figure 7a. As the number of shards grows, the
average single-node storage overhead for Jenga and CX Func
gradually decreases. This benefit is brought by the storage
scalability of sharding. In contrast, the storage overhead per
node in Pyramid increases. This is because, as the number
of shards increases, Pyramid requires more nodes to work on
larger merged shards. As a result, the average storage and
computation overhead per node increases. Jenga reduces up
to 65.2% average storage overhead per node compared to
Pyramid at a scale of 12 shards, and it can reduce more with
the system scales. Moreover, the average storage overhead per
node in Jenga is only a small amount more than CX Func (less
than 200MB). This part of the storage overhead is due to that
each node shares all the contract logic.
Breakdown. As each node additionally stores the logic of
all contracts in Jenga, we evaluate the overhead caused by
logic storage and total storage. We collect all smart contract



transactions in the last 1 million blocks and the smart contract-
deploying transactions associated with them, and evaluate the
storage overhead per node in the unsharded case. The results
are shown in Figure 7b. The meaning of each point in the
figure is the average storage overhead per node over the last
x sampled blocks. The results show two facts: First, logic
storage accounts for a very small percentage of the total
storage; Second, the percentage of logic storage decreases
over time. The main reason for the above observations is that
contracts are invoked frequently (i.e., recording state changes
in blockchain) but not deployed frequently (i.e., recording
logic). Therefore, the design of having each node store all
logic storage is reasonable and its advantage of saving storage
overhead will increase over time.

VIII. CONCLUSIONS

We present Jenga, a sharding-based blockchain to process
smart contracts efficiently. At its core, Jenga breaks the
isolation between shards via orchestrating the state storage,
logic storage and execution of smart contracts. Jenga allows
all nodes to share the logic for all contracts, different shards
store distinct states, and the nodes in "orthogonal" channels
executes contracts. As a result, the processing of smart contract
transactions are handled efficiently, and with low overhead. To
commit the smart contract transactions safely and efficiently,
we propose a cross-shard consensus that can guarantee the
atomicity and consistency of transactions. Finally, we imple-
ment Jenga and the evaluation results illustrate the superiority
of our system. Specifically, compared with the most recent
sharding protocol, Jenga improves the system throughput by
1.5 times in a setting with 2880 nodes, with 65.2% per-node
storage overhead reduced.
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