
LRC: Dependency-Aware Cache Management
for Data Analytics Clusters

Yinghao Yu, Wei Wang, Jun Zhang, Khaled Ben Letaief
Hong Kong University of Science and Technology

yyuau@connect.ust.hk, weiwa@cse.ust.hk {eejzhang, eekhaled}@ust.hk

Abstract—Memory caches are being aggressively used in to-
day’s data-parallel systems such as Spark, Tez, and Piccolo. How-
ever, prevalent systems employ rather simple cache management
policies—notably the Least Recently Used (LRU) policy—that
are oblivious to the application semantics of data dependency,
expressed as a directed acyclic graph (DAG). Without this knowl-
edge, memory caching can at best be performed by “guessing” the
future data access patterns based on historical information (e.g.,
the access recency and/or frequency), which frequently results
in inefficient, erroneous caching with low hit ratio and a long
response time.

In this paper, we propose a novel cache replacement policy,
Least Reference Count (LRC), which exploits the application-
specific DAG information to optimize the cache management.
LRC evicts the cached data blocks whose reference count is the
smallest. The reference count is defined, for each data block,
as the number of dependent child blocks that have not been
computed yet. We demonstrate the efficacy of LRC through
both empirical analysis and cluster deployments against popular
benchmarking workloads. Our Spark implementation shows that,
compared with LRU, LRC speeds up typical applications by 60%.

I. INTRODUCTION

Data analytics clusters are shifting from on-disk processing
toward in-memory computing. The increasing demand for inter-
active, iterative data analytics and the stalling speed of disk I/O
force data-parallel systems to persist large volumes of data in
memory to provide low latency [1]–[4]. Despite the continuous
drop in RAM prices and the increasing availability of high-
RAM servers, memory cache remains a constrained resource
in large clusters. Efficient cache management, therefore, plays
a pivotal role for in-memory data analytics.

Caching is a classical problem and has been well studied
in storage systems, databases, operating systems, and web
servers. Yet, caching in data-parallel clusters has a defining
characteristic that differentiates it from previous systems:
cluster applications have clear semantics of data dependency,
expressed as directed acyclic graphs (DAGs) of compute tasks.
The DAG sketches out the task execution plan which dictates
the underlying data access pattern, i.e., how data is computed
and reused as input of descendant tasks. Fig. 1 shows an
example DAG, where the computations of data blocks E and
F depend on block D, and the corresponding tasks can only
be scheduled after block D has been derived from block B.

However, existing caching policies in prevalent data analytic
systems [2], [5], [6] are agnostic to the data dependency DAGs.
Instead, they predict application-specific data access patterns
based on historical information (e.g., frequency and recency).

A

B

C

D

E

F

Fig. 1: An example of the data dependency DAG of an
application. Each block represents a dataset. Blocks A, B,
and C are input datasets already cached in memory. Block D
is an intermediate dataset derived from B. Block E (F ) is the
final result derived from both A and D (C and D).

For instance, in Spark, the BlockManager evicts data blocks
that are least recently used (LRU) in the presence of high
memory pressure [2]. The LRU policy can be highly inefficient
with low hit ratio. Referring back to the example of Fig. 1,
suppose that the cache can hold 3 blocks (assuming unit block
size), and blocks A, B and C are cached at the beginning. Now
to derive block D and persist it in memory, the LRU policy
will evict either block A or C, as block B has been recently
used in the computation of block D, even though it will not
be referenced again in the future. We show through this toy
example that simply relying on the historical information can
result in erroneous cache decisions.

In this paper, we ask how the application semantics of data
dependency should be exploited to optimize cache manage-
ment? Ideally, the solution should take full use of the DAG
information and can be easily implemented as an efficient cache
management policy with low overhead. In addition, the policy
should be generally applicable to a wide range of in-memory
computing frameworks.

We propose a novel cache replacement policy, Least Refer-
ence Count (LRC), that always evicts the data block whose
reference count is the smallest. The reference count is defined,
for each data block, as the number of unmaterialized child
blocks derived from it.

LRC provides benefits over existing cache management
policies in three aspects. First, LRC can timely detect inactive
data blocks with zero reference count. Such blocks are likely
not be used again in the remaining computations1 and can
be safely evicted from the memory. Second, compared with
the historical information such as the block access recency

1Unless re-computation is needed due to machine failures or stragglers.



and frequency, the reference count serves as a more accurate
indicator of the likelihood of future data access. Intuitively, the
higher the reference count a block has, the more child blocks
depend on it, and the more likely the block is needed in the
downstream computations. We show through empirical studies
in Sec. II that caching data blocks with the highest reference
count increases the hit ratio by up to 119% in comparison with
caching the most recently used data. Third, the reference count
can be accurately tracked at runtime with negligible overhead,
making LRC a lightweight solution for all DAG-based systems.

We have prototyped LRC as a pluggable memory manager
in Spark (details in Sec. III). To demonstrate the efficacy
of LRC, we have conducted extensive evaluations through
EC2 deployment, including both the single- and multi-tenant
experiments at scale. Compared to LRU—the default cache
management policy in Spark—LRC retains the same application
performance using only 40% of cache spaces. When operating
with the same memory footprint, LRC is capable of reducing
the application runtime by up to 60%. Our implementation can
be easily adapted to other DAG-based data parallel systems
and can also be extended to multi-tenant cache sharing systems
such as Tachyon [4].

The remainder of the paper is organized as follows. In Sec. II,
we demonstrate the inefficiency of existing cache policies
by characterizing data access patterns in parallel processing
systems through empirical studies. We present the design of
LRC policy and elaborate its implementation details in Sec. III.
Evaluation results are reported in Sec. IV. We survey related
work in Sec. V and conclude the paper in Sec. VI.

II. BACKGROUND AND MOTIVATION

In this section, we give the background information and
motivate the need for a new cache policy through empirical
studies. Unless otherwise specified, we shall limit our discus-
sion to the context of Spark [2]. However, nothing precludes
applying the discussion to other frameworks such as Tez [7]
and Storm [5].

A. Semantics of Data Dependency

Cluster applications such as machine learning, web search,
and social network typically consist of complex workflows,
available as directed acyclic graphs (DAGs) to the cluster
scheduler. These DAGs provide rich semantics of the under-
lying data access patterns, which entails a myriad of cache
optimization opportunities that, so far, have not been well
explored.

In Spark, data is managed through an easy-to-use memory
abstraction called Resilient Distributed Datasets (RDDs) [2].
An RDD is a collection of immutable datasets partitioned across
a group of machines. Each machine stores a subset of RDD
partitions (blocks), in memory or on disk. An RDD can be
created directly from a file in a distributed storage system (e.g.,
HDFS [8], Amazon S3 [9], and Tachyon [4]) or computed
from other RDDs through a user-defined transformation. The
DAG presents the workflow of RDD computations.

Whenever a job is submitted to the Spark driver, its DAG
of RDDs becomes readily available to a driver component,
DAGScheduler [2]. The DAGScheduler then traverses the job
DAG using depth-first search (DFS) and continuously submits
runnable tasks (i.e., those whose parent RDDs have all been
computed) to the cluster scheduler to compute unmaterialized
RDDs. Therefore, the cache manager can easily retrieve the
DAG information from the DAGScheduler. This information
sheds light into the underlying data access patterns, based on
which the cache manager can decide which RDD block should
be kept in memory.

It is worth emphasizing that the availability of data depen-
dency DAGs of compute jobs is not limited to Spark, but
generally found in other parallel frameworks such as Apache
Tez [7]: the Tez programming API allows the programmer to
explicitly define the workflow DAG of an application, which
is readily available to the Tez scheduler beforehand.

We caution that the actual data access sequence, though
critically depends on the dependency DAGs, cannot be fully
characterized beforehand. To see this, we refer back to the
previous example in Fig. 1. After block D has been computed,
the cluster scheduler submits two task sets, say T1 and T2,
to respectively compute data blocks E and F (noting that A
and C are assumed to be in memory at the beginning). In this
case, which block, E or F , is computed first depends on the
scheduling order of T1 and T2, which dictates the access order
of blocks A and C. We see from this simple example that
there remains some uncertainty in the data access sequence,
even with the dependency DAG available a priori. It is such an
uncertainty that rules out the use of the optimal offline cache
policy, Belady’s MIN [10], to maximize the cache hit ratio.

B. Recency- and Frequency-Based Cache Management

Despite the availability of the dependency DAGs, prevalent
cache management policies are agnostic toward this information.
Instead, they predict data access patterns based on the historical
information, notably recency and frequency.

• Least Recently Used (LRU): The LRU policy [11] makes
room for new data by evicting the cached blocks that have
not been accessed for the longest period of time. LRU
is the de facto cache management policy deployed in
today’s in-memory data analytics systems [2], [4], [5], [7].
It predicts the access pattern based on the short-term data
popularity, meaning the recently accessed data is assumed
to be likely used again in the near future.

• Least Frequently Used (LFU): The LFU policy [12]
keeps track of the access frequency of each data block, and
the one that has been accessed the least frequently has the
highest priority to be evicted. Unlike LRU, LFU predicts
the access pattern based on the long-term data popularity,
meaning the frequently accessed data is assumed to be
likely used again in the future.

Both LRU and LFU are very easy to implement. However,
their obliviousness to the application semantics of data depen-
dency frequently result in inefficient, even erroneous, cache
decisions, as we show in the next subsection.



TABLE I: An overview of SparkBench suite [13].

Application Type Workload

Machine Learning
Logistic Regression

Support Vector Machine (SVM)
Matrix Factorization

Graph Computation
Page Rank

SVD Plus Plus
Triangle Count

SQL Queries
Hive

RDD Relation

Streaming Workloads
Twitter Tag
Page View

Other Workloads

Connected Component
Strongly Connected Component

Shortest Paths
Label Propagation
Pregel Operation

C. Characterizing the Data Access Pattern

To illustrate the need for being dependency-aware, we charac-
terize the data access patterns in typical analytics benchmarks
through empirical studies. We show that simply relying on
the recency and frequency information for cache management
would waste a large portion of memory to persist inactive data
that will never be used in downstream computations.

Methodology. We ran SparkBench [13], a comprehensive
benchmarking suite, in an Amazon EC2 [14] cluster consisting
of 10 m4.large instances. We measured the memory footprints
and characterized the data access patterns of 15 applications in
SparkBench, including machine learning, graph computation,
SQL queries, streaming, etc. Table I summarizes the workload
suite we used in our empirical studies.

Data Access Patterns. Our experiments have identified two
common access patterns across applications.

1) Most data goes inactive quickly and will never be
referenced again. Fig. 2 shows the distribution of inactive data
cached in memory throughout the execution of 15 applications.
We find that inactive data accounts for a large portion of
memory footprint during the execution, with the median
and 95th percentile being 77% and 99%, respectively. The
dominance of inactive data blocks is in line with the data
flow model where intermediate data is used by “nearby”
computations in DAGs and therefore has a short life cycle.
Keeping inactive data long in memory wastes cache spaces,
inevitably resulting in low hit ratio.

2) Data goes inactive in waves, often aligned with the
generation of new data. We further micro-benchmarked the
memory footprint of total generated data against that of inactive
data blocks cached during the execution of each application.
Fig. 3 shows the results for a representative application that
computes the connected components of a given graph. The
execution progress is measured in terms of the number of
tasks completed. We see clearly that the data is produced and
consumed in waves, shown in Fig. 3 as the lockstep along
with the submission of new jobs following the DAG. Meaning

0 0.2 0.4 0.6 0.8 1

Percentage of Inactive Data in the Cached Data

0

0.2

0.4

0.6

0.8

1

C
D

F

Empirical CDF

Fig. 2: Distribution of inactive data cached during the execution
of SparkBench [13].

0 50 100 150 200

Task #

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
e

rc
e

n
ta

g
e

Job 0 Job 1 Job 2 Job 3 Job 4

Total Generated Data

Inactive Data

Fig. 3: Memory footprints of intermediate data generated and
inactive blocks cached during the execution of Connected
Component, an application in SparkBench [13].

that when a child RDD has been computed, its parents may
go inactive.

Inefficiency of LRU and LFU. We learn from the empirical
studies that the key to efficient cache replacement is to timely
evict inactive data blocks. Unfortunately, neither LRU nor LFU
is capable of doing so. We refer back to the example of Fig. 1,
where each block is of a unit size, and the memory cache
can persist three blocks in total. We start with LRU. Without
loss of generality, assume that the three blocks A, B, and
C are already in memory at the beginning, with the recency
rank C > B > A, i.e., from the most-recently-used (MRU)
position to the least-recently-used (LRU). Fig. 4 illustrates what
happens in an LRU cache when data block D is materialized
and then cached. Since block D is derived from B, the latter
is firstly referenced as an input at time t1 and is elevated to
the MRU position. Soon later, block D has been materialized
at time t2 and is cached at the MRU position, pushing the
least-recently-used block A out of the memory. However, this
would incur expensive tear-and-wear cost, in that block A will
soon be reloaded in memory to compute block E. In fact, we
see that the optimal decision is to evict block B, as it becomes
inactive and will never be used again. This simple example
shows that LRU is unable to evict inactive data in time, but



C

B

A

D

!

C

Time

MRU
B

C

A

LRU

Reference B Produce D

t1 t2

Fig. 4: An example showing that LRU is unable to timely
detect and evict inactive data.

it has to wait passively until the data demotes to the LRU
position, which may take a long time.

We note that the LFU policy suffers from a similar problem.
In the previous example, to cache block D, the LFU policy
would evict either block A or C while retaining block B in
memory, because block B has a historical access record (in
the computation of D), but the other two do not.

To summarize, simply relying on the historical information,
be it access recency or frequency, is incapable of detecting
inactive data in time. Efficient cache management therefore
must factor in the semantics of data dependency DAG. We
show how this can be achieved in the next section.

III. DEPENDENCY-AWARE CACHE MANAGEMENT

In this section, we present a new cache management
policy, Least Reference Count (LRC), which makes the cache
replacement decisions based on the data dependency DAG. We
also describe our implementation in Spark.

A. Least Reference Count (LRC)

We start with the definition of reference count.

Definition 1 (Reference count). For each data block b, the
reference count is define as the number of child blocks that
are derived from b, but have not yet been computed.

Back to the example of Fig. 1, upon the DAG submission,
blocks A, B, and C all have reference count 1, while block
D has reference count 2.

The Least Reference Count (LRC) policy keeps track of the
reference count of each data block, and whenever needed, it
evicts the data block whose reference count is the smallest.

Properties of LRC. The LRC policy has two nice properties
that makes it highly efficient.

First, inactive data with zero reference count can be quickly
detected and evicted. Repeating the previous example of Fig. 1,
let blocks A, B, and C be in memory at the beginning, and
the cache is full. Once block D has been computed, block B
becomes inactive with zero reference count. Block B is hence
evicted to make room for block D.

Second, compared to recency and frequency, reference count
serves as a more accurate indicator of the likelihood of future

0 20 40 60 80 100

Cache Priority Rank (Percentile)

0

0.2

0.4

0.6

0.8

1

C
D

F

Reference Count

Recency

Frequency

0.21

0.46

0.01

Fig. 5: Distribution of the cache priority ranks of accessed data
blocks with respect to recency, frequency, and reference count.
The workloads cover all SparkBench applications [13].

data access. Intuitively, the higher the reference count a block
has, the more compute tasks depend on it, and the more likely
the block is needed in the near future.

To validate this intuition, we ran SparkBench applications on
10 m4.large EC2 instances. Specifically, whenever a data block
is accessed, we measure the cache priority rank (in percentile)
of the block with respect to three metrics: the recency of
last access, historical access frequency, and reference count.
A block having a top rank with respect to a certain metric
(say, top 1% in recency) is likely cached in memory if the
corresponding cache policy is used (say, LRU). Fig. 5 shows the
CDF of the measured ranks across 15 SparkBench applications.
We see that the reference count consistently gives higher ranks
than the other two metrics, meaning that it is the most accurate
indicator of which data will be accessed next. For example,
suppose that the cache can accommodate the top 10% ranked
data blocks, each of a uniform size. Caching data blocks ranked
top in the reference count leads to the highest cache hit ratio
of 46%, which is 2.19× (46×) compared with the recency
(frequency) rank.

B. LRC-Online

We note that accurately computing the reference count
requires extracting the entire data dependency DAG in an
application. However, in systems such as Spark and Tez, only
the DAG information of a compute job is readily available,
upon the job submission. A cluster application typically runs
as a workflow of several jobs. The data dependency between
these jobs is usually runtime information not available a priori,
and can be very complex if jobs are executed iteratively. We
address this challenge through two approaches.

First, studies of production traces reveal that a large portion
of cluster workloads are recurring applications [15], which are
run periodically when new data becomes available. For these
applications, we can learn their DAGs from previous runs.

Second, for the non-recurring applications, such as inter-
active ad-hoc queries, we propose LRC-Online that online
updates the data dependency DAG of the application whenever
a new job is submitted. Continuing the example of Fig. 1, we
assume that the computations of block E and F belong to two



A

B

C

D

E

F

Job 2Job 1

Fig. 6: An example DAG where blocks E and F are respectively
computed by Job 1 and Job 2. The former is scheduled earlier
than the latter.

different jobs, as illustrated in Fig. 6. Let Job 1 be submitted
first, and the reference count of block D turns to 1. While
this is inaccurate as block D is also used to compute block F ,
LRC-Online will soon correct its value after Job 2 has been
submitted.

LRC-Online extends the application of LRC to the multi-
tenant environments, where multiple tenants share common
input datasets. Despite the potential online DAG profiling errors,
our experiment results in Sec. IV show that the performance
of LRC-Online remains close to that of LRC with the offline
DAG information of applications.

C. Spark Implementation

We have prototyped LRC and LRC-Online as a pluggable
block manager in Spark. We next elaborate our implementation
details.

Architecture overview. Fig. 7 gives an architecture overview
of our cache manager, where the shaded boxes highlight our
implementation modules. The cache manager consists of a
centralized controller on the master node and several distributed
RDDMonitors that collect cache statistics on worker nodes and
report to the controller periodically. The controller has two
key components: (1) AppDAGAnalyzer that learns the data-
dependency DAGs from previous runs for recurring applica-
tions, or in an online fashion for non-recurring applications,
and (2) CacheManagerMaster that implements the main logic
of the LRC and LRC-Online policies. We summarize the key
APIs of our implementation in Table II.

Workflow. Whenever an application is submitted, the Spark
driver is launched on the master node. The driver cre-
ates a SparkContext within which two controller modules,
CacheManagerMaster and AppDAGAnalyzer, are instantiated.
By default, the driver also instantiates DAGScheduler to parse
job DAGs and BlockManagerMasterEndpoint to communi-
cate the cache information with the BlockManager of workers.
The driver then informs worker nodes to launch Spark execu-
tors, which results in the deployment of BlockManager and
RDDMonitor across the cluster. Once the connection between
the executor and the driver has been established, RDDMonitor
starts to report RDD block status to CacheManagerMaster,
who maintains the reference count profile based on the DAG
information provided by DAGScheduler and AppDAGAnalyzer.
When the profile needs update due to a job submission or

BlockManager

Executor

Cache

RDDMonitor

CacheManager

Master

BlockManager

MasterEndpoint

Driver

DAGScheduler

JobDAG

AppDAGAnalyzer

 AppDAG

Reference Count

BlockManager

Executor

Cache

RDDMonitor

R
D

D
 Stats

R
ef

er
en

ce
 C

o
u
n
t

Fig. 7: Overall system architecture of the proposed application-
aware cache manager in Spark. Our implementation modules
are highlighted as shaded boxes.

TABLE II: Key APIs of our Spark implementation.

API Description
parseDAG The CacheManagerMaster parses the

DAG information obtained from the
DAGScheduler and returns the profiled
reference count for each RDD.

updateReferenceCount The CacheManagerMaster sends the
parsed reference count profile to the
corresponding RDDMonitor.

reportRDDStatus The RDDMonitor informs the
CacheManagerMaster of the status
of the cached RDD blocks.

updateReferenceCount Upon receiving the reference count up-
dating message, the RDDMonitor updates
reference counts of the corresponding
RDD blocks.

getReferenceCount When caching an RDD block, the
BlockManager searches the local profile
to get its reference count. If not found,
ask the BlockManagerMasterEndPoint
for update.

decrementReferenceCount When an RDD block is referenced, the
RDDMonitor deducts the its reference
count in the maintained profile.

evictBlocks When the cache is full, the
BlockManager evicts the data with the
least reference count.

a block access at the worker nodes, CacheManagerMaster
notifies BlockManagerMasterEndPoint in the driver to send
updated reference profile to BlockManager on the corre-
sponding workers. The BlockManager on each worker makes
the eviction decisions locally based on the reference count
profile it receives, and reports the events of block access and
eviction to RDDMonitor who then forwards the update to the
CacheManagerMaster.

D. Discussion

Communication overhead. To reduce the communication
overhead, each worker maintains the reference count profile
locally and synchronizes with the controller through a minimum



number of message exchanges. The CacheManagerMaster
sends reference count updates to the corresponding workers
only when necessary. In particular, there are two cases where
the update is needed: 1) When a new job DAG is received from
the DAGScheduler, the CacheManagerMaster notifies workers
to update the reference count of the corresponding RDD blocks;
2) when an RDD block has been referenced, and the block
has replicas on the other workers, all those workers should be
notified to have a consistent reference count of the block. By
default, RDD blocks are not replicated across the cluster, and
our implementation checks the Spark configuration to decide
if such an update can be avoided.

Fault tolerance. It is possible that a worker may lose
connection to the driver at runtime, which results in a task
failure. In this case, the reference count profile maintained
by the CacheManagerMaster will be inaccurate as the failed
tasks will be rescheduled soon. To address this inconsistency
issue, the CacheManagerMaster records the job ID upon
receiving a job DAG from DAGScheduler. This way, the
CacheManagerMaster can quickly detect job re-computation
if the same job ID has been spotted before. The consistency
check for the reference count can then be applied.

IV. EVALUATION

In this section, we evaluate the performance of our cache
manager through EC2 deployment against typical application
workloads in SparkBench suite [13]. We first investigate how
being dependency-aware helps speed up a single application
with much shorter runtime, and how such a benefit can be
achieved even when the DAG information is profiled online.
We next evaluate the performance of LRC in a multi-tenant
environment where multiple applications run in a shared cluster.
These applications have data dependency in between and
compete for the memory caches against each other.

Cluster deployment. Our implementation is based on Spark
1.6.1. In order to highlight the performance difference of
memory read-write and disk I/O, we disabled the OS page cache
using memory buffer by triggering direct disk I/O from/to the
hard disk. We deployed a 20-node EC2 cluster for the single-
tenant experiments and increased the cluster size to 50 nodes
for the multi-tenant experiments. Each node we used in the
EC2 deployment is an m4.large instance [14], with a dual-
core 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) processor and
8 GB memory.

A. Single-Tenant Experiment

We start with a simple scenario where a single tenant runs an
application in a small private cluster consisting of 20 nodes. We
ran typical application workloads in SparkBench and measured
the cache hit ratio as well as the application runtime using
different memory management policies, including LRU, LRC,
and LRC-Online.

Relevance of memory caches. It is worth emphasizing that
memory caches may become irrelevant for some applications.
For example, we have observed in SparkBench that some

TABLE III: Impact of memory caches on the application
runtime. We compare against the two extreme cases: caching
all data in memory versus caching none.

Workload Cache All Cache None

Page Rank 56 s 552 s

Connected Component 34 s 72 s

Shortest Paths 36 s 78 s

K-Means 26 s 30 s

Pregel Operation 42 s 156 s

Strongly Connected Component 126 s 216 s

Label Propagation 34 s 37 s

SVD Plus Plus 55 s 120 s

Triangle Count 84 s 99 s

Support Vector Machine (SVM) 72 s 138 s

TABLE IV: Summary of workload input data size.

Workload Input Data Size

Page Rank 480 MB

Pregel Operation 120 MB

Connected Component 280 MB

SVD Plus Plus 540 MB

applications are compute-intensive, and their runtime is mostly
dictated by the CPU cycles. Some applications, on the other
hand, need to shuffle large volumes of data, and their per-
formance is bottlenecked by the network. These applications
benefit little from efficient cache management and do not see
a significant runtime improvement even if the system caches
all data in memory.

In order to differentiate from these applications, we re-
spectively measured the application runtime in two extreme
cases: 1) the system has large enough memory and caches all
data, and 2) the system caches no data at all. We summarize
our measurement results in Table III. We see that some
SparkBench applications, notably K-Means, Label Propagation
and Triangle Count, have almost the same runtime in the
two cases, meaning that memory caches are irrelevant to their
performance. We therefore exclude these applications from
evaluations but focus on four memory-intensive workloads
whose performance critically depends on cache management:
Page Rank, Pregel Operation, Connected Component, and SVD
Plus Plus. Table IV summarizes the input data sizes of these
workloads.

Cache hit ratio and application runtime. We ran each
application using three cache replacement policies, i.e., LRU,
LRC, and LRC-Online, with different memory cache sizes.
In particular, we configured storage.memoryFraction in the
legacy Spark to throttle the memory used for RDD caching to a
given size. We measured the cache hit ratio and the application
runtime against different cache sizes and depict the results in
Fig. 8 and Fig. 9, respectively. The results have been averaged
over 5 runs.



PageRank

7.7 6.6 5.5 4.4 2.2

Total Cache Size(GB)

0

0.2

0.4

0.6

0.8

1
H

it
 R

a
ti
o

LRU LRC LRC-Online

PregelOperation

1.65 1.1 0.55 0.22 0.11

Total Cache Size(GB)

0

0.2

0.4

0.6

0.8

1

H
it
 R

a
ti
o

LRU LRC LRC-Online

ConnectedComponent

4.4 3.3 2.2 1.1 0.88

Total Cache Size(GB)

0

0.2

0.4

0.6

0.8

1

H
it
 R

a
ti
o

LRU LRC LRC-Online

SVDPlusPlus

1.32 0.88 0.55 0.33 0.22

Total Cache Size(GB)

0

0.2

0.4

0.6

0.8

1

H
it
 R

a
ti
o

LRU LRC LRC-Online

Fig. 8: Cache hit ratio under the three cache management policies with different cache sizes.

PageRank

7.7 6.6 5.5 4.4 2.2

Total Cache Size(GB)

0

1

2

3

4

5

R
u
n
ti
m

e
 (

m
s
)

10
5

LRU LRC LRC-Online

PregelOperation

1.65 1.1 0.55 0.22 0.11

Total Cache Size(GB)

0

5

10

15
R

u
n
ti
m

e
 (

m
s
)

10
4

LRU LRC LRC-Online

ConnectedComponent

4.4 3.3 2.2 1.1 0.88

Total Cache Size(GB)

0

2

4

6

8

10

R
u
n
ti
m

e
 (

m
s
)

10
4

LRU LRC LRC-Online

SVDPlusPlus

1.32 0.88 0.55 0.33 0.22

Total Cache Size(GB)

0

1

2

3

R
u
n
ti
m

e
 (

m
s
)

10
5

LRU LRC LRC-Online

Fig. 9: Application runtime under the three cache management policies with different cache sizes.

As expected, the less availability of the memory caches
in the cluster, the smaller the cache hit ratio (Fig. 8), and
the longer the application runs (Fig. 9). Regardless of the
cache size, the two LRC algorithms consistently outperform
LRU, the default cache management policy in Spark, across all
applications. The benefits achieved by the LRC policy, in terms
of the application speedup, varies with different cache sizes
as well as the application workloads. In particular, compared
to the default LRU policy, our LRC algorithm reduces the
runtime of Page Rank by 60% (from 170 s to 64 s) when the
cluster cache size is 5.5 GB. Table V summarizes the largest
runtime savings of LRC over LRU for each application we
evaluated.

The efficiency of LRC policy can also be illustrated from a
different perspective, in that LRC requires much smaller cache
spaces than that of LRU, but it is able to achieve the same
cache hit ratio. For example, to achieve the target hit ratio of 0.7
for Pregel Operation, LRU requires 0.55 GB memory caches.
In comparison, LRC requires only 0.22 GB, an equivalent of
60% saving of cache spaces.

We make another interesting observation that for different
applications, the cache hit ratio has different impact on their
runtime. For example, the workload of Page Rank suffers from
the most significant slowdown, from 67 s to 320 s, when the
cache hit ratio decreases from 1 to 0.85. The reason is that
the computation of Page Rank consists of some large RDDs,
and their cache miss critically increases the total runtime. For
Connected Component, salient slowdown is observed when
the cache hit ratio drops from 0.7 to 0.4; for SVD Plus Plus,
we observe a linear slowdown with respect to the decrease of
cache hit ratio.

LRC-Online. As discussed in the previous section, when the
entire application DAG cannot be retrieved a priori, we can
profile the submitted job DAGs at runtime using LRC-Online.

We now evaluate how such an online approach can approximate
the LRC policy with offline knowledge of application DAG.
We see through Fig. 8 and Fig. 9, that LRC-Online is a close
approximation of LRC for all applications except SVD Plus
Plus. As illustrated in Table V, with online profiling, LRC
can only speed up the application by 12%, as opposed to 30%
provided by the offline algorithm.

We attribute the performance loss of LRC-Online to the
fact that the datasets generated in the current job might be
referenced by another in the future, whose DAG is yet available
to the DAGScheduler. Therefore, the reference count of the
dataset calculated at the current stage may not be accurate.
To quantify the inaccuracy of online profiling, we measure
reference distance, for each data reference, as the number
of intermediate jobs from the source job where the data
is generated to the destination job where the data is used.
Intuitively, the longer the reference distance is, the greater
chance it is that referencing the block in the future may
encounter a cache miss. This is because without knowing
the entire application DAG beforehand, LRC-Online can only
tell the data dependency in the current job, and will likely
evict all the generated data blocks after the source job has
completed.

Table VI summarizes the average reference distance of the
data blocks generated in each application. All applications but
SVD Plus Plus have reference distance less than 1, meaning that
most of the generated data is likely used either by the current
job or the next one. This result is in line with the observation
made in Fig. 3, where intermediate data goes inactive in waves
and in lockstep with job submission. SVD Plus Plus, on the
other hand, has the longest reference distance, which explains
its performance loss with LRC-Online.

To summarize, LRC-Online is a practical solution that well
approximates LRC and consistently outperforms the LRU



TABLE V: Summary of the maximum reduction of application runtime over LRU.

Workload Cache Size LRU LRC LRC-Online Speedup by LRC Speedup by LRC-Online

Page Rank 6.6 GB 169.3 s 68.4 s 84.5 s 59.58% 50.06%

Pregel Operation 0.22 GB 121.9 s 66.3 s 75.9 s 45.64% 37.74%

Connected Component 2.2 GB 50.6 s 27.6 s 29.9 s 45.47% 40.97%

SVD Plus Plus 0.88 GB 254.3 s 177.6 s 223.9 s 30.17% 11.96%

TABLE VI: Average reference distance.

Workload Average Reference Distance

PageRank 0.95

PregelOperation 0.73

ConnectedComponent 0.74

SVDPlusPlus 1.71

TABLE VII: Summary of workloads used in the multi-tenant
experiment.

Tenant Index Workload Input Data Size

1-8 ConnectedComponent 745.4 MB

9-16 PregelOperation 66.9 MB

policy across applications.

B. Multi-Tenant Experiment

We now investigate how our cache manager performs in a
multi-tenant environment through a 50-node EC2 deployment.
Notice that the Spark driver unifies the indexing of jobs
and RDDs for all tenants. Once a job is submitted, the
RDDs in its DAG are indexed incrementally based on the
unified index. In this case, the offline RDD reference count is
unavailable because the order of actual job submission sequence
from multiple tenants is uncertain due to runtime dynamics.
Therefore, the data dependency DAG can only be determined
online. For this reason, we compare the performance of LRC-
Online against LRU.

In the first set of experiments, we emulated 16 tenants
submitting jobs simultaneously to the Spark driver, with
different cache sizes. The workload profile of the tenants is
given in Table VII. In the second experiment, we fixed the
total cache size to be 1.26 GB and increased the number of
tenants from 8 to 20.

Fig. 10 and Fig. 11 show the results. We find that LRC-
Online is capable of achieving larger performance gains over
LRU with smaller cache sizes or with more tenants. This
suggests that leveraging the application semantics of data
dependency is of great significance, especially when the cluster
memory caches are heavily competed.

V. RELATED WORK

Traditional Caching on a Single Machine. Memory caching
has a long history and has been widely employed in storage
systems [16], databases [17], file systems [18], web servers
[19], operating systems [20], and processors [21]. Over the

Hit Ratio

0.63 0.945 1.26 1.575 1.89 

Cache Size (GB)

0

0.2

0.4

0.6

0.8

H
it
 R

a
ti
o

LRU LRC-Online

Runtime

0.63 0.945 1.26 1.575 1.89 

Cache Size (GB)

0

2

4

6

8

R
u

n
ti
m

e
 (

m
s
)

10
5

LRU LRC-Online

Fig. 10: Cache hit ratio and total runtime with different cache
sizes in the multi-tenant experiment.

Hit Ratio

8 12 16 20

Number of Tenancies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
it
 R

a
ti
o

LRU LRC-Online

Runtime

8 12 16 20

Number of Tenancies

0

2

4

6

8

10

R
u

n
ti
m

e
 (

m
s
)

10
5

LRU LRC-Online

Fig. 11: Cache hit ratio and total runtime with different numbers
of tenants.

years, a vast amount of caching algorithms have been proposed.
These algorithms run on a single machine and can be broadly
divided into two categories:

Recency/frequency-based policies: LRU [11] and LFU [12]
are the two widely used caching algorithms. As shown in
Section II, neither algorithm adapts well to the data access
pattern in data analytic clusters even though they are simple
to implement.

Hint-based policies: Many cache policies evict/prefetch data
blocks through hints from applications [22], [23], which are
provided by the programmers to indicate what data will be
referenced again and when. Nevertheless, inserting such hints
can be difficult to the programmer, who has to carefully
examine the underlying data access pattern.

Cache Management in Parallel Processing Systems. Despite
the significant performance impact of memory caches, cache
management remains a relatively unchartered territory in data
parallel systems. Prevalent parallel frameworks (e.g., Spark



[2], Tez [7], and Tachyon [4]) simply employ LRU to manage
cached data on cluster machines, which results in a significant
performance loss [3], [24].

To our knowledge, the recently proposed MemTune [24] is
the only caching system that leverages the application semantics.
MemTune dynamically adjusts the memory share for task
computation and data caching in Spark and evicts/prefetches
data as needed. As opposed to our proposal that accounts for
the entire DAG and its dependencies, MemTune only considers
locally dependent blocks of currently runnable tasks. Moreover,
when it comes to a multi-tenant environment, the complexity
of MemTune is also multiplied, as MemTune keeps track
of all the submitted DAGs and traverses them at runtime to
search for the downstream tasks whenever a task completes.
In comparison, LRC parses the job DAG upon job submission
and only sends the reference count profile to the corresponding
worker node. The reference count updating message is light and
simple compared to the DAG structure itself, and can be easily
applied to any DAG-based system and even heterogeneous
environments running different systems, like Tachyon [4].

Recent works [25], [26] have also studied the problem of
cache allocation for multiple users with shared files in clusters,
where fairness is the main objective to achieve. We view
these works orthogonal to our proposed research. Once the
cache space of each application has been allocated by some
fair sharing policies, we can leverage the application-specific
semantics for efficient cache management.

VI. CONCLUDING REMARK

In this paper, we proposed a dependency-aware cache
management policy, Least Reference Count (LRC), which
evicts data blocks whose reference count is the smallest. The
reference count is defined, for each data block, as the number
of dependent child blocks that have not been computed yet.
With LRC, inactive data blocks can be timely detected and
evicted, saving cache spaces for more useful data. In addition,
we showed that reference count serves as an accurate indicator
of the likelihood of future data access. We have implemented
LRC as a pluggable cache manager in Spark, and evaluated its
performance through EC2 deployment. Experimental results
show that compared to the popular LRU policy, our LRC
implementation is capable of achieving the same application
performance at the expense of only 40% of cache spaces. When
using the same amount of memory caches, LRC can reduce
the application runtime by up to 60%.

ACKNOWLEDGEMENTS

We thank Chengliang Zhang for helping on the implementa-
tion of LRC-Online and the deployment of multi-tenant experi-
ments. We thank the anonymous reviewers for their invaluable
feedback. This research was partly supported by the Hong
Kong Research Grants Council under Grant No. 16200214.

REFERENCES

[1] R. Power and J. Li, “Piccolo: Building fast, distributed programs with
partitioned tables.” in Proc. USENIX OSDI, vol. 10, 2010, pp. 1–14.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in Proc. USENIX
Conf. Networked Syst. Design and Implementation (NSDI), 2012.

[3] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,
S. Shenker, and I. Stoica, “PACMan: coordinated memory caching for
parallel jobs,” in Proc. USENIX Conf. Networked Syst Design and
Implementation (OSDI), 2012.

[4] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, memory speed storage for cluster computing frameworks,” in
Proc. of the ACM Symposium on Cloud Computing, 2014.

[5] “Storm,” http://storm.apache.org/.
[6] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta, “M3R: increased

performance for in-memory hadoop jobs,” Proc. the VLDB Endowment,
vol. 5, no. 12, pp. 1736–1747, 2012.

[7] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino,
“Apache Tez: A unifying framework for modeling and building data
processing applications,” in Proc. ACM SIGMOD. Melbourne, Victoria,
Australia: ACM, 2015, pp. 1357–1369.

[8] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. IEEE Symp. Mass Storage Systems
and Technologies, 2010. IEEE, 2010, pp. 1–10.

[9] “Amazon S3,” https://aws.amazon.com/s3/.
[10] L. A. Belady, “A study of replacement algorithms for a virtual-storage

computer,” IBM Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.
[11] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation

techniques for storage hierarchies,” IBM Systems journal, vol. 9, no. 2,
pp. 78–117, 1970.

[12] A. V. Aho, P. J. Denning, and J. D. Ullman, “Principles of optimal page
replacement,” Journal of the ACM (JACM), vol. 18, no. 1, pp. 80–93,
1971.

[13] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: a
comprehensive benchmarking suite for in memory data analytic platform
spark,” in Proc. 12th ACM International Conf. on Comput. Frontiers,
2015.

[14] “Amazon Elastic Compute Cloud,” https://aws.amazon.com/ec2/.
[15] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca, “Jockey:

guaranteed job latency in data parallel clusters,” in Proc. ACM EuroSys,
2012, pp. 99–112.

[16] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“Raid: High-performance, reliable secondary storage,” ACM Computing
Surveys (CSUR), vol. 26, no. 2, pp. 145–185, 1994.

[17] M. Stonebraker, “Operating system support for database management,”
Commun. ACM, vol. 24, no. 7, pp. 412–418, 1981.

[18] M. N. Nelson, B. B. Welch, and J. K. Ousterhout, “Caching in the sprite
network file system,” Trans. Comput. Sys., vol. 6, no. 1, pp. 134–154,
1988.

[19] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms.” in
Usenix Symp. Internet Technologies and Sys., vol. 12, no. 97, 1997, pp.
193–206.

[20] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
scalable, highly available storage for interactive services,” in Proc. Conf.
on Innovative Data Syst. Research (CIDR), 2011.

[21] J. L. Henning, “Spec cpu2000: Measuring CPU performance in the new
millennium,” Computer, vol. 33, no. 7, pp. 28–35, 2000.

[22] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “Implementation and
performance of integrated application-controlled file caching, prefetching,
and disk scheduling,” ACM Trans. Comput. Sys. (TOCS), vol. 14, no. 4,
pp. 311–343, 1996.

[23] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka,
“Informed prefetching and caching,” in Proc. ACM SOSP, vol. 29, no. 5,
1995.

[24] L. Xu, M. Li, L. Zhang, A. R. Butt, Y. Wang, and Z. Z. Hu, “MEMTUNE:
Dynamic memory management for in-memory data analytic platforms,”
in Proc. IEEE International Parallel and Distrib. Process. Symposium
and Design (IPDPS), 2016.

[25] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica, “FairRide: near-
optimal, fair cache sharing,” in Proc. USENIX Symp. Networked Syst.
Design and Implementation (NSDI), 2016.

[26] M. Kunjir, B. Fain, K. Munagala, and S. Babu, “ROBUS: Fair
cache allocation for multi-tenant data-parallel workloads,” preprint
arXiv:1504.06736, 2015.


