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Abstract—With the proliferation of human-carried mobile
devices, spatial crowdsourcing has emerged as a transformative
system, where requesters outsource their spatiotemporal tasks to
a set of workers who are willing to perform the tasks at the
specified locations. However, in order to make efficient assign-
ments, the existing spatial crowdsourcing system usually requires
workers and/or tasks to expose their locations, which raises a sig-
nificant concern of compromising location privacy. In addition,
traditional spatial crowdsourcing systems employ a centralized
server to manage the information of workers and tasks. Such
a centralized design does not scale to a large number of work-
ers/tasks, making the server easily a bottleneck. In this article,
we present an online framework for assigning tasks to workers
without compromising the location privacy in a fully distributed
manner. Our system protects the location privacy of both workers
and tasks through homomorphic encryption. We further propose
a novel wait-and-decide mechanism and a proportional-backoff
mechanism to increase the number of assigned tasks. Extensive
experiments on real-world data sets illustrate that our proposed
system achieves a large number of task assignments in an efficient
and privacy-preserving manner.

Index Terms—Distributed system, privacy preserving, spatial
crowdsourcing, task assignment.

I. INTRODUCTION

THANKS to the proliferation of mobile devices and
the advancement in sensor technologies, data collection
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and sharing using smartphones have become commonplace
for mobile users. Exploiting the wisdom and mobility of a
large number of mobile users, spatial crowdsourcing [16] has
emerged as a new mechanism for efficient and scalable data
collection. In traditional spatial crowdsourcing frameworks,
requesters register at a centralized server to publish tasks
with spatial or temporal information. The server then acts as
a broker to manage the tasks and assigns them to different
workers. A worker, upon accepting a task, needs to physi-
cally travel to the specified location and perform that task.
Spatial crowdsourcing has been employed in a wide spectrum
of applications, such as traffic management, weather monitor-
ing, environmental sensing, crises response, smart cities, and
journalism (e.g., [13], [22], and [28]).

In spatial crowdsourcing, location information of tasks and
workers critically affects the system performance. In order
to make optimal task assignment (e.g., maximizing the num-
ber of assigned tasks, or minimizing the travel cost), existing
spatial crowdsourcing systems (e.g., [16] and [27]) usually
require workers (requesters) to reveal their exact locations
(task locations) to the server. However, the server in spatial
crowdsourcing may not be fully trustable in practice, not to
mention the workers and requesters. Thus, the revelation of
the locations of either tasks or workers raises serious privacy
concerns. In light of this problem, there is a pressing need to
build a secure spatial crowdsourcing system that protects the
individual location privacy for both requesters and workers.

Many recent research have focused on making efficient
task assignment while protecting location privacy. Most of
the existing works achieve location privacy preservation
based on location obfuscation or perturbation techniques,
such as k-anonymity [12] and differential privacy [3], where
k-anonymity allows a user to hide its location among k − 1
other users, while differential privacy preserves a user’s loca-
tion privacy by empowering the user to generate and report
a perturbed location according to a certain noise function.
However, these techniques have their own drawbacks. The
drawback of k-anonymity is that it needs to group entities
(e.g., workers and requesters) together, making it a poor fit
in spatial crowdsourcing systems where no trust relationship
between requesters and workers can be assumed in practice.
A well-known problem for differential privacy is the unnec-
essary revelation of task locations to unassigned workers [26]
due to the location perturbation. Moreover, the perturbed loca-
tions caused by differential privacy will also compromise the
performance of task assignment.
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The existing studies assume a centralized model for privacy
protection in which a server oversees a global picture and
makes task assignment for requesters [15], [25], [29]. A main
issue for such a centralized model is that many centralized
crowdsourcing systems are not flexible and cannot provide a
rapid task assignment [23]. For example, only less than 15% of
tasks can be finished in 1 h in Amazon Mechanical Turk [14].
Another economic concern is that the server who acts as a
broker is expected to charge commissions to the requesters,
which, in turn, reduces the monetary income of workers [17].

Recent years, fully distributed spatial crowdsourc-
ing has became a more promising framework for
efficient task assignment by exploiting nearby human
intelligence [5], [20], [23], [24]. The term fully distributed
is in the sense that task assignment is obtained through
bidirectional selection between nearby mobile workers and
requesters without any involvement of a centralized server.
The fully distributed architecture can overcome the drawbacks
existed in the centralized spatial crowdsourcing systems, yet
none of the previous distributed systems considers the loca-
tion privacy protection problem during the task assignment
procedure.

Motivated by these problems, we propose a framework
named privacy-preserving task assignment (PriTA), which
enables a group of requesters and workers to achieve online
task assignment in an effective and fully distributed manner,
without compromising their location privacy. Despite the great
potential, developing a realistic PriTA system remains chal-
lenging. One key issue is how to get precise distances between
workers and requesters to guarantee the task assignment
performance while preserving the location privacy of work-
ers/tasks. Another challenge is how to increase the number of
assigned tasks under such a fully distributed scenario.

To address the first challenge, we propose to use encryption
to protect location privacy as the precise location information
is concealed behind the ciphertexts after encryption and
will not be revealed to any party. Specifically, homomor-
phic encryption [11] is proposed to be exploited in which
ciphertexts can be directly used in various meaningful opera-
tions (e.g., addition and multiplication). Hence, a participant
(i.e., worker and requester) can calculate distances and other
distance-related information based on the encrypted location
information. As a result, the homomorphic encryption scheme
has the potential to yield not only robust location privacy
protection but also high-quality task assignment since no
obfuscation or perturbation of the location is needed.

For the second issue, we propose a wait-and-decide mecha-
nism and a proportional-backoff mechanism in order to make
efficient task assignment based on encrypted messages in
a fully distributed setting, where the efficiency of the task
assignment in our system is measured by the number of
assigned tasks. Specifically, none of the requesters or work-
ers could hold a global view like a server to manage the task
assignment process in the distributed spatial crowdsourcing
scenario. Therefore, we first design a wait-and-decide mech-
anism to help workers make better decisions in selecting
tasks. This regard is achieved by allowing workers to wait
for a period of time. A proportional-backoff mechanism is

then proposed to support requesters to choose closer work-
ers according to the time delay of the received messages,
where the backoff time is proportional to the distances between
workers and tasks.

We summarize our contributions as follows.
1) We propose an online spatial crowdsourcing framework

PriTA that, for the first time, performs task assignment
between workers and requesters in a fully distributed
manner, without disclosing of their accurate location
information.

2) We propose to use homomorphic encryption to protect
the location privacy for both tasks and workers. We
design a distributed mechanism to achieve efficient task
assignment based on exchanges of encrypted messages
between requesters and workers.

3) We conduct extensive experiments driven by real-
world data sets. The experimental results show that
our proposed framework achieves near-optimal task
assignment, with low computation and communication
overhead on both workers and requesters.

The remainder of this article is organized as follows.
Section II introduces the background, system model, and
design objectives. Section III presents our system procedure in
detail. In Section IV, we make a thorough privacy preservation
analysis. Performance evaluation is given in Section V, fol-
lowed by a survey of related work in Section VI. We conclude
this article in Section VII.

II. BACKGROUND AND SYSTEM MODEL

A. Spatial Crowdsourcing Model

In traditional spatial crowdsourcing systems, there are usu-
ally three main entities: 1) the requesters; 2) the workers;
and 3) the platform (server). The requesters want to outsource
some spatiotemporal tasks to workers. The workers are willing
to accept several tasks and are able to finish them within their
capability. The platform usually collects the task information
and assigns them to appropriate workers. The workers who
receive and accept the task assignment will move to the task
locations to perform the tasks. In return, the workers can earn
a reward for finished tasks.

With the development of device-to-device communications
and self-organizing network, the spatial crowdsourcing system
without platform is emerging and gaining more and more
attention [5], [20], [23], [24]. In such systems, there is no
centralized platform. Instead, all the requesters and workers
communicate with each other directly, and all the deci-
sions are made in a distributed way. In this article, we will
focus on the task assignment on such fully distributed spatial
crowdsourcing systems.

Fig. 1 gives an architecture overview of our system model.
There are M requesters {r1, r2, . . . , ri, . . . , rM}, and N work-
ers {w1, w2, . . . , wj, . . . , wN}. The requester has some tasks
needed to be completed in its location. In this article, we make
the assumption that requester ri and his task ti are in the same
place and tasks are generated asynchronously. For task ti, it has
a maximum number of workers the requester requires, which
is defined as the capacity of the task cti . The farthest distance a
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TABLE I
MAJOR NOTATIONS

Fig. 1. System architecture.

worker wj can go is its moving range Rj. The worker can only
accept and finish the tasks whose distance from the worker’s
location is smaller than Rj. There is also a predefined capacity
cwj for the worker wj, which indicates the maximum num-
ber of tasks the worker can finish during a specific busy time
Tbusy. To prevent malicious node from entering the system, we
assume all the requesters and workers have been authenticated
by a registration authority (RA) upon joining the system. The
RA is only responsible for authentication but plays no role in
online task assignment.

As the system is fully distributed without a platform, the
task assignment between the tasks and the workers can only
be achieved by the negotiation between requesters and workers
via direct device-to-device communication (e.g., WiFi, LoRa,
etc.). Assume that the transmission range for the users (work-
ers and requesters) is Rt, where a message cannot be heard by
a user who is larger than Rt far away from the sender of the
message. Meanwhile, the location privacy of the requesters and
workers must be protected during the negotiation procedure.

The requester does not want its task location to be disclosed
before the task has been successfully assigned. The worker
does not want to expose his exact location to others either.
Table I summarizes the major notations used in our article.

B. Threat Model

In our model, we mainly focus on the privacy threats from
internal requesters or workers, while security attacks from
external malicious attackers are not considered. Specifically,
the internal requesters and workers are those who pass the
RA’s authentication. They perform the fully distributed spa-
tial crowdsourcing together in our system. The other entities
outside the system are called external entities. Following the
prior work [4], [21], [26], we make the following assumptions
that are widely accepted in the literature. First, we assume that
requesters and workers are honest but curious. Meaning, they
all follow the specified protocols strictly, but are eager to dig
out the private information of the others based on the avail-
able information. Specifically, a requester is eager to learn the
location information of workers and/or the other requesters.
However, it will always obey the protocol rules to partic-
ipate the task assignment properly. For example, it cannot
create multiple dummy tasks at different locations at the same
time as this deviates the protocol requirements. For a worker,
it may also want to know the locations of published tasks
and the other workers without breaking the protocol require-
ments. For instance, it cannot create multiple fake identities,
as the protocol only allows each requester/worker to have
one legal identity. In addition, we assume there is no collu-
sion between requesters and workers, which is also a widely
accepted assumption. This means each requester and worker
cannot cooperate with each other to learn location information
about others. For example, the worker will not send the unit
backoff time Tunit to any requester. We also assume trustable
RA that cannot be breached by any adversary.

C. Design Objectives

We aim to achieve four main objectives in this article.
1) Our system should protect the location privacy of each

task safely before the task is assigned. Only those
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workers who agree to do the task can receive the
accurate location of that task.

2) Our system should protect each worker’s location in
every single step. The precise location cannot be learned
by any other parties throughout its participation.

3) Our system should maximize the number of the assigned
tasks in a fully distributed manner.

4) Low computation and communication cost are required
for workers and requesters for fast task assignment.

D. Homomorphic Encryption

To protect the location privacy for both tasks and work-
ers in a distributed setting, we propose to use homomorphic
encryption, a public-key encryption scheme supporting vari-
ous operations over the encrypted data, to hide the sensitive
location information behind the ciphertexts.

Due to the reason that fully homomorphic encryption is
inefficient in computation, somewhat homomorphic encryption
(SHE) was proposed as an alternative, in which only a limited
number of addition and multiplication operations are sup-
ported. In this article, we propose to use Fan-Vercauteren (FV)
homomorphic encryption and only use the SHE of [10]. FV
homomorphic encryption is built upon the hardness of the ring-
learning-with-errors (RLWEs) problem. Given a homomorphic
public key epk, the message m after encryption is denoted
by Eepk(m), where Eepk(·) denotes the encryption function. In
order to decrypt the ciphertext Eepk(m), we need a decryp-
tion function Ddsk with a homomorphic private key dsk. The
message m, thus, can be decrypted by Ddsk(Eepk(m)). We sum-
marize some properties of the FV homomorphic encryption
that will be used in the article.

Homomorphic Addition and Subtraction: The homomorphic
addition/subtraction operation in the ciphertext achieves the
same result as the encrypted data of the addition/subtraction
of two plaintext. Formally, we have

Eepk(m1) ⊕ Eepk(m2) = Eepk(m1 + m2) (1)

Eepk(m1) � Eepk(m2) = Eepk(m1 − m2) (2)

where ⊕ and � are the homomorphic addition and subtraction,
respectively.

Homomorphic Multiplication: Homomorphic multiplication
includes two steps: 1) ciphertext multiplication and 2) relin-
earization. In ciphertext multiplication, we simply multiply
two ciphertexts regardless of the influence of growing errors,
which are introduced by multiplication. The result for cipher-
text multiplication is denoted as c. Then, in relinearization, we
use evaluate keys evk to eliminate the interference of errors
to obtain the actual ciphertext. Let Eevk

epk(·) be the relineariza-
tion function to correct the ciphertext multiplication result. The
homomorphic multiplication can be denoted as

Eepk(m1) ⊗ Eepk(m2) = Eevk
epk(c)

= Eepk(m1 × m2) (3)

where ⊗ represents the homomorphic multiplication.
In summary, homomorphic encryption allows computations

to be done on encrypted data, without requiring access to
a decryption key. Leveraging this property, we are able to

design protocols that allow a user to calculate the distance
between two entities on the encrypted location messages,
without disclosing the exact original location to neighboring
users.

III. SYSTEM DESIGN

In this section, we present our framework, called PriTA. We
start with a brief overview of PriTA, followed by a deep dive
into its design details.

A. Overview

PriTA aims at achieving location PriTA in a fully dis-
tributed spatial crowdsourcing scenario while maintaining the
efficiency of task assignment.

Our design essentially considers two aspects. The first is
how to acquire necessary information based on the encrypted
messages. The second is how to make task assignment in
an efficient way according to the obtained information. To
address the former aspect, each requester will broadcast its
encrypted location to nearby workers. Each worker then com-
putes based on homomorphic encryption that whether it is
less than its moving range or not for the distances between
itself and the tasks, and sends the encrypted results after-
ward. A requester can then obtain the information of whether
a worker can perform its task. As for the second respect, a
novel wait-and-decide mechanism is employed where workers
need to wait to gain higher chances to select more tasks with
closer distances. Moreover, a proportional-backoff mechanism
is adopted to enable the nearer worker to back off for shorter
time to assist requesters to choose more suitable workers.

There are five main steps along with an initialization step
in our framework. First, each worker/requester needs to regis-
ter at an RA to get a certificate associated with its unique ID
in the initialization step. The initialization step is necessary
as it reduces the chance that an external malicious attacker
joins in the system, meanwhile, it also resists the Sybil attack
produced by any worker or requester. During the PriTA pro-
tocol, each requester proactively releases its task along with
the encrypted location to the neighboring workers when it has
a task to be performed (step 1). The requesters and the work-
ers then interact with each other by exchanging encrypted
messages (e.g., locations and intermediate results) to obtain
location and distance information for task assignment (steps 2
and 3). Then, both requesters and workers wait for a certain
period of time according to the wait-and-decide mechanism. In
addition, based on the proportional-backoff mechanism, work-
ers with closer distances back off to requesters for shorter time
so as to have higher chances to be selected (step 4). At the end
of the protocol, requesters confirm the task assignment results
to the workers who are willing to perform the tasks (step 5). In
addition, to avoid message collision, each worker and requester
will do carrier sense before any data transmission.

B. System Initialization

We assume that all the requesters and workers have already
been authenticated by RA upon joining the system. Each
authenticated requester/worker is assigned a unique ID. As
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Fig. 2. PriTA protocol design.

a result, no malicious external attacker holds the probability
to join in the system, and the Sybil attack is prevented as
each requester/worker is only granted to have one identity.
To encrypt the messages, each requester and worker should
generate a public–private key pair. For requester ri, denote
its homomorphic public–private key pair by (epkri , dskri). For
worker wj, it also generates a key pair (pkwj , skwj) for encryp-
tion and decryption. The reason a worker does not need a
homomorphic key pair is that we will not do homomorphic
operations on the ciphertexts encrypted by a worker’s pub-
lic key. In addition, it costs less time when encrypting or
decrypting messages using general key pair. All public keys
are available to everybody, yet the private keys are kept by the
owners only. Moreover, the RA announces a system decided
value Tunit only to each worker. This value will be used
later to determine the backoff time in the proportional-backoff
mechanism.

C. Protocol Design

In this section, we describe our privacy-preserving, fully
distributed task assignment protocol. The basic flowchart of
our system is illustrated in Fig. 2.

Step 1 (Task Releasing): When the requester has a task
needed to be done, it broadcasts a TASK_RELEASING mes-
sage to release the task to its neighboring workers. The
message contains three domains: 1) the requester’s ID ri;
2) the homomorphic public key epkri of requester ri; and
3) the encrypted location of task ti using the requester’s
homomorphic public key epkri . That is

TASK_RELEASING(ri) =
[
ri, epkri , Eepkri

(
lti

)]
.

Here, lti = (xti , yti) is the location of task ti, where xti and yti
are the x- and y-coordinates of the task location, respectively.
Therefore, Eepkri

(lti) is the encrypted location of task ti, i.e.,

Eepkri

(
lti

) =
(

Eepkri

(
xti

)
, Eepkri

(
yti

))
. (4)

Step 2 (Distance Computing): Once a worker receives a
TASK_RELEASING message from its neighboring requester,

the worker computes the distance between itself and the task
in the encryption domain and compares the distance with its
moving range. It then packages the comparison result in the
ENCRYPTED_DIST message and sends the message to the
requester. Note that the distance comparison is calculated in
the encryption domain, so the result is also in the encryption
domain.

Each worker wj has a predefined moving range Rj, which
is the farthest distance the worker is willing to go. Worker wj

is only interested in accepting and finishing the tasks that fall
into its moving range Rj. We use the Euclidean distance from
worker wj to task ti, i.e.,

dij =
√

�x2
ij + �y2

ij (5)

where �xij and �yij are the difference of x- and y-coordinates
between task ti and worker wj, respectively. Let zij � d2

ij − R2
j

be the distance comparison result between the worker wj and
task ti, where zij > 0 means the worker cannot reach the task
and hence cannot accept it, and zij ≤ 0 means the task falls
into the worker’s moving range and can be accepted.

The worker should send the comparison result back to
the requester. However, as the task’s location is encrypted,
it cannot obtain the plaintext of comparison result zij. Instead,
we calculate it in the encryption domain and send out the
encrypted result. Therefore, in our protocol, the worker sends
out the ENCRYPTED_DIST message, which contains the fol-
lowing four domains: 1) the ID of the requester ri; 2) the
ID of the worker wj; 3) the worker’s public key epkwj ; and
4) Eepkri

(zij), which is the distance comparison result zij

encrypted by the homomorphic encryption key epkri

ENCRYPTED_DIST
(
ri, wj

) =
[
ri, wj, epkwj , Eepkri

(
zij

)]
.

The public key of worker wj should be sent to the requester
because it will be used for data encryption in the subsequent
steps. The encrypted distance comparison result is calculated
as follows:

Eepkri

(
zij

) = Eepkri

(
�x2

ij + �y2
ij − R2

j

)

= Eepkri

(
�x2

ij

)
⊕ Eepkri

(
�y2

ij

)
� Eepkri

(
R2

j

)
. (6)

According to the principles of homomorphic encryption
(Section II-D), homomorphic calculation can maintain the
addition, subtraction, and multiplication operations in the
encryption domain. Therefore, (6) can be computed by bring-
ing (7), (8) into (9), (10) and bringing (9)–(11) into (6)

Eepkri

(
�xij

) = Eepkri

(
xwj

) � Eepkri

(
xti

)
(7)

Eepkri

(
�yij

) = Eepkri

(
ywj

) � Eepkri

(
yti

)
(8)

Eepkri

(
�x2

ij

)
= Eepkri

(
�xij

) ⊗ Eepkri

(
�xij

)
(9)

Eepkri

(
�y2

ij

)
= Eepkri

(
�yij

) ⊗ Eepkri

(
�yij

)
(10)

Eepkri

(
R2

j

)
= Eepkri

(
Rj

) ⊗ Eepkri

(
Rj

)
. (11)

Therefore, the encrypted distance comparison result can be
calculated and put into the ENCRYPTED_DIST message to
send to the requester.
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Step 3 (Distance Confirmation): When a requester sends
out a TASK_RELEASING message, it may receive multiple
ENCRYPTED_DIST messages from different workers. The
requester then decrypts the distance comparison results, selects
the reachable workers, and broadcasts a DIST_CONFIRM
message, incorporating the workers who can reach its task
and their distance comparison results in the message. The
DIST_CONFIRM message should contain the ID and capacity
of the requester, the ID of all the workers who can accept the
task (e.g., zij ≤ 0) and their distance comparison results to help
the workers make decisions among multiple tasks. However,
the distance comparison result should not be transmitted in
plaintext. Instead, it should be encrypted using the receiv-
ing worker’s public key to avoid packet sniffing from other
nodes. Therefore, the DIST_CONFIRM message sent from
the requester ri is as follows:

DIST_CONFIRM(ri) =
[
cti , ri, wj, Epkwj

(
zij

)

wk, Epkwk
(zik), . . .

]

where Epkwj
(zij) is the comparison result between ti and wj,

encrypted by worker wj’s public key, while wj and wk are the
reachable workers selected.

To get the real value of the distance comparison result,
the requester ri uses its homomorphic private key dskri to do
decryption, i.e.,

zij = Ddskri

(
Eepkri

(
zij

))
. (12)

For worker selection, the requester will select all the work-
ers with zij ≤ 0, which means that task ti is within the moving
range of worker wj.

Step 4 (Task Proposal): As a worker may receive several
DIST_CONFIRM messages during a waiting time, it needs
to compare the distances of those tasks and select the most
suitable ones. The worker will then send TASK_PROPOSAL
messages to tasks it can do after a short backoff.

In this step, we need to design the format of the
TASK_PROPOSAL messages. More importantly, we need to
carefully design the mechanism on how the workers collect
and send out the message. In brief, we design a waiting
mechanism to guarantee the workers to collect enough task
information. We also adopt a proportional backoff mechanism
to enable closer workers to backoff a smaller duration com-
pared with the further ones, in order to increase the possibility
of assigning tasks to nearby workers, which are more suitable
to complete the task.

Message Format: Once receiving a DIST_CONFIRM mes-
sage, the worker wj uses its private key skwj to decrypt the
message and extract the distance comparison result zij. The
distance between the task ti and worker wj can hence be
derived by d2

ij = zij + R2
j . The worker wj waits for a dura-

tion Tw and ranks all the distances from short to long. The
ranked tasks are selected in order until the number of selected
tasks exceeds the worker’s capacity cwj . The worker then
sends TASK_PROPOSAL messages to each of the selected
tasks. The TASK_PROPOSAL message contains the following

domains: the ID of the worker and the ID of the task, i.e.,

TASK_PROPOSAL
(
ri, wj

) = [
ri, wj

]
.

Wait-and-Decide: The time of sending the TASK_
PROPOSAL message is also carefully designed. Suppose that
at time ta, the worker receives the DIST_CONFIRM message
from the requester ri. During the next Tw duration, it receives
several more DIST_CONFIRM messages, but it still decides
to propose to requester ri. It will then start to conduct back-
off to ri at time ta + Tw. If during the waiting time, another
task tk comes at time tb, and the worker decides to propose to
requester rk too, it should then start from time tb + Tw to start
backoff to rk. In short, the requester should start backoff at Tw

duration after sending that task’s DIST_CONFIRM message.
This is to guarantee that the TASK_PROPOSAL messages
to the same requester are started to conduct backoff at the
same time. Therefore, in such a fully distributed system, local
synchronization can be achieved, and the message with the
shortest distance will finish backoff and be sent out first. Note
that if a better task keeps on coming during the waiting dura-
tion Tw, the worker has the risk of waiting forever. To avoid
this problem, we impose a maximum waiting time Tmax to
prevent the worker from waiting forever.

Proportional Backoff: The backoff time is proportional to
the distance, tbackoff = nTunit, where n = d2

ij. Tunit is a
predefined empirical value decided by the system develop-
ers based on their experience or industry requirements, where
this value is known to all workers but no requester inside the
system. The worker will finally send out TASK_PROPOSAL
message at time ta + Tw + tbackoff if it selects ri. During
the backoff time, if the worker hears other workers already
sent out the TASK_PROPOSAL messages to requester ri,
and the number of proposing workers already exceeds the
capacity of the task cti , then it will abort his proposal to ri,
instead, it will propose to the following tasks according to the
ranking.

Step 5 (Task Assignment): After receiving several
TASK_PROPOSAL messages from the neighboring work-
ers, the requester notifies those workers by sending them
TASK_CONFIRM messages to confirm their participation to
the task. The requester also encapsulates the encrypted loca-
tion of the task in the TASK_CONFIRM message to tell the
workers where to perform the task.

From time ta+Tw, the requester ri will continuously receive
TASK_PROPOSAL messages from different workers. Each
time the requester receives a TASK_PROPOSAL(ti, wj), he
puts the worker wj into a final chosen worker set W∗

ri
and sends

the TASK_COMFIRM message to the worker wj. There are
three domains in the TASK_CONFIRM message: the ID of
the task ti, the ID of the worker wj, and the location of the
task encrypted with the public key of the worker Epkwj

(lti)

TASK_CONFIRM
(
ri, wj

) =
[
ri, wj, Epkwj

(
lti

)]
.

When the size of W∗
ri

reaches the capacity of the task cti , the
requester will no longer confirm any further task proposals.

Upon receiving the TASK_CONFIRM message, the worker
decrypts the message using his private decryption key skwj and
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gets the location of the task lti . The location of the task must be
known by the selected worker because the final chosen worker
has to do that task right on the task’s location. Then, the worker
moves to the task’s location to conduct those assigned tasks.
The worker cannot receive new tasks during the busy time
Tbusy until all the assigned tasks are completed.

D. Remarks on Parameter Decision

There are several predefined parameters in our protocol
(e.g., Tunit, TW , Tbusy). To make the task assignment results
better, it is important to select those parameters properly.
However, since the actual situation in real world is complex
and changeable, it is difficult to deduce optimal parameter
values theoretically. Therefore, it is more practical and com-
mon to determine these parameters based on past experience,
and various scenarios and requirements. For example, if our
protocol is applied to a take-out delivery scenario, since work-
ers may move quickly through electric vehicles and travel a
short distance, TW , Tbusy can be decided as smaller values
(e.g., 10 min or 20 min). If our protocol is used in some spa-
tial crowdsourcing scenarios that take a long time and require
loose time limit (e.g., the requester requires multiple workers
to come to a specific location to take pictures), TW , Tbusy can
be preset to be larger values (e.g., 1 h).

E. Running Example

We give a running example to explain how PriTA works,
especially the waiting mechanism and the backoff mechanism.
The example is shown in Fig. 3, and the corresponding time
line is depicted in Fig. 4(a) and (b). The capacity of the task cti
and the capacity of the worker cwj are both set to 1. We assume
workers have infinite moving range Rwj . We also ignore the
message transmitting time and computation time.

We first illustrate the backoff mechanism by analyzing
worker 1, requester 1, and worker 3 in Fig. 4(a). Suppose at
time ta, worker 1 and worker 3 receive the DIST_CONFIRM
message, they will start to wait until ta + Tw. Since neither
of them receives other tasks, they will start to backoff to
requester 1 at ta + Tw. As worker 1 is closer to requester 1,
task 1 will be assigned to it, and worker 3, once hearing the
TASK_PROPOSAL message from worker 1, will abort the
backoff to requester 1.

Second, we explain how our waiting mechanism works in
Fig. 4(b). Suppose task 1 is generated before task 2. Therefore,
worker 2 will first receive the DIST_CONFIRM message from
requester 1 at time point ta. It then starts to wait. During
the waiting time ta + Tw, worker 2 receives task 2, and the
DIST_CONFIRM message for task 2 is received at time tb.
When the time reaches ta + Tw, worker 2 cannot receive any
new arrival tasks. Since worker 2 is closer to task 2, it will
select task 2 to perform. Thus, worker 2 will wait until tb +Tw

and send TASK_PROPOSAL message to requester 2 at that
time.

IV. ANALYSIS OF PRIVACY PRESERVATION

We show in the following two theorems that PriTA is pri-
vacy preserving for both workers and requesters, disclosing no

Fig. 3. Running example.

(a) (b)

Fig. 4. Basic procedure. (a) Backoff mechanism. (b) Waiting mechanism.

entity’s exact location information to any other parties inside
the system.

Theorem 1: The real location of each worker will not be
disclosed to other workers and requesters under the PriTA
framework.

Proof: The message that contains the location information
for a worker wj is in the ENCRYPTED_DIST message.
Without loss of generality, assume wj communicates with
requester ri; thus, only ri can successfully decrypt Eepkri

(zij)

in ENCRYPTED_DIST, because no party else has the corre-
sponding homomorphic decryption key dskri . Even if there is
a third party eavesdropper listening all the transmission mes-
sages, it cannot derive the real location of a worker. As for the
requester ri, even though it can decrypt Eepkri

(zij), it can only
learn whether wj is capable to do his task and not be able to
derive the worker’s location based on the decrypted data.

In step 4, the requesters will receive TASK_PROPOSAL
messages from different workers based on various backoff
time. However, the unit backoff time Tunit is only known by
workers. Furthermore, influenced by the real network envi-
ronment (e.g., network congestion degree), the real backoff
time for each worker might be different from the theoretical
value. Due to the above two reasons, a noncolluded requester,
hence, has nearly no chance to deduce the distance between
itself and the workers who send TASK_PROPOSAL messages
to it. Even though a requester can infer the distance between
workers and itself, it cannot further deduce the exact location
of any worker. This is because, first, a requester and its task
are in the same location. Second, since the RA only autho-
rizes each requester/worker with one identity, and requesters
are honest but curious, a requester cannot break the protocol
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and create multiple fake identities or tasks in different loca-
tions at the same time in order to learn the exact location of
a specific worker.

In summary, the location privacy for every worker can be
well protected in the PriTA framework.

Theorem 2: In the PriTA framework, the real location of
each task will not be compromised to other workers and
requesters before the task assignment and will only be revealed
to the workers who will perform that task.

Proof: The location for a task ti is encrypted as Eepkri
(lti),

and is packaged in TASK_RELEASING message and then
sent to surrounding workers. Other parties who have over-
heard this message cannot decrypt it as the homomorphic
decryption key dskri is only held in requester ri. Due to the
existence of RA and the assumption that workers are honest
but curious, they have to obey the protocol and cannot fake
their locations or create multiple identities. Thus, by receiving
DIST_CONFIRM from a requester ri, a worker wj can only
derive the distance between itself and the requester dij but no
more information, hence cannot know the exact location of
the task. Other workers, requesters, and even eavesdroppers
even cannot derive the distance because they do not know the
decryption key for that worker, skwj , and do not know the
moving range of the worker wj. Finally, the location of a task
ti in Epkwj

(lti) in the TASK_CONFIRM message sent from ri

can only be obtained by worker wj, who is willing to perform
ti, since only wj has the decryption key skwj .

According to the above proof, the PriTA framework can
protect the location privacy for any task before the task assign-
ment, and the real location for a task will only be released to
a worker who is willing to do it.

It is worth mentioning that the revelation of the real loca-
tion after task assignment is inevitable, as workers need to
physically move to the task locations. This, however, is widely
accepted in [25], [26], and [29]. Also, as mentioned before, we
mainly consider the privacy threats posed by internal entities,
i.e., workers and requesters, and security attacks from exter-
nal malicious attackers are not our concern. Having said that
even though there are some attackers who are eavesdropping
our system, they still can learn nothing about the exact loca-
tions of tasks or workers. This is because messages containing
location information are encrypted in every single step, and the
decryption key is held only by the corresponding worker or
requester. Moreover, even though a few eavesdroppers have
the ability to learn the backoff time of each worker, a non-
colluded attacker cannot further infer the distances between
tasks and workers. While a colluded external attacker can only
deduce the distances between tasks and workers but nothing
more beyond that.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of PriTA. The
main results are summarized as follows: 1) PriTA achieves
better privacy-preserving performance compared with differ-
ential privacy-based scheme (DP) under the same setting;
2) despite being fully distributed, PriTA makes near-optimal
task assignments close to the centralized global optimum under
various practical scenarios. The design of wait-and-decide

and proportional-backoff schemes help to improve the task
assignment results dramatically; and 3) the computational
complexity and the communication overhead of PriTA are
practical in real system.

A. Experimental Setup

Data Sets: Our evaluation is based on the Google Cloud
NYC taxi and limousine commission (TLC) data set [1], which
contains hundreds of thousands of trips completed by taxis. In
this case, the TLC drivers are workers located at the drop-
off sites; the TLC passengers are requesters located at their
pick-up sites. Tasks are generated in an order of their pick-
up times. Workers are always online during the experiments
except they are performing tasks during the busy time Tbusy.
We also consider to use three auxiliary data sets to demonstrate
the performance of our system, i.e., a T-Drive data set [26], a
NYC Citi Bike Trips data set [1], and a Gowalla data set [19].

Settings: In the experiments, by default, we randomly sam-
ple 300 requesters and 300 workers from the data set. We
set the moving range of the worker Rj to be a random inte-
ger within 5 km. We assume a uniform message transmission
range across all requesters and workers, i.e., Rt = 5 km. This
is a practical setting due to the advanced long-range wire-
less data communication technology [2]. The capacity of the
task ct and the capacity of each worker cw can be different
(heterogeneous) or uniform (homogeneous). The default val-
ues for ct and cw is 10 and 2, respectively, which could be
considered as each task has ten subtasks and requires at most
ten workers to perform, and each worker can do at most two
subtasks among them. We assume Poisson task arrivals where
the arrival interval λ is by default set to 10 s. The maximum
waiting time Tw and the busy time of workers Tbusy are both
set to 10 min.

In our experiments, we assume a stable network envi-
ronment where the message transmission time is negligible
compared with the unit backoff time Tunit. We make this sim-
plified assumption because the main focus of this work is
to make effective task assignment while preserving location
privacy, rather than task assignment in various network envi-
ronments. That being said, in practice, the backoff time can be
empirically determined based on the network delay measured
in real scenarios. We shall leave the evaluation in real network
environment as a future work.

Baselines: We evaluate the performance of our solution
PriTA against three baseline schemes: 1) the state-of-the-art
DP [26]; 2) the global optimal scheme (OPT), which leverages
a global manager overseeing all the requesters and workers to
make the optimal task assignment periodically; and 3) and
PriTA with no backoff (PriTA-NB), in which the workers
send TASK_PROPOSAL messages without conducting back-
off proportional to the distance in step 4, and the requesters
receive TASK_PROPOSAL messages and choose workers ran-
domly. The comparison with PriTA-NB can help quantify the
benefit brought by the backoff mechanism.

Metric: We use four metrics, the privacy-preserving level,
the total number of the assigned tasks, computation time, and
communication time, which evaluate the privacy-preserving
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performance, task assignment performance, computational
cost, and communication overhead, respectively.

B. Privacy Preserving Evaluation

Methodology: We compare PriTA with DP on T-Drive data
set to evaluate the privacy-preserving performance. We use
precisely the same settings as those in the system DP (e.g.,
ct = 1 and cw = 1) to make our comparison results more
convincing. We use privacy preserving level as the primary
metric, which is defined as the probability that the real location
of the privacy-protected user cannot be correctly inferred.

For PriTA, the privacy preserving level is given by

LPriTA = 1 − PPriTA
(
r, dij

) = 1 − r2

d2
ij − (

dij − 1
)2

. (13)

Because in PriTA, a worker can derive the distance dij between
itself and the requester. The real location of the requester falls
into a circle centered at the worker’s location. Therefore, the
probability that the real location can be guessed out (falls into
a small circular area with radius r) equals to the area of the
small circle over the area of the already-known annulus related
with dij, i.e., PPriTA(r, dij) = [r2/(d2

ij − (dij − 1)2)].
In DP, the privacy-preserving level is given by

LDP = 1 − PDP(r) =
(

1 + ε

R
r
)

· e− ε
R r. (14)

In DP, each location of the worker or task is protected
by reporting a perturbed location point generated by adding
a Planar Laplace noise into the original location. According
to [3], the probability that the true location falls in a cir-
cle around the perturbed point with radius r is given as
PDP(r) = 1 − (1 + [ε/R]r) · e−(ε/R)r.

To compare PriTA with DP, we change the parameters (e.g.,
moving range Rj) to guarantee that PriTA achieves the same
number of assigned tasks as DP, and we then compare the
privacy-preserving level. We set r = R, and dij will change
with Rj. We also compare the number of assigned tasks when
the privacy-preserving level for the two schemes keeps the
same.

Results: Fig. 5(a) shows that PriTA achieves higher privacy-
preserving level than DP, meaning that an attacker has a lower
chance to make a successful guess that a real location falls in
a certain circle in PriTA. Fig. 5(b) shows that PriTA achieves
better performance on task assignment when PriTA and DP
protect the same level of privacy. The reason behind is that our
scheme provides accurate distance for the workers compared
with DP, and effective task assignment usually highly relies
on the distance information.

C. Task Assignment Evaluation

We compare the number of assigned tasks among OPT,
PriTA, and PriTA-NB, under various scenarios, and draw
the conclusion that PriTA attains near-optimal performance,
significantly outperforming PriTA-NB.

Methodology: We run the experiment under various scenar-
ios: 1) varying worker’s capacity, while keeping the capacity
of all the workers the same [Fig. 6(a)]; 2) varying task’s

(a) (b)

Fig. 5. Privacy preserving evaluation. (a) Privacy-preserving level.
(b) Assigned tasks.

capacity, while keeping the capacity of all the tasks the same
[Fig. 6(b)]; 3) varying both capacity, while the capacity among
different workers and tasks are different [Fig. 6(c)], the capac-
ity of both workers and tasks is varied within the range of
1 to x; 4) varying task arrival interval [Fig. 6(d)]; 5) varying
worker’s moving range [Fig. 6(e)]; and 6) varying the number
of requesters/workers [Fig. 6(f)]. Except for the TLC data set,
we also repeat all the above experiment on Gowalla and NYC
Citi Bike data sets. Due to page limit, we only show the num-
ber of assigned tasks against task/requester’s capacity under a
heterogeneous scenario (Fig. 7).

Results:
1) All the figures in Fig. 6 show that PriTA achieves rela-

tively good assignment results compared with OPT, and
the gap is mainly due to that in the fully distributed
scenario no one has the global view of the system.
Moreover, the naive PriTA-NB acts as the worst as the
best worker has no priority and the other workers can-
not smartly switch to a suitable task via backoff overhear
and abortion.

2) The number of the assigned tasks increases with the
worker’s capacity, task’s capacity, task arrival interval,
worker’s moving range, and the number of work-
ers/requesters for all three schemes. Because by increas-
ing any of the above parameters, the potential matching
tasks will increase.

3) Fig. 7 shows that in Gowalla and NYC Citi Bike data
sets, the performance trend under varying parameters is
similar as in the TLC data set, which means that our
scheme is not sensitive to parameters or data set, thus
is applicable for a wide range of scenarios.

The number of assigned tasks in Figs. 6 and 7 is observed
to be larger than 300. The reason is that each task’s capacity
ct could be larger than 1; hence, the number of assigned tasks
is actually the number of assigned subtasks, which could be
far more larger than 300.

D. Computation Cost Evaluation

Methodology: We evaluate the computation cost of the
workers and requesters in our proposed PriTA framework.
Specifically, we record the time cost for encryption, decryp-
tion, and computation on the ciphertext during the whole
procedure. The experiment is run on a desktop with an Intel
Core CPU 2.7-GHz processor and an 8-GB RAM running
Ubuntu 14.04.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Task assignment evaluation. (a) Varying worker’s capacity. (b) Varying task’s capacity. ct . (c) Varying worker/task’s capacity. (d) Varying task arrival
interval. (e) Varying worker’s moving range. (f) Varying the number of users.

(a) (b)

Fig. 7. Data set evaluation. (a) Gowalla. (b) NYC Citi Bike.

TABLE II
AVERAGE COMPUTATION TIME OF A REQUESTER

TABLE III
AVERAGE COMPUTATION TIME OF A WORKER

Results: The average computation time of a single requester
is shown in Table II. The task location is encrypted only once
so the time cost for Eepkri

(lti) is the same between the total time
and the unit time, while Ddskri

(Eepkri
(zij)) and Epkwj

(zij) have to
be done multiple times for different workers, thus resulting in
the difference between the total time and unit time. Generally
speaking, homomorphic encryption costs 10× longer time than
homomorphic decryption for a single operation.

Table III shows that for a single worker, the computation
time is mainly spent on encrypting lw and Rj and computing on
the encrypted distance result in step 2. The total computation
time for both workers and requesters is less than 1 s, which
is acceptable and feasible in practice.

E. Communication Overhead

Methodology: We measure the communication cost for all
the workers and requesters in our PriTA system. More specifi-
cally, we evaluate the total data size of each worker, and each
requester needs to send and receive in every step.

Results: The results of our communication cost evaluation
are shown in Tables IV and V. The sizes of the data that are
transmitted in our experiments are all below few kilobytes,
which represents that our PriTA provides a relatively low and
practical communication overhead. Specifically, in Table IV,
the TASK_RELEASING and DIST_CONFIRM messages that
a requester sends have much smaller size. The reason is that
these two messages are sent by broadcast, thus do not need
to be sent multiple times for different workers. While for
a worker, it will receive multiple TASK_RELEASING and
DIST_CONFIRM messages from different requesters, leading
to a bigger received data size for TASK_RELEASING and
DIST_CONFIRM in Table V.

VI. RELATED WORKS

In this section, we review the literature from the follow-
ing three aspects: 1) task assignment in spatial crowdsourcing;
2) location privacy preserving in spatial crowdsourcing; and
3) fully distributed crowdsourcing.

Task Assignment in Spatial Crowdsourcing: Many studies
have focused on how to assign tasks in spatial crowdsourc-
ing. Kazemi and Shahabi [16] classified spatial crowdsourcing
into two modes: 1) worker selected tasks (WSTs) mode and
2) server assigned tasks (SATs) mode, where workers posi-
tively select tasks in WST and negatively wait for tasks to be
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TABLE IV
AVERAGE COMMUNICATION OVERHEAD OF A REQUESTER

TABLE V
AVERAGE COMMUNICATION OVERHEAD OF A WORKER

assigned by the server in SAT. The studies on SAT [16], [30]
generally aim to maximize the number of assigned tasks by
the server, while works on WST [6], [8] target at maximizing
the number of completed tasks selected by workers. Only a
few studies [9] combine SAT and WST together, in which the
server first assigns tasks to workers and then workers select
the tasks he can do to maximize the number of the final com-
pleted tasks. However, all of the aforementioned works rely on
a server, and neither of them considers to protect the location
privacy of workers or tasks.

Location Privacy Preserving in Spatial Crowdsourcing: To
protect the location privacy in spatial crowdsourcing, the exist-
ing works mainly leverage k-anonymity or differential privacy
techniques. Gruteser and Grunwald [12] used k-anonymity to
achieve location privacy for a worker, which requires a server
to obfuscate an area containing the worker’s location and the
positions of k − 1 other workers. To et al. [25] proposed to
use a differential privacy technique called PSD [7] to pro-
tect the location privacy of workers, while it needs a trusted
third party to sanitize the collected location information of
workers. A local differential privacy technique named geo-
indistinguishability [3] is leveraged in [26] and [29] to protect
the locations of both tasks and workers; however, they still
require a server to match different tasks with workers based
on the obfuscated locations. Liu et al. [18] used homomorphic
encryption to encrypt the locations of both workers and tasks,
thus achieving the protection of location privacy. In their work,
two servers are needed and they have to communicate with
each other multiple times to exchange information in order to
assign tasks to proper workers. All the above-mentioned works
require a centralized server to guarantee privacy preserving,
which is not applicable in fully distributed crowdsourcing
systems.

Fully Distributed Crowdsourcing: Recently, a few works
start focusing on fully distributed, self-organized crowd-
sourcing. Chang and Wu [5] proposed a distributed and
self-organized crowdsourcing scheme within mobile social
networks, in which the requester positively sends the task to
the potential workers via multihop social contacts. In [23], a
self-organized mobile crowdsourcing paradigm is proposed,
where a mobile requester can proactively crowdsource his
task by leveraging the encountered workers at real time.
However, the protection of location privacy is beyond their
consideration.

VII. CONCLUSION

In this article, we proposed a novel privacy-preserving
framework PriTA for spatial crowdsourcing, which performs
task assignment in a fully distributed manner without disclos-
ing location information. PriTA uses homomorphic encryption
to protect the location privacy for both tasks and workers. We
proposed a distributed protocol achieving efficient task assign-
ment based on exchanges of encrypted messages between
requesters and workers. The evaluations driven by real-world
data set demonstrated that despite of being fully distributed,
PriTA achieves more efficient task assignment at the same
level of location privacy compared with existing works.
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