
Owl: Performance-Aware Scheduling for Resource-Efficient
Function-as-a-Service Cloud

Huangshi Tian
HKUST

Suyi Li
HKUST

Ao Wang
George Mason University, Alibaba

Group

Wei Wang
HKUST

Tianlong Wu
Alibaba Group

Haoran Yang
Alibaba Group

ABSTRACT

This work documents our experience of improving the sched-
uler in Alibaba Function Compute, a public FaaS platform. It
commences with our observation that memory and CPU are
under-utilized in most FaaS sandboxes. A natural solution
is to overcommit VM resources when allocating sandboxes,
whereas the ensuing contention may cause performance
degradation and compromise user experience. To compli-
cate matters, the degradation in FaaS can arise from external
factors, such as failed dependencies of user functions.
We design Owl to achieve both high utilization and per-

formance stability. It introduces a customizable rule sys-
tem for users to specify their toleration of degradation, and
overcommits resources with a dual approach. (1) For less-
invoked functions, it allocates resources to the sandboxes
with usage-based heuristic, keeps monitoring their perfor-
mance, and remedies any detected degradation. It differenti-
ates whether a degraded sandbox is affected externally by
separating a contention-free environment and migrating the
affected sandbox into there as a comparison baseline. (2)
For frequently-invoked functions, Owl profiles the inter-
ference patterns among collocated sandboxes and place the
sandboxes under the guidance of profiles. The collocation
profiling is designed to tackle the constraints that profiling
has to be conducted in production. Owl further consolidates
idle sandboxes to reduce resource waste. We prototype Owl
in our production system and implement a representative
benchmark suite to evaluate it. The results demonstrate that
the prototype could reduce VM cost by 43.80% and effectively

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9414-7/22/11.
https://doi.org/10.1145/3542929.3563470

mitigate latency degradation, with negligible overhead in-
curred.

CCS CONCEPTS

• Computer systems organization→ Cloud computing.

KEYWORDS

serverless, resource-management, scheduling, overcommit-
ment
ACM Reference Format:

Huangshi Tian, Suyi Li, AoWang,WeiWang, TianlongWu, andHao-
ran Yang. 2022. Owl: Performance-Aware Scheduling for Resource-
Efficient Function-as-a-Service Cloud. In Symposium on Cloud Com-

puting (SoCC ’22), November 7–11, 2022, San Francisco, CA, USA.

ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3542929.
3563470

1 INTRODUCTION

Function-as-a-Service (FaaS) is gaining increasing popularity
in cloud computing. All major cloud providers have FaaS plat-
forms [1–4] that allow users to write scalable, event-driven
applications as a set of stateless, short-running functions. The
FaaS platforms overtake the burden of resource management
on behalf of users, including function provisioning, autoscal-
ing, logging, and fault-tolerance. The platforms charge users
only when their functions are running.
As the FaaS platform bears the cost of resource idling,

reducing the resource provisioning cost (i.e., using fewer ma-
chines and less machine-time) is of paramount importance
for the provider. Largely affecting the cost is the function
scheduling. In a common FaaS platform, it launches a number
of host machines (virtual or bare-metal) in a cloud as needed
and run function instances as sandboxes (containers or secure
sandboxes [20]) in hosts. When a function invocation request
arrives, the scheduler routes it to an available function sand-
box for execution. If no sandbox is currently available, the
scheduler selects a host and places a new sandbox onto it
to execute that request. The goal of scheduling is to dynam-
ically pack function sandboxes to as few hosts as possible,
without causing noticeable performance degradation.

To achieve this goal, we first conduct extensive trace analy-
sis (§2.2) in our FaaS platform, Alibaba Function Compute [1],

https://doi.org/10.1145/3542929.3563470
https://doi.org/10.1145/3542929.3563470
https://doi.org/10.1145/3542929.3563470

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Haoran Yang

that serves a large number of users from various business
domains. Our analysis reveals that most function sandboxes
can only utilize 20–60% of their memory allocations. Fur-
thermore, to avoid frequently cold-starting an instance, the
platform retains an idle sandbox for a short period of time
before terminating it, a technique known as keep-alive [30].
In our platform, keep-alive results in 25% of sandboxes idling
for over half of their lifetimes.
Intuitively, the resource waste can be reduced with over-

commitment, i.e., placing more sandboxes on a host than
the allocation limit allows. However, the existing techniques
of overcommitment are not directly applicable to FaaS. For
instance, the overcommitment of container workload [7]
and analytics tasks [24] allocates resources to containers by
their real usage. But our experiment (§3.1) shows that the
allocation based simply on actual usage could easily lead to
performance degradation of the functions. It results from the
unique characteristics of FaaS scenario.

The scheduling in FaaS differs from other scenarios mainly
in two aspects. 1 The function executed in each sandbox
is highly heterogeneous and difficult to profile. Allowed to
upload arbitrary code, the customers of FaaS span various in-
dustries and application domains. Hence unlike the analytics
tasks that are often compute-intensive, a function could uti-
lize multiple resources. The complex resource usage explains
the degradation in our overcommitment experiment (§3.1).
Due to function heterogeneity, the profiling has to be con-
ducted over multiple resource types. Some of their usage (e.g.,
CPU and I/O devices) are dynamic and volatile on a short
scale, and cannot be accurately measured with a single value.
Many task scheduling techniques [12, 19, 21, 22] thus fall
short in FaaS scheduling because they presume the availabil-
ity of a per-task profile. 2 As FaaS provides no functionality
of storage or coordination, the functions usually involve
some external services, such as the message queue, database
or file system provided by the cloud. They could unexpect-
edly become a potential source of performance problems in
FaaS platform. For example, their failure could degrade the
request latency and the provider has to distinguish it from
the scheduling-related degradation. The above two issues
have shaped our design of the scheduling system.
Challenged by the difficulty of profiling in FaaS, we re-

think how the resource usage can be described and develop
a new technique—collocation profiling (§5.1). It does not mea-
sure the fine-grained usage of each resource, but counts how
many sandboxes can be collocated on a host without caus-
ing contention, even when they all have saturated load. An
example profile could be function A can have at most ten

sandboxes placed on a single host. The upper bound of ten
quantifies the highest extent of overcommitment this func-
tion can tolerate, which is a useful piece of information for
sandbox placement. We further extends the profile to include

two types of functions, e.g., function A and B can have at

most five and seven sandboxes collocated on a host respectively.
It enables the system to explore which two functions can
be suitably collocated to achieve high utilization and low
contention. The choice of two avoids the exponentially many
combinations of functions and mixes function sufficiently
well in practice.

We develop the idea of collocation into a placement system
(§5.2). It mainly consists of twomodules—a profiler that collo-
cates functions and measures performance, and a placer that
determines the sandbox location following the profiles. The
challenge in designing the profiler is that it cannot invoke
any function without user requests. Otherwise the invoca-
tion may cause unexpected side effect such as tainting users’
database or disturbing users’ devices. We thus design an
in-production profiling procedure that can be conducted dur-
ing serving the real user requests. The procedure calls the
scheduling primitives to incrementally place more sandboxes
onto a separated clean host and route requests to saturate
them. As the sandboxes increase, the profiler observes how
performance changes and selects the optimal quantity for
the profile. However, it only applies to popular functions,
because only popular ones can have sufficient requests to
be profiled. We address the limitation by designing a com-
plementary scheduling approach, which will be described
shortly.

How to integrate the profiles in placement is the core prob-
lem we tackle in placer design. We first formulate the offline
scenario—given a fixed number of different sandboxes, how
to collocate them together—and design an algorithm that iter-
atively packs sandboxes following themost resource-efficient
collocation. Then we extend it to the online setting by intro-
ducing a periodic update scheme that can partially update
the cluster with the offline algorithm. Our profile-guided
placer ensures that resources are properly overcommitted
so as to avoid contention-resulted degradation in the first
place.
For less popular functions that can not be profiled, the

placer falls back to usage-based overcommitment, i.e., allo-
cates resource according to their historical usage. It mitigates
the ensuing degradation problem with latency monitoring
and degradation remedy (e.g., sandbox isolation, migration).
The challenge of monitoring in FaaS is that sometimes the
detected performance drop is not caused by overcommit-
ment but other issues unrelated to scheduling. For example,
a user function may depend on an external gateway service
whose timeout causes the latency surge. As this problem
has nothing to do with resource contention, the scheduler
should be able to differentiate it and stop a futile attempt
to improve sandbox placement. We design a comparative

validation technique to achieve that. It places the affected
sandboxes in a contention-free environment and compares

Owl: Performance-Aware Scheduling for Resource-Efficient Function-as-a-Service Cloud SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Scheduler

E-commerce

Media Platform

Log Processing ❶

❷

VM ClusterCustomer ProcessingRequest
Key

Figure 1: An overview of FaaS scheduling.

the resulting performance with the previous measurement.
If the degradation persists, it confirms that the cause is from
an external source that cannot be addressed by scheduling.

We have implemented a prototype scheduler, Owl, in our
FaaS platform (§6). It has a hybrid design that differentiates
between the popular and less popular functions. For the
popular functions, Owl actively maintains their collocation
profiles and uses them to guide the sandbox placement. It fur-
ther consolidates the idle sandboxes to reduce resource waste
whenever possible (§5.3). For the less popular functions,Owl
overcommits resources when placing their sandboxes and
reactively mitigates the detected performance degradation
following the pre-specified rules.
We evaluate Owl in a cluster up to the scale of 200 VMs,

against a benchmark suite that reflects the complexity of
FaaS workloads in our production platform. The FaaS appli-
cations included in the suite span various business domains,
are implemented in multiple programming languages, and
have diverse external service dependencies. The benchmark
suite has been released as open-source. The evaluation shows
that Owl reduces the VM provisioning cost by 44% with-
out degrading the function performance. The scheduling
overhead, including both collocation profiling and reactive
contention mitigation, is negligible.

To summarize, this paper makes following contributions:
• We identify the problem of FaaS scheduling and character-
ize its issues in a production environment.

• We propose several placement techniques that can differ-
entiate the degradation cause, improve the resource uti-
lization without affecting the performance.

• We implement a benchmark suite for evaluating the sched-
uling algorithm in FaaS platform. The code is released at
https://github.com/All-less/faas-scheduling-benchmark.

• We prototype Owl in our production system and evaluate
its effectiveness and overhead.

2 BACKGROUND AND MOTIVATION

2.1 FaaS Scheduling from Provider’s View

Function-as-a-Service (FaaS) emerges as a new computing
paradigm that greatly simplifies cloud programming: users
simply package their application code as a set of functions,

define the events that trigger these functions, and let the
FaaS platform manage function provisioning and scheduling.
Figure 1 gives an overview of FaaS scheduling in our platform.
A user request may trigger two types of scheduling decisions:
placement or routing. 1 If the requested function has no
idle instance, the scheduler chooses a VM and places a new
instance on it, which runs in a sandbox (a secure container
similar to gVisor [20]). Note that the chosen VM must have
enough memory to accommodate the function’s allocation
demand. 2 If the function has multiple sandboxes available
for the request, the scheduler chooses one and routes the
request to it for execution.

By default, our scheduler uses first-fit bin-packing for sand-
box placement and the most-recently-used (MRU) request
routing algorithm. The scheduler maintains an inventory of
running VMs and places a new sandbox onto the first VM
that can accommodate it. (AWS Lambda is reported to adopt
a similar strategy [37].) When performing request routing,
the scheduler prioritizes the most recently invoked sandbox.
This strategy is designed in accordance with the keep-alive
mechanism, in which a sandbox can stay idle for up to five
minutes before terminating by the platform. The MRU rout-
ing algorithm results in a longer idle time for the least in-
voked sandboxes so that their resources can be reclaimed
sooner.
From the provider’s perspective, the goal of FaaS sched-

uling is two-fold: (1) packing the function sandboxes to as

few VMs as possible to minimize the platform’s resource pro-
visioning cost, and (2) in the meantime protecting the per-
formance of user functions. However, our current scheduler
falls short in achieving the two objectives, as we explain
below.

2.2 Workload Characterization

To understand the challenges of FaaS scheduling, we collect
an one-day trace (on the scale of 𝑂 (108) invocations) from
our production platform that serves a large number of users
running diverse applications, such as e-commerce, online
education, manufacturing, and SaaS providers. We analyze
the trace and have the following findings.
Underutilized Resources By default, a function sandbox
receives an full allocation of memory as specified in the user
configuration, which is usually more than the function can
actually use. Figure 2 (red dashed line) depicts the cumula-
tive distribution of memory utilization (in proportion of the
allocation). Most sandboxes can only use 20–60% of their
allocated memory. There are two main reasons of memory
under-utilization. First, at the moment, the minimum mem-
ory size one can configure for a function is 128 MiB [13].
However, many functions perform rather simple computa-
tions with memory footprint much smaller than 128 MiB.

https://github.com/All-less/faas-scheduling-benchmark

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Haoran Yang

Second, we find that many users intentionally configure a
larger memory for the sake of obtaining more CPU cores for
their applications, as in current FaaS platforms memory and
CPUs are allocated in a fixed proportion (e.g., 1.5 GiB per
core in our platform [14]).

Like in other FaaS platforms, a function sandbox is not ter-
minated immediately once becoming idle, but it will be kept
alive for a configurable short period of time (5 minutes in our
platform): if no request is received during that interval, the
sandbox is then terminated. This keep-alive mechanism [30]
is used to avoid frequent tear-and-wear cost due to sandbox
creation and destroying. However, we find that it results
in a long idling time for a large number of sandboxes. Fig-
ure 2 (blue solid line) shows the distribution of the keep-alive
idling period relative to the sandbox’s lifetime. There are 25%
of sandboxes kept alive in idle for over 50% of their lifetimes.
Skewed Function Popularity Just like other cloud ser-
vices, such as storage and data analytics [10, 23, 40, 42], FaaS
functions have highly skewed popularity. A small number of
extremely popular functions spawn a large number of sand-
boxes in the system. In our traces, 61% of sandboxes belong
to 0.65% of functions that are of top popularity. Moreover,
the top 5% (20%) functions create 88% (97%) of sandboxes.
Our observation is in line with that reported by Microsoft
Azure [30]. The skewed popularity results in an undesirable
scheduling consequence that sandboxes belonging to the
same popular function are concentrated on VMs. Figure 3
shows the number of the belonging functions of sandboxes
running on each VM. Around 65% of VMs exclusively run
sandboxes of one function. As these sandboxes run the same
function code, they contend on the same type of resource
(e.g., I/O) while leaving the other resources (e.g., memory
and CPU) underutilized.
Diverse Performance Requirements While in general a
FaaS platform should provide low latency for functions, users
have different performance expectations and requirements
for their applications. We have interviewed our service oper-
ators [6] about the top clients and their service requirements.
The feedback suggests that the requirements vary depending
on the business domains. For example, the payment function
from an e-commerce service is sensitive to latency fluctu-
ation as it is in the critical path of transaction processing.
In comparison, the data compression functions deployed
by a log processing company are more tolerant to latency
variations. In fact, some user applications invoke functions
asynchronously, queuing their requests for batch processing.
These functions are inherently tolerant of a long latency.

Drawing on the findings above, it is imperative to design
a new FaaS scheduler that can (1) tightly pack functions to
VMs to achieve high cluster utilization, (2) be aware of the
diverse latency requirements of user functions and strive

0.00 0.25 0.50 0.75 1.00
Proportion

0.0

0.5

1.0

C
D

F

used memory / allocation
idle period / lifetime

Figure 2: For many sand-

boxes, memory utilization

is low and the keep-alive

mechanism leaves CPU

idle.

0 10 20
Function Types in a VM

0.00

0.25

0.50

Pr
op

or
tio

n

all less than 0.015

Figure 3: Owing to skewed

function popularity, most

VMs only host one or two

types of sandboxes.

to meet them, and (3) efficiently make scheduling decisions
with low overhead.

3 THE CHALLENGES OF

OVERCOMMITMENT

Given the significant memory under-utilization of function
sandboxes (§2.2), a mitigatory scheduling approach is to over-
commit more sandboxes on a VM beyond its memory limit.
However, this may result in prolonged function executions
due to the increased resource contention (§3.1). To make the
problem even more complicated, the latency increase may
also be caused by other unrelated issues beyond the sched-
uler’s control (§3.2). It is thus necessary for the scheduler to
differentiate between different sources of degradation and
judiciously perform overcommitment.

3.1 The Risk of Overcommitment

Usage-Based Overcommitment We design a heuristic
scheduling algorithm that overcommits resources by allocat-
ing memory to sandboxes based on their past usage (which
is typically smaller than the configured size). To prevent
the out-of-memory error, the algorithm also allocates some
“slack” memory. Specifically, for each function, we maintain
a running estimate of memory usage𝑢 by averaging over the
past 1000 requests. Supposing its configured runtime size is
𝑐 , the algorithm allocates 𝑝𝑢 + (1 − 𝑝)𝑐 memory to its sand-
box at creation, where 𝑝 is a tunable percentage controlling
the slack space. In this paper, we set 𝑝 as 50% as it strikes a
good balance between resource saving and slowed function
execution.
Problems of Usage-Based Overcommitment The usage-
based overcommitment scheme can effectively improve re-
source utilization. Yet, it has several drawbacks that may
harm the function performance. First, its fixed allocation
may slow down some functions with fluctuating memory
usage, because their memory operations could be clogged by
the reduced allocation. Second, the scheme only considers
the sandbox memory but ignores its CPU utilization. Though
memory-based placement is a common practice in public

Owl: Performance-Aware Scheduling for Resource-Efficient Function-as-a-Service Cloud SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

200 400 600
DA Latency (ms)

0.0

0.5

1.0

C
D

F

200 400 600
CA Latency (ms)

0.0

0.5

1.0

non-ovct'ed
ovct'ed

Figure 4: The latency of function DA (detect-anomaly)

and CA (convert-audio)
2
degrades because of overcom-

mitment.

FaaS platforms, it may result in an unsuitably high place-
ment density for CPU-intensive functions. Third, the scheme
does not account for the contention between collocated sand-
boxes.
To demonstrate the impact of these drawbacks, we com-

pare the performance of the same functions in two FaaS clus-
ters with and without overcommitment scheduling, respec-
tively. We run the same workloads (i.e., identical functions
and request sequences) in the two clusters.1 Figure 4 cites the
two representative functions whose P95 latency surges by
207% and 107%, respectively. Such a significant performance
drop is unacceptable for latency-sensitive applications.

3.2 Causes of Degradation

One unique difficulty of tackling performance drops in FaaS
is that not all of them are caused by overcommitment, mean-
ing, the occurrence of degradation does not necessarily in-
dicate that the scheduling is problematic. Possible causes
include failures of an external dependency or changes in
request parameters. We found many anecdotal evidences in
our production platform. To name a few, one data process-
ing function was reported to exhibit degraded performance,
and the investigation discovered that the root cause was the
timeout of its external gateway; another IoT function was
reported to significantly slow down in face of many requests,
and the reason turned out to be the rate limit imposed by
its external proxy. In fact, over 40% of sandboxes have CoV
(coefficient of variance) larger than one in the request la-
tency. The inherently varying latency could be mis-detected
as degradation.
We find that the performance degradation caused by dif-

ferent sources cannot be easily differentiated, as they usually
exhibit similar problems. For instance, the data processing
function mentioned above got slowed down due to an ex-
ternal gateway. Similar processing slowdown can also be
caused by an overly condensed sandbox placement. Only the
latter cause should (and could) be addressed by the sched-
uler. We thus propose the following principle to scope the
responsibility of FaaS scheduling:
1The results are extracted from Workload-B with details given in §7.2.
2Table 2 lists the function abbreviations.

V
M

 C
luster

frequently-invoked functions less-invoked

Monitor Performance

Cross Compare

Remedy Degradation

Collocate Sandboxes

Consolidate Sandboxes

Profile Collocation
OWL Scheduler

De
gr

ad
ati

on
 Pr

ev
en

tio
n (

§4
.2)

Pperformance Protection (§4.1)

in online setting (§5.1)

guided by profile (§5.2)

with low load (§5.3)

with custom rules (§4)

to validate cause (§4.1)

with multiple policies (§4.1)

op
tio

na
lly

QV

QV

QV

QV

QV

QV

QV

QV

QV

QV

CA

CA

CACA

CA

CA

CACA

CA

CA

CA

RS

RS

RS

RS

RS

RS

GM AL DO

DAIDCI

FL

Figure 5: A high-level overview of Owl.

Scoped Responsibility: The service provider (and

the scheduler) is held responsible only for the degrada-

tion caused by the execution environment.

Following this principle, our scheduler only addresses the
performance degradation caused by resource insufficiency
or uncontrolled interference.

4 OWL OVERVIEW

In face of the degradation, the scheduler could either apply
mitigation after it occurs, or carefully plan the placement be-
forehand to prevent it from happening. However, for popular
functions with many sandboxes, their degradation could be
too wide spread to mitigate. For the long-tailed unpopular
functions, their large quantity makes it costly to construct
detailed model about their behavior and adjust the place-
ment beforehand. We thus design a hybrid approach that
can automatically classify functions based on popularity and
schedule them accordingly.

For less popular functions, Owl employs usage-based allo-
cation (§3.1) and tackles the ensuing degradation by monitor-
ing function performance and remedying the detected slow-
down (§4.1); for popular functions, it applies a degradation-
preventive measure by profiling the interference patterns of
their sandboxes and overcommitting them in a contention-
free manner (§4.2). As the profiling requires a function to
have sufficient number of requests for a stable period of time,
it becomes a natural criteria of popularity for classifying
the functions. Hence Owl can automatically decide if the
function is popular based on its incoming requests. Figure 5
shows a high-level overview of Owl.
Performance Rules In view of the diverse performance
requirements of our users, we design a customizable rule
format for users to specify their performance objectives. In-
spired by SLOs (Service-Level Objectives [8]), the rules ac-
cept several choices of metrics measured at a configurable

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Haoran Yang

checking frequency. Below shows the format and a concrete
example.

Format: Every [interval], check if
[metric] [op] [threshold] within [window].

Example: Every 30 seconds, check if
P95 latency < 300ms within past 1000 requests.

Our current implementation supports the metric of latency
or throughput (i.e., requests per second). The former targets
online services, whereas the latter suits batch processing
applications. The op is a common mathematical comparator.
Both the interval and window can be a time interval or a
number of requests. The checking interval captures the
users’ requirement on detection timeliness. The examination
window specifies the sensitivity of detection. Users could
demand higher performance stability by setting a smaller
window size.

4.1 Performance Protection

To achieve high utilization, Owl places function sandboxes
with the usage-based heuristic. It addresses the potential
degradation in three steps. (1) As the basis, Owl monitors
the sandbox performance and detects the degradation ac-
cording to the user-defined rules. Owl provides a flexible rule
format to allow users to express their diverse performance re-
quirements. (2) When the degradation occurs, Owl remedies
it with a combination of policies. (3) As the degradation may
result from external causes beyond the scheduler’s control,
Owl uses a comparative validation technique to differentiate
them.
Degradation Remedy When Owl detects a violation to
the performance rule, it attempts to remedy the affected
sandbox using the following policies:
(1) Migrating the affected sandbox to another VM that has

the sandboxes of the same function. It presumes that the
target VM induce no interference against the function.

(2) Migrating the degraded sandbox to another VM with
lower utilization. It assumes the target VM has a less
degree of contention.

(3) Moving away the last created sandbox(es) from the host
VM. It aims at relieving the resource pressure on the VM.

(4) Migrating the sandbox to a non-overcommitted VM.
By default, Owl applies the first policy and, if the function
has no other instances, switches to the second policy. When
multiple sandbox degradations are detected on a machine,
Owl deems it as a VM-level problem and applies the third
policy. If the degradation persists after all these trials, Owl
turns to the fourth policy as the last resort. That being said,
functions are allowed to set their own remedy workflows.
For example, a high-priority function can choose the fourth
policy as the primary way to address degradation.

Comparative Validation In a public FaaS platform, the
performance degradation does not always mean the prob-
lem of execution environment. As the function invocation
accepts custom parameters, the degradation may simply re-
flect a parameter change. Moreover, many user functions
depend on external database, network services, and even
other functions. The external degradation can also cause the
performance issue. As a concrete example, we have once
received customer complaint about slowed latency, which is
found to be caused by the timeout in their CDN gateways.
The scheduler is thus challenged to accurately differentiate
the cause, mitigate those caused by execution environment,
and preclude the degradation from unrelated factors.
We design a technique, comparative validation, to verify

the cause of degradation. Its underlying assumption is that,
if the sandbox is running in a non-overcommitted environ-
ment, then its degradation results from the function itself.
Hence the core step in validation is to set up a clean en-
vironment as the baseline for comparison. Specifically, the
scheduler selects a non-overcommitted host machine and
migrates the degraded sandbox onto it. Then the scheduler
monitors its performance and compares with that before
the migration. If the degradation shows no sign of allevi-
ation, Owl confirms that the cause is external. Otherwise,
the degradation is concluded to be caused by the execution
environment.

We further design a variant of the technique for the func-
tions with a large number of sandboxes. We term the proce-
dure described in the last paragraph as temporal comparison,
because it compares the performance before and after mi-
gration. If the function has many sandboxes, it is possible
to always keep one of its sandbox on a non-overcommitted
machine and let it serve as the baseline. The comparison
no longer requires migration and can be done in real time.
We refer to such setting as the canary comparison. In the
technical report [35], we further discuss how the technique
reacts to transient external problems.

4.2 Degradation Prevention

For popular functions, Owl establishes a sandbox collocation
profile, i.e., what function sandboxes and how many of them
could be collocated together without incurring detectable
contention. Based on this profile, the scheduler performs
contention-free overcommitment. We choose to profile pop-
ular functions because they have sufficient requests for per-
formance evaluation in various collocation combinations.
Besides, popular functions spawn the majority of sandboxes
as illustrated in §2.2.

But still, there are an exponentially large number of sand-
box combinations on a single VM, so exhaustively profiling
each option is computationally prohibitive. We thus restrict
the profiling to two functions only. That is, we only allow two

Owl: Performance-Aware Scheduling for Resource-Efficient Function-as-a-Service Cloud SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

types of function sandboxes to be collocated on a VM. This
restriction substantially reduces the search space. Note that
CPU and memory are the two major resource types in FaaS,
and the collocation of two functions can well mix sandboxes
with complementing dominant resources. Our evaluation
confirms the effectiveness of our approach despite such a
restriction.
More specifically, the scheduler profiles function perfor-

mance on VMs with different sandbox collocations in pro-
duction in search for the contention-free collocation pairs.
Figure 5 shows a concrete example, where at most 5 sand-
boxes of function QV and 4 of CA can be collocated (the
lower left VM). This profile can guide Owl to place incom-
ing sandboxes. We will elaborate on how to establish the
profile and follow its recommended placement rules in §5.
As the collocation profile packs as many sandboxes as pos-
sible onto a VM based on the resulting performance, not
their configured memory sizes, overcommitment is naturally
supported to achieve high utilization. In the mean time, con-
tending sandboxes will not be collocated, thus avoiding the
potential performance degradation.

5 PROFILE-GUIDED PLACEMENT

Underpinning the degradation prevention is a profiling tech-
nique (§5.1) that discovers contention-free collocations. It
guides Owl to maintain contention-free placement among
the popular functions (§5.2). However, as we will show in
§5.3, the contention is avoided at the expenses of some re-
sources left idle. We thus propose another technique called
sandbox consolidation to further reduce the waste.

5.1 Collocation Profiling

Owl learns which functions can be collocated together by
varying the placement of different collocations and profiling
their performance. We propose a data structure, collocation
profile, to store the profiling results.We then design a scheme
to profile the collocation of two functions in the production
environment. Finally we describe how Owl executes the
scheme and constructs the profiles for popular functions.
CollocationProfile Essentially, the profile describes, given
two functions, how many of their sandboxes can be collo-
cated on a single VM without contention. Table 1 presents
an example profile for a function QV in our benchmark suite
(details in §7.2 and Table 2). The last three columns profile
its collocation with functions CA, GMM and AL, while the
second column is a special case where QV is the only func-
tion on a VM. The second row lists the maximum number of
sandboxes, e.g., “6 / 10” in the CA column meaning at most 6
QV sandboxes and 10 CA sandboxes can be collocated. The
third row records the allocation ratio (i.e., the total allocated
memory divided by the machine limit) in each collocation.

Table 1: A sample function profile of QV (abbreviations

explained in Table 2). The allocation ratio calculates

the ratio of the total allocated memory to machine

limit. A value larger than one indicates overcommit-

ment.

Collocation QV (self) CA GMM AL

Sandbox (self/other) 14 / - 6 / 10 6 / 14 10 / 1
Alloc. Ratio 1.17 1.33 1.08 1.17

Owl prioritizes a high-ratio collocation during placement
because it implies higher overcommitment. That the ratio
is usually greater than one is a consequence of prevalent
memory underutilization (§2.2).
Profiling Collocation Performance Given two chosen
functions, Owl first singles out a VM and collocates their
sandboxes on it.3 The system then routes requests to keep
those sandboxes saturated and observes if any of their per-
formance rule is violated. If not, it fills more sandboxes and
repeats the observation. Finally when the performance starts
deteriorating, Owl records the sandbox quantity and the
allocation ratio in the collocation profile. The example pro-
file in Table 1 is obtained by repeating the procedure for
four times (i.e., collocating QV with CA, GMM, AL and itself
respectively). The profiling is conducted in the production
environment and §6 will explain how the scheduling primi-
tives can complete the involved operations.

The profiling does not affect the service quality in produc-
tion because Owl is configured with conservative termina-
tion criteria. It detects the degradation with a more strict
version of the user-defined rule. Specifically, suppose the
rule sets the threshold value as 𝑡 , and the metric calculated
from the historical execution is ℎ. The terminating rule will
use 𝛼 · 𝑡 + (1 − 𝛼) · ℎ as the threshold where 𝛼 ∈ (0, 1) is a
tunable parameters for controlling the conservativeness. In
practice, we find an 𝛼 of 50% can strike a good balance.
Constructing Collocation Profiles For a newly added
popular function, Owl builds its profile by first profiling its
collocation with itself (cf. the second column in Table 1), and
then the collocation with others. Within the building process
exist several design considerations.
• What functions are counted as “popular”? We define the
popular function based on the arrival rate of its requests. As
the sandboxes are continuously triggered (i.e., saturated load)
during profiling, not every function has adequate incoming
requests. Hence a natural criterion is that the requests of a
popular function can keep saturating, for a period of time,
so many sandboxes that they can fill up one VM. In practice,
3How the number of sandboxes is chosen and how Owl adjusts them are
described in the technical report [35, §A].

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Haoran Yang

when the requests of a function stay above this threshold,
Owl will start collecting its collocation profile. If the arrival
rate drops during the profiling, then the process will be
interrupted.
• How many collocation pairs does a profile usually have? The
guiding rule is, for each function, to have collocation with
another 𝛽 of the popular functions, where 𝛽 is a tunable per-
centage. It ensures the scheduler could have enough possible
pairs to explore when placing the sandboxes. In practice, we
find a 𝛽 of 10% is enough for well-mixed collocation. But the
actual number in each profile may vary because the profiling
may be interrupted. So we design the placement algorithm
that works with no requirement on the pair number.
• How does Owl choose which function to collocate? When
constructing the profile for a function, Owl chooses its col-
location based on a resource heuristic. It tries to find the
functions with the complementary resource patterns, which
are measured by the ratio between memory usage and CPU
utilization. For a high-ratio function, Owl attempts to match
it with low-ratio ones, and vice versa.

5.2 Profile-Guided Placement

With the profiles collected, Owl follows their guidance for a
degradation-avoidant placement. For the ease of presenta-
tion, we first consider an offline version of the problem, that
is, given a fixed set of sandboxes, how to collocate them to
achieve high utilization. We design an algorithm that itera-
tively pairs up the sandboxes according to the profiles. Then
we extend the algorithm to the dynamic setting where the
sandboxes can be created and terminated.
Offline Problem Formulation At a given moment, sup-
pose the system has a set of functions 𝐹 = [𝑓1, 𝑓2, · · ·]. The
corresponding number of their sandboxes are𝑁 = [𝑛1, 𝑛2, · · ·].
Let 𝑃 = [· · · , 𝑝𝑖 𝑗 , · · ·] denote the collocation pairs extracted
from the function profiles of 𝐹 . That is, if the collocation
of 𝑓𝑖 and 𝑓𝑗 has been profiled, 𝑃 will include an entry 𝑝𝑖 𝑗 in
the form of (𝑠𝑖 , 𝑠 𝑗 , 𝑎𝑖 𝑗), representing the sandbox quantities
and the allocation ratio (as shown in Figure 1). The prob-
lem of collocation-based placement can be formulated as,
given 𝐹 , 𝑁 and 𝑃 , how to find a contention-free and high-
utilization arrangement 𝑀 , where 𝑀 is a list of key-value
pairs {𝑓𝑖 : 𝑛𝑖 , 𝑓𝑗 : 𝑛 𝑗 }. Each pair corresponds to one VM and
means that 𝑛𝑖 sandboxes of the function 𝑓𝑖 and 𝑛 𝑗 sandboxes
of 𝑓𝑗 are collocated.
Offline Algorithm The intuition behind Algorithm 1 is
to start with the collocation pair of the highest allocation
ratio and pack as many sandboxes according to the pair.
Then it iterates along the pairs and repeats the packing un-
til no sufficient sandboxes remain. The algorithm is guar-
anteed to terminate because the collocation profile has a
self-collocation entry. If any sandboxes haven’t been packed

Algorithm 1 Place sandboxes according to function profiles.
1: 𝑀 = []: The placeholder for resulting placement.
2: function Place(𝐹, 𝑁 ,𝑀, 𝑃)
3: Sort 𝑃 by allocation ratio in descending order.
4: for each 𝑝𝑖 𝑗 = (𝑠𝑖 , 𝑠 𝑗 , 𝑎𝑖 𝑗) in 𝑃 do

5: 𝑡 ← min{⌊𝑛𝑖/𝑠𝑖 ⌋, ⌊𝑛 𝑗/𝑠 𝑗 ⌋}
6: Append {𝑓𝑖 : 𝑠𝑖 , 𝑓𝑗 : 𝑠 𝑗 } to𝑀 for 𝑡 times.
7: 𝑛𝑖 ← 𝑛𝑖 − 𝑡𝑠𝑖 , 𝑛 𝑗 ← 𝑛 𝑗 − 𝑡𝑠 𝑗

with others, they can still be placed with themselves. The
generated placement plan can be implemented in the cluster
by migrating the sandboxes, which will be described in §6.
Online Updating When some sandboxes are created or
terminated, the placement generated by Algorithm 1 may
no longer be optimal and thus need an update by recalcu-
lating the placement. However, if the recalculation involves
all sandboxes, the update would be time-consuming. We in-
troduce a marking mechanism that helps reduce the VMs
in each update. Specifically, every time a new arrangement
is generated, the VMs whose sandboxes exactly matches a
collocation pair (Line 6) are marked as “full”.4 They will be
excluded from the next update. When any sandbox gets re-
moved from a “full” VM, its mark will be revoked. When over
𝛾 (a tunable percentage) of the VMs no longer have the mark,
a placement update will be launched. Since the placement
is no longer updated after each sandbox creation, the new
sandboxes are placed onto separate VMs first. The separation
guarantees those sandboxes can not interfere with each other.
Those VMs will be included in the next placement update. In
practice, we set 𝛾 to be 10% to avoid too large-scale update.

To further reduce the placement latency of a new sandbox,
we maintain a per-function placement cache to memorize the
positions of the terminated sandboxes. For instance, when
a sandbox of function QV is removed from VM1, we insert
a placeholder of VM1 into the cache of QV. Next time a
sandbox of QV is to be created, it can be directly created on
VM1. It is guaranteed to abide by the collocation rules. If the
VM1 has a “full” mark before the removal and a new sandbox
is refilled onto it, then its “full” mark will be restored.

5.3 Consolidating Sandboxes

The placement in §5.2 prevents contention even under the
saturated load, but causes resource waste at a lower load.
It is because the collocation profile is obtained under the
condition of saturated load, a worst-case assumption about
the runtime environment. However in reality, the function
load may fluctuate and some of the sandboxes may become
idle, thus incurring resource waste.

4In comparison, some sandboxes are left over and not paired with other in
Algorithm 1, so their host VMs are not “full”.

Owl: Performance-Aware Scheduling for Resource-Efficient Function-as-a-Service Cloud SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Algorithm 2 Consolidate idle sandboxes.
1: function Consolidate
2: for 𝑓 ∈ profile-enabled functions do
3: 𝐶 ← sandboxes of 𝑓 that idle for 80% of the past period
4: 𝑀 ← VMs that host sandboxes in 𝐶
5: for𝑚 ∈ 𝑀 do

6: Collect CPU share and memory of𝑚 in past period.
7: Calculate the resource slack of𝑚.
8: for 𝑐 ∈ 𝐶 do

9: Calculate the average CPU share of 𝑐 in past period
10: 𝑚 ← VM with smallest sufficient slack for 𝑐
11: Migrate 𝑐 to𝑚 if𝑚 exists and 𝑐 is not on𝑚.

Algorithm 2 mitigates the problem by consolidating the
mostly idle sandboxes. The intuition is to migrate those sand-
boxes from less utilized VMs (i.e., with more resource slack)
to more utilized ones, so that the latter can consolidate more
resources. The source VMs of migration are revoked of its
“full” mark and they are included in the next update to in-
crease utilization. Note that the consolidation in Algorithm 2
is conducted within each functions, i.e., the source and tar-
get VM of the migrated sandbox both already have other
function instances. Hence the migration will not cause any
functions to be collocated unexpectedly.
However, if the migrated idle sandbox starts to receive

more requests, it may contend with other sandboxes. For
instance, suppose a VM can have at most 10 sandboxes being
concurrently invoked. If we migrate twomore idle sandboxes
onto it, we have to prevent more than 10 sandboxes from
being triggered. We thus introduce grouped routing whose
purpose is to keep the overall resource usage of a VM within
the same level as before migration. Specifically, the scheduler
creates a group structure to logically bind the two migrated
sandboxes with two existing sandboxes. The router ensures
that at most two sandboxes in the group will be simultane-
ously invoked, thus keeping the overall resource usage in
check.

6 OWL SCHEDULING SYSTEM

This section describes how the components in Owl fulfills
the functionalities of performance protection and degrada-
tion prevention.

6.1 System Design

System Architecture Owl mainly consists of two compo-
nents, the scheduler and the watchdog (Figure 6). The former
performs the scheduling decisions during request processing,
including the placement and routing. To shorten the latency,
we separate other operations into the watchdog, a back-
ground component that monitors and profiles the sandbox
performance. Within the scheduler are a centralized placer

Request
Path

RPC
Path

Planned Zone Mixed Zone Control ZoneData
Collection

Scheduler

Placer

Watchdog

Profiler Monitor

V
M

 C
luster

❶ ❷ ❸

❹

❺

❻

⚠

Router

Figure 6: System Architecture

and multiple separate routers. The routers are created on a
per-function basis so that they can leverage multiple CPU
cores and sustain high throughput. The placer is central-
ized because it requires a consistent view of cluster status to
perform placement decision. We discuss how to scale it in
§8.
The VM cluster is logically partitioned into three zones.

The planned zone is primarily for popular functions with
guided placement. The mixed zone is for the rest of the
functions. Their resources are overcommited and their per-
formance is protected by the remedy mechanism. The control
zone is a non-overcommited environment which would serve
as the comparison baseline in comparative validation and
the last resort for degradation remedy.
Scheduling Primitives The design of Owl presumes the
availability of several sandbox operations, such as adjusting
sandboxes in profiling, migrating them during remedy, and
grouped routing for consolidated sandboxes. The scheduler
provides several RPC primitives for those operations.
• Route Diversion: Lower the priority of a given sandbox
during routing. It is mostly triggered after a degradation is
detected.

• Route Prioritization: Increase the priority as opposite to
route diversion. It can prioritize a sandbox and keep it
being saturated by requests, which is a required condition
for collocation profiling.

• Sandbox Migration: Create a new sandbox, replace the orig-
inal one in the router, and then terminates the original one.
The termination waits until the original sandbox finishes
the request and the new one starts processing to ensure
the processing is not interrupted.

• Sandbox Grouping/Ungrouping: Group together/ungroup a
set of sandboxes so that their requests will stay within the
allocation limit.

Scheduling Workflow As shown in Figure 6, 1 when a
request requires a new sandbox, the placer searches for its

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Haoran Yang

appropriate placement. If the request belongs to a profile-
enabled popular function, the placer will conduct the two-
phase placement as described in §5.2. If otherwise, the placer
allocates the sandbox in the mixed zone with usage-based
overcommitment (§3.1). 2 After creation, the sandbox is
inserted into the record of router. It dispatches the requests
with the MRU policy in general, and adjusts the routing
when the diversion, prioritization and sandbox grouping is
in effect. 3 If the function has sufficiently high request load
for profiling, the profiler coordinates the collection of its
collocation profiles. 4 The profiles are communicated to the
placer to be consulted in collocation-based placement. 5
When the function performance violates the performance
rule, the degradation will be detected by the monitor. 6 It
issues RPC calls to the scheduler to attempt a remedy. The
monitor also checks the utilization of sandboxes and initiates
the consolidation (§5.3).

6.2 System Implementation

We prototype Owl in the production system with roughly
7000 lines of Go code. The prototype extends the original
scheduler, which has a similar architecture as OpenWhisk:
in our system, the scheduler schedules requests to host ma-

chines; in OpenWhisk, the Controller schedules Invocations
to Invokers. For the readers interested in the original sched-
uler, we refer them to OpenWhisk for reference. Below we
describe how the major components in the prototype are
implemented.

6.2.1 Scheduler. The scheduler exposes an interface as an
RPC server. Its interacts with the rest of the FaaS platform by
receiving incoming requests and returning which sandboxes
it selects to execute them. If no available sandbox exists,
the scheduler creates new ones and returns them as result.
Within the scheduler are two major types of modules: the
routers are created on a per-function basis, and a centralized
placer for determining placement.
Router For each function, a router maintains a list of busy
sandboxes and an ordered list of available sandboxes. The
order follows how recently the sandbox has been invoked.
The router tends to pick the first sandbox so that the less
invoked sandboxes can stay idle for longer and get recycled
sooner (due to the keep-alive mechanism). The scheduling
primitives are implemented as the operations on the sandbox
list. The route diversion marks a sandbox as unschedulable
and the router will skip it during routing. We add a separate
list for route prioritization so that the prioritized sandboxes
can be picked first. The sandbox grouping associates a group
data structure with all the involved sandboxes. The group
records how many sandboxes in it are currently being in-
voked. Every time a router selects the sandbox within the
group, it has to update the record. Whenever the recorded

requests consumes more than the resource limit, the grouped
sandboxes will be skipped during routing.
Placer When a new sandbox is being created, the placer
determines its location in the cluster. If all host machines
are fully utilized, the placer acquires new machines from the
public cloud. The system maintains a buffer pool of vacant
machines to accelerate the acquisition process. To logically
separate the cluster into three zones, each machine is labelled
with planned, mixed or control. For the functions without
collocation profiles, the placer searches for its placement on
the mixed machines, following the naive overcommitment
(§3.1) algorithm. For profiled functions, the placer instead
follows the profile-guided algorithm (§5.2) and only places
them onto the plannedmachines. The controlmachines are
reserved for sandbox isolation or collocation profiling, and
the sandboxes are usually migrated onto them. The primitive
of sandboxmigration is implemented as three steps: creating a
new sandbox, inserting its record into the router and tearing
down the original sandbox. Note that it is different from the
live migration of a long-running container in that no real
data migration is performed. The stateless nature of FaaS
sandboxes enables us to use quick recreation as a migration
strategy.

6.2.2 Watchdog. The watchdog serves the auxiliary func-
tionality of performance monitoring and function profiling.
As it is not directly involved in request serving, we thus
implement it as a standalone long-running background com-
ponent. It also consists of two major modules.
Monitor keeps examining the function performance, ap-
plies remedies when the degradation is detected, and val-
idates its cause when the remedy fails. When implement-
ing the monitor, we consider it unscalable to monitor each
function separately. Hence the monitoring is carried out by
function batches which are aggregated based on the inter-
val of their rules (§4). As a concrete example, a batch may
include all functions that are set to check latency every 15
seconds. In our platform, the performance rules and the
request records are stored as database tables. Hence the rule-
checking is implemented as a SQL computation that joins the
two tables, groups the requests by functions, calculates the
latency metrics specified by the users and compares them
with the threshold values. To accelerate the computation, the
table of request records is partitioned by generated times-
tamps (rounded to seconds) and function checking interval.
If the comparison indicates that degradation occurs, the mon-
itor takes remedial actions that are outlined in §4.1. If the
degradation persists after remedies, the monitor performs
comparative validation to verify the potential cause. If the
cause is proven external, the monitor records the comparison

Owl: Performance-Aware Scheduling for Resource-Efficient Function-as-a-Service Cloud SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Table 2: Short description of the benchmark suite.

Please refer to our technical report [35] for full de-

tails.

Function Mem. Size Usage

QV: Query Vacancy state. 256MiB ∼70MiB
RS: Reserve a parking Spot. 256MiB ∼70MiB
AL: Anonymize Log from MQ. 1024MiB ∼20MiB
FL: Filter Log from MQ. 1024MiB ∼20MiB
DO: Detect Object in image. 3072MiB ∼1700MiB
CI: Classify an Image. 2560MiB ∼500MiB
GMM: GetMedia Metadata. 128MiB ∼20MiB
CA: Convert Audio encoding. 256MiB ∼100MiB
ID: Ingest Data from IoT. 768MiB ∼10MiB
DA: Detect Anomaly in data. 768MiB ∼10MiB

results so that the system operators could manually inspect
them later.
Profiler manages the profiling procedures of popular func-
tions. It periodically scans the recent request rate of functions
and the completeness of their collocation profiles. When it
finds a function with sufficient requests but incomplete pro-
file, it pushes the function into a queue to be profiled. During
the procedure, the adjustment of sandbox quantity is imple-
mented with migration. If the incoming requests decreases
during the profiling, or the monitor discovers an external
problem, the profiling will be immediately aborted.

7 EVALUATION

We prototype Owl in our production system and evaluate
its effectiveness and overhead. The evaluation highlights
include:
• Owl reduces VM cost by 43.80% on a representative bench-
mark without violating the performance rule of tail latency
(§7.2 and §7.6).
• Owl has comparable scheduling latency and scalability to
the existing scheduler (§7.3).

• Owl can effectively distinguish the degradation caused by
different factors (§7.4).

• Owl incurs little overhead from comparative validation
and placement migration (§7.5).

7.1 Benchmark Suite

We design a benchmark suite for evaluating the effective-
ness of our scheduler design. We cannot borrow user func-
tions as they may have unexpected side effects on users’
data. Although several benchmarks [26, 41] exist for the
serverless scenario, they are not suitable for scheduler evalu-
ation because the majority of them are either single-resource
test programs or data processing applications. The former
has too simplistic resource behavior to emulate the normal

user functions. The latter is not sufficiently representative
of our customer base. Hence in our benchmark suite (Ta-
ble 2 and more details in the technical report [35]), the
applications span the three most popular domains in our
production environment: backend hosting, multi-media pro-
cessing and IoT data analytics. We select five real-world
applications from existing customers and implement part
of their functionality. The functions therein covers different
memory size5, external dependencies and programming lan-
guages. The source code of the benchmark can be accessed
via https://github.com/All-less/faas-scheduling-benchmark.

7.2 End-to-End Comparison

We first evaluate how Owl and each of its techniques affect
the resource utilization and function performance.
Testbed The system is deployed with each component run-
ning on a VM instance with 8 CPU cores, 16GiB memory and
2.5Gbps network. The VMs for hosting function sandboxes
have 2 CPU cores, 4GiB memory (where 3GiB is allocatable
and 1GiB is reserved for system components) and 1Gbps
network. The host VMs are dynamically acquired over the
course of experiment and they can reach hundreds of VMs.
Baselines Four variants of the scheduler are included in
the comparison.
• Baseline (Base): The scheduler in the production system
without overcommitment and performance awareness.
• Overcommitted (Base-OC): The scheduler that only imple-
ments naive overcommitment (§3.1).

• Profile-Guided (Owl-PG): The Base-OC scheduler that
adds profile-guided placement (§5.2).

• Owl: The Owl-PG scheduler with sandbox consolidation
(§5.3) enabled.

Base and Base-OC represent two extremes in the design
space: the former does not cause degradation yet is resource-
inefficient; the latter saves the most resources but its induced
degradation is unacceptable in production.
Workload Each workload consists of a set of benchmark
functions and request traces. The trace is a record of function
invocations, including their quantity and time. We expect
the workload to possess a similar degree of complexity as
in the production environment. Hence we sample the traces
directly from production logs. We have collected three work-
loads (labeled as Workload-A, B, and C), each with the same
benchmark suite and ten different request traces. Their scale
is chosen to occupy 100, 120, and 80 VMs respectively.
Methodology For each scheduler variant, we clear the
VMs, deploy the scheduler, execute the benchmark work-
load and collect the metrics. We test all the variants on all

5Following the common practice [38], the memory size is configured such
that the cost of a single request is the lowest.

https://github.com/All-less/faas-scheduling-benchmark

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Haoran Yang

0

5

10

15

6

8

10

12

6

8

10

12

1

2

3

8

9

10

11

4

6

8

10

4

6

8

10

4

6

8

10

1

3

5

7

0

2

4

6

1

2

3

4

0

5

10

15

6

8

10

12

6

8

10

12

1

2

3

8

9

10

11

4

6

8

10

4

6

8

10

4

6

8

10

1

3

5

7

0

2

4

6

1

2

3

4

VM Time(104s)
0

5

10

15

AL(103ms)
6

8

10

12

FL(103ms)
6

8

10

12

CI(102ms)
1

2

3

DO(103ms)
8

9

10

11

QV(101ms)
4

6

8

10

RS(101ms)
4

6

8

10

ID(101ms)
4

6

8

10

DA(102ms)
1

3

5

7

CA(102ms)
0

2

4

6

GMM(102ms)
1

2

3

4

W
orkload-A

W
orkload-B

W
orkload-C

0

5

10

15

6

8

10

12

6

8

10

12

1

2

3

8

9

10

11

4

6

8

10

4

6

8

10

4

6

8

10

1

3

5

7

0

2

4

6

1

2

3

4

0

5

10

15

6

8

10

12

6

8

10

12

1

2

3

8

9

10

11

4

6

8

10

4

6

8

10

4

6

8

10

1

3

5

7

0

2

4

6

1

2

3

4

VM Time(104s)
0

5

10

15

AL(103ms)
6

8

10

12

FL(103ms)
6

8

10

12

CI(102ms)
1

2

3

DO(103ms)
8

9

10

11

QV(101ms)
4

6

8

10

RS(101ms)
4

6

8

10

ID(101ms)
4

6

8

10

DA(102ms)
1

3

5

7

CA(102ms)
0

2

4

6

GMM(102ms)
1

2

3

4

Function LatencyCost

⚠ ⚠ ⚠

⚠⚠

⚠⚠

⚠

Figure 7: Each row reports the VM time and the tail latency of ten functions of a workload. The functions with a

warning sign on the upper right corner show degradation in the Base-OC trial; they are marked as profile-enabled

in the Owl-PG and Owl trial. (The symbols in the order of Base, Base-OC, Owl-PG, Owl)

three workloads. At the beginning of each trial, we warm
up some sandboxes because a scheduler in production rarely
encounters an empty cluster and the warm-up could avoid a
surge of sandbox creation. The prewarming creates for each
function 60% of its peak number of sandboxes. The peak is
estimated from the maximum request rate in the trace.

The performance rule for benchmark functions is specified
as “P95 latency should not increase by more than 25%”. The
figure 25% is chosen because the function latency in the non-
overcommited environment can vary as much as 20% (e.g., ID
in Workload-A). Across the workloads, we change the func-
tions that Owl-PG and Owl scheduler provide performance
protection to. As the request trace differs in each workload,
the same function receives a different number of requests
and becomes differently susceptible to resource contention
across the experiment. If Base-OC causes a function to break
the performance rule, we configure it as profile-enabled in
Owl-PG and Owl.
Metrics We quantify resource costs with the VM time, i.e.,
the total time of VMs that are occupied by some sandboxes
in the benchmark workload. It measures the purchasing cost
of those VMs in a pay-as-you-go billing model. The function
performance is measured by its P95 latency throughout all
requests. We repeat each experiment for three times and
report the average and the standard deviation of the metrics.
Results Figure 7 presents the results of three workloads.
Overall, Owl reduces the VM time by 43.80% without any
function breaking the performance rule. As a concrete ex-
ample, in workload-A, Base acquires 92 VMs in total and
Owl 49 VMs. Inspected closely, Base-OC saves 44.26% of VM
time over Base, which means overcommitment brings the
most of resource saving. Yet it causes the degradation in tail

latency, such as QV, RS, CA inWorkload-A, DA, CA, GMM in
Workload-B, and QV, CA inWorkload-C. By enabling profile-
guided placement for those functions, Owl-PG manages to
mitigate their degradation with an average increase of 9.24%
in VM time. The increase mainly comes from a lesser extent
of overcommitment for those functions. Finally, the sandbox
consolidation in Owl further reduces the VM cost by 8.53%.
In our technical report [35], we sample several VMs and
examine how different schedulers place the sandboxes.

7.3 Scheduling Latency

The fact that FaaS requests are usually short-lived highlights
the importance of timely scheduling in FaaS. We thus ex-
amine the scheduling latency of Owl in the end-to-end ex-
periments. We define the latency as the time of placement
and routing decision and it does not include the sandbox cre-
ation. Figure 8 (left) plots the latency percentiles across three
workloads. In general, Owl schedules at a similar speed as
the Base, their median latency being 0.959ms and 1.853ms
respectively. The difference is much shorter than the cre-
ation time of a sandbox, thus having no significant effect.
The longer average latency mainly comes from the checking
of sandbox group.
We further evaluate how the scheduler scales with the

increasing QPS through a controlled experiment. Both Base
and Owl receive a request flow of varying speed and we
record how their average latency changes. They demonstrate
a similar level of scalability in Figure 8 (right). It is worth
mentioning that the system in experimentation is adapted
from the production system and it includes various other
components, such as billing management, plugin instrumen-
tation, etc. They add extra overhead and constrain the system
scalability. Hence a meaningful interpretation is that Owl

Owl: Performance-Aware Scheduling for Resource-Efficient Function-as-a-Service Cloud SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

A B C
Workload

0

6

12

18

La
te

nc
y

(m
s)

100 400 700 1000
Load (QPS)

0

2

4

6

A
vg

. L
at

en
cy

 (
m

s)

Base
Owl

Figure 8: Left: The scheduling latency (5, 25, 50, 75 and

95-th percentile) in the end-to-end benchmarks. Right:
The average latency under different load.

does not add extra computation complexity and has the sim-
ilar scalability with the original scheduler.

7.4 Validating Degradation

We design a microbenchmark study which simulates the
degradation of a data-processing function with an external
database dependency. Owl could differentiate the causes of
the degradation. The details are deferred to our technical
report [35] due to the page limit.

7.5 System Overhead

The overhead of Owl comes from two sources: the compar-
ative validation in performance monitoring and the sandbox
migration in placement update.
Validation We simulate the validation cost with the pro-
duction trace used in §2.2. We consider the popular and
non-popular functions separately because they have differ-
ent validation techniques. For popular functions, they are
suitable for canary comparison (§4.1) and each requires one
controlmachine (i.e., non-overcommited) to serve as a com-
parison baseline. We define popular functions as those with
over 10 VMs.We add one extra VM for each function through-
out the trace and calculate the total machine time. The result
increases by 0.254% from the original time in the trace. The
negligible increase has two reasons. First, the popular func-
tions only account for a small proportion, 12.34%, in our
platform. Hence the added VMs have a relative small scale.
Second, the popular functions already occupy a large number
of VMs, with top ones easily taking hundreds or thousands.
They eclipse the cost of the added extra VM.

We then calculate the additional cost for non-popular func-
tions, assuming they use temporal comparison. Mohammad et
al. [30] report that only 20% of applications have invocations
more frequent than once per minute. Those less frequent
functions require no comparison because it takes a long time
to accumulate a number of requests that have statistical sig-
nificance. Hence we assume the validation is mainly for the
top 20% functions. We similarly simulate that we add an-
other one VM for each of them. In our trace, the resulting
VM number only rises by 0.646%. Therefore, we argue the
comparative validation incurs negligible overhead.

0 5
Time (hr)

0
50

100
150
200

#
 A

ct
iv

e
V

M

Owl
Base

101 104

CA Latency

0.0

0.5

1.0

C
D

F

101 104

GMM Latency

0.0

0.5

1.0

Figure 9: We validate Owl in a production-like envi-

ronment for eight hours. The CA and GMM are treated

as latency-critical functions.

Migration We calculate the migration cost in Workload-A
(§7.2) and its ratio to the overall VM cost. In profile-guided
placement (§5.2), if no placement cache exists, the scheduler
first places the sandbox separately and then migrates it to
a more suitable place. During the migration, an extra sand-
box is created and coexists with the original sandbox, thus
increasing the total resource usage. By adding up all the mi-
gration time in Workload-A, we find the total only accounts
for 0.106% of the total VM cost. The reason behind could
be understood with a close inspection of the sandbox life
cycle. The creation of a typical sandbox lasts for hundreds of
milliseconds. But the keep-alive mechanism adds a retention
period of five minutes to the life cycle. That means a single
migration will incur at most 0.167% increase in the lifetime
of a sandbox. Therefore we argue that the migration only
causes negligible overhead.

7.6 Large-Scale Validation

We finally evaluate our prototype with a longer time scale.
Two systems (Base and Owl) are deployed side by side in
separate clusters. From the production logs, we sample ten
eight-hour traces from ten different users. Then we match
themwith the functions in our benchmark suite (Table 2). We
simulate the scenario where CA and GMM are two latency-
critical functions and require their performance to be unaf-
fected by overcommitment. They are configured as profile-
enabled in Owl. Figure 9 shows the experiment results. As
this experiment skips prewarming, the VM number surges
at the beginning. After that, Owl utilizes consistently fewer
VMs than Base and their VM time differs by 37.50%. The
latency distribution shows that CA and GMM are well pro-
tected by the profile-guided placement and exhibit no sign
of degradation.

8 DISCUSSION

System Deployment The centralized placer does not re-
strict scalability because we have a replication mechanism
in production deployment. It ensures scalability and fault
tolerance by letting each replica handle a portion of user
functions. Their underlying VMs are not overlapped to avoid
potential conflict. The functions are dynamically partitioned

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Haoran Yang

among replicas and they will be readjusted when one replica
fails. The details on the replication are beyond the scope of
this paper.
Design Limitations Targeting a commercial platform in-
stead of an open-source one, Owl has embraced several
limitations. First, it has to respect the resource quota set
by the users. The schedulers such as ENSURE [33] cannot
work in our setting because it redistributes resources among
functions. The overcommitment in Owl is feasible because
it does not factually reduce the resource allocation for any
function. The performance guarantee ensures that the func-
tions can get sufficient resources whenever they need. Hence
the overcommitment is equivalent to the functions sharing
intermittently idle resources. Second, Owl cannot arbitrarily
execute user functions during the profiling period. Hence it
cannot adopt more advanced techniques [16, 17] that profile
how applications react to interference or collocation. Those
scenarios could be difficult to set up or lead to performance
degradation in our setting. In the technical report [35], we
further discuss the scalability and isolation technique of
Owl.

9 RELATEDWORK

Scheduling Serverless Functions §2.1 summarizes the
FaaS scheduling into two operations: sandbox placement
and request routing. Owlmainly optimizes the former, so do
ENSURE [33] and its subproject FnSched [32]. However, they
apply to general instead of commercial FaaS platform and
their approach violates the constraint of a public platform.
They redistribute the CPU share among sandboxes on a
single VM to enhance utilization, but public FaaS has to
respect the resource quota set by the users. Hermod [25]
designs hybrid policies for request routing, but it also cannot
apply to our platform. Its policy allows requests to be queued
while our platform has to process them immediately by either
assigning to an idle sandbox or creating a new one.
FaaS scheduling has been optimized from other aspects

besides placement and routing. One of them is the cold
start during function boot-up. FaaSNet [36] accelerates it
for functions with custom images; SEUSS [11] proposes a
unikernel-based architecture for rapid boot-up; Shahrad et
al. [30] prewarms containers to avoid cold start. Owl is or-
thogonal to their optimization and can be deployed with
them. Another optimization approach is to search for more
resource-efficient configuration for functions. Sizeless [18]
and OFC [29] predict the optimal memory allocation with
machine learning, and COSE [5] with Bayesian optimization.
Their function profiles can be integrated into the profile-
guided placement of Owl.
Scheduling Serverless DAGs Beyond the granularity of
individual functions, many works tackle the problem of

scheduling a DAG of functions. To optimize execution time,
Xanadu [15] finds the most likely path in each DAG and pre-
warms the containers to avoid cold start; Atoll [31] partitions
the cluster to shorten the scheduling latency for DAG ap-
plications; Sequoia [34] prevents unexpected platform bugs
during the execution; Pheromone [39] improves the data
locality during DAG execution using a data-centric func-
tion orchestration approach. To enhance resource utilization,
ORION [28] rightsizes the resource allocation for each DAG;
Kraken [9] adapts the container provision within the DAG.
The works above mainly target general DAG applications,
and there are other works designed for specialized appli-
cations. For instance, Caerus [43] balances the completion
time and resource cost of analytics workload; SONIC [27]
optimizes for the DAGs that require data passing. Owl can
be integrated into those DAG-oriented systems to further
reduce resource waste on a container level. Due to the space
constraint, more related works are discussed in our technical
report [35].

10 CONCLUSION

In this paper, we have presented Owl, a performance-aware
scheduler for public FaaS platform. It supports a flexible rule
format that allows users to specify customized performance
rules for different functions. For less popular functions, it
places their sandboxes with usage-based allocation, keeps
monitoring their performance, and remedies any detected
degradation. If the degradation persists, it applies compara-
tive validation to confirm the source of the cause. For popular
functions, Owl profiles their collocation by adjusting the
sandboxes in the production environment. The collocation
profile guides the system to generate a contention-free and
resource-efficient placement of the sandboxes. It further con-
solidates the idle sandboxes within those placement to fur-
ther reduce resource waste. The usage-based allocation and
the resource-tight profile achieve the objective of high uti-
lization; the monitoring mechanism and the contention-free
profile satisfy the performance requirements. We prototype
Owl in our production system and implement a representa-
tive benchmark suite to evaluate it. The results demonstrate
the effective of Owl in reducing operation cost and ensuring
function performance.

ACKNOWLEDGMENT

We thank our shepherd Sameh Elnikety and the anonymous
reviewers for their valuable feedback that helps improve the
quality of this work. This research was supported in part
by the Alibaba Innovative Research (AIR) program and RGC
GRF grants 16202121. Huangshi Tian was supported in part
by the Hong Kong PhD Fellowship Scheme.

Owl: Performance-Aware Scheduling for Resource-Efficient Function-as-a-Service Cloud SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

REFERENCES

[1] 2022. Alibaba Cloud Function Compute. https://www.alibabacloud.
com/product/function-compute.

[2] 2022. AWS Lambda. https://aws.amazon.com/lambda/.
[3] 2022. Azure Functions. https://azure.microsoft.com/en-us/services/

functions/.
[4] 2022. Google Cloud Functions. https://cloud.google.com/functions.
[5] Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. 2020.

COSE: configuring serverless functions using statistical learning. In
IEEE Conference on Computer Communications (INFOCOM).

[6] Anonymized. 2021. Private Communication. Interview.
[7] Noman Bashir, Nan Deng, Krzysztof Rzadca, David Irwin, Sree Kodak,

and Rohit Jnagal. 2021. Take it to the limit: peak prediction-driven
resource overcommitment in datacenters. In EuroSys.

[8] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy.
2016. Site reliability engineering: How Google runs production systems.
" O’Reilly Media, Inc.".

[9] Vivek M Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran,
Cyan Subhra Mishra, Mahmut Taylan Kandemir, and Chita Das. 2021.
Kraken: Adaptive container provisioning for deploying dynamic dags
in serverless platforms. In SoCC.

[10] Laurent Bindschaedler, Jasmina Malicevic, Nicolas Schiper, Ashvin
Goel, and Willy Zwaenepoel. 2018. Rock you like a hurricane: taming
skew in large scale analytics. In EuroSys.

[11] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. 2020. SEUSS: skip redundant paths to make
serverless fast. In EuroSys.

[12] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion Stoica. 2016.
HUG: Multi-Resource Fairness for Correlated and Elastic Demands. In
NSDI.

[13] Alibaba Function Compute. 2022. Manage functions. https:
//www.alibabacloud.com/help/en/function-compute/latest/manage-
functions.

[14] Alibaba Function Compute. 2022. Metrics (See “CPU utilization -
FunctionCPUQuotaPercent”). https://www.alibabacloud.com/help/en/
function-compute/latest/metrics.

[15] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2020. Xanadu:
Mitigating cascading cold starts in serverless function chain deploy-
ments. In Middleware.

[16] Christina Delimitrou and Christoforos E. Kozyrakis. 2014. Quasar:
resource-efficient and QoS-aware cluster management. ASPLOS.

[17] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015.
Tarcil: Reconciling scheduling speed and quality in large shared clus-
ters. In SoCC.

[18] Simon Eismann, Long Bui, Johannes Grohmann, Cristina Abad, Nikolas
Herbst, and Samuel Kounev. 2021. Sizeless: Predicting the optimal size
of serverless functions. In Middleware.

[19] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. 2011. Dominant resource fairness: Fair alloca-
tion of multiple resource types. In NSDI.

[20] Google. 2018. gvisor: Container runtime sandbox. https://github.com/
google/gvisor.

[21] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. 2014. Multi-resource packing for cluster
schedulers. SIGCOMM.

[22] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh
Ananthanarayanan. 2016. Altruistic Scheduling in Multi-Resource
Clusters. In OSDI.

[23] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev
Kumar, and Harry C. Li. 2013. An analysis of Facebook photo caching.
In SOSP.

[24] Tatiana Jin, Zhenkun Cai, Boyang Li, Chengguang Zheng, Guanxian
Jiang, and James Cheng. 2020. Improving resource utilization by timely
fine-grained scheduling. In EuroSys.

[25] Kostis Kaffes, Neeraja J Yadwadkar, and Christos Kozyrakis. 2022. Prin-
cipled and Practical Scheduling for Real-World Serverless Computing.
SoCC (2022).

[26] Jeongchul Kim and Kyungyong Lee. 2019. FunctionBench: A Suite of
Workloads for Serverless Cloud Function Service. In CLOUD.

[27] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic,
Somali Chaterji, and Saurabh Bagchi. 2021. SONIC: Application-aware
Data Passing for Chained Serverless Applications. In ATC.

[28] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-
nikety, Somali Chaterji, and Saurabh Bagchi. 2022. ORION and the
Three Rights: Sizing, Bundling, and Prewarming for Serverless DAGs.
In OSDI.

[29] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim
Wood, Daniel Hagimont, et al. 2021. OFC: an opportunistic caching
system for FaaS platforms. In EuroSys.

[30] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, et al. 2020. Server-
less in the Wild: Characterizing and Optimizing the Serverless Work-
load at a Large Cloud Provider. In ATC.

[31] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mo-
hammed Danish Shaikh, Shivaram Venkataraman, and Aditya
Akella. 2021. Atoll: A scalable low-latency serverless platform. In
SoCC.

[32] Amoghvarsha Suresh and Anshul Gandhi. 2019. FnSched: An Efficient
Scheduler for Serverless Functions. In Proceedings of the 5th Interna-

tional Workshop on Serverless Computing.
[33] A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay,

and A. Gandhi. 2020. ENSURE: Efficient Scheduling and Autonomous
Resource Management in Serverless Environments. In 2020 IEEE In-

ternational Conference on Autonomic Computing and Self-Organizing

Systems (ACSOS).
[34] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth

Lanka. 2020. Sequoia: Enabling quality-of-service in serverless com-
puting. In SoCC.

[35] Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and
Haoran Yang. 2022. Owl: Performance-Aware Scheduling for
Resource-Efficient Function-as-a-Service Cloud. https://www.cse.ust.
hk/~weiwa/papers/owl-techreport.pdf.

[36] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang,
Huiba Li, Rui Du, and Yue Cheng. 2021. FaaSNet: Scalable and Fast
Provisioning of Custom Serverless Container Runtimes at Alibaba
Cloud Function Compute. In ATC.

[37] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In ATC.

[38] AWS Whitepaper. 2017. Choosing the Optimal Memory Size. https:
//amzn.to/3k9bVMj.

[39] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. 2023. Fol-
lowing the Data, Not the Function: Rethinking Function Orchestration
in Serverless Computing. In NSDI.

[40] Minchen Yu, Yinghao Yu, Yunchuan Zheng, Baichen Yang, and Wei
Wang. 2020. RepBun: Load-Balanced, Shuffle-Free Cluster Caching for
Structured Data. In IEEE INFOCOM.

[41] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, et al. 2020. Character-
izing Serverless Platforms with Serverlessbench. In SoCC.

[42] Yinghao Yu, Renfei Huang, Wei Wang, Jun Zhang, and Khaled B.
Letaief. 2018. SP-Cache: Load-balanced, Redundancy-free Cluster
Caching with Selective Partition. In IEEE/ACM SC.

https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions
https://www.alibabacloud.com/help/en/function-compute/latest/manage-functions
https://www.alibabacloud.com/help/en/function-compute/latest/manage-functions
https://www.alibabacloud.com/help/en/function-compute/latest/manage-functions
https://www.alibabacloud.com/help/en/function-compute/latest/metrics
https://www.alibabacloud.com/help/en/function-compute/latest/metrics
https://github.com/google/gvisor
https://github.com/google/gvisor
https://www.cse.ust.hk/~weiwa/papers/owl-techreport.pdf
https://www.cse.ust.hk/~weiwa/papers/owl-techreport.pdf
https://amzn.to/3k9bVMj
https://amzn.to/3k9bVMj

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Haoran Yang

[43] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, and
Ion Stoica. 2021. Caerus: NIMBLE Task Scheduling for Serverless

Analytics. In NSDI.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 FaaS Scheduling from Provider's View
	2.2 Workload Characterization

	3 The Challenges of Overcommitment
	3.1 The Risk of Overcommitment
	3.2 Causes of Degradation

	4 Owl Overview
	4.1 Performance Protection
	4.2 Degradation Prevention

	5 Profile-Guided Placement
	5.1 Collocation Profiling
	5.2 Profile-Guided Placement
	5.3 Consolidating Sandboxes

	6 Owl Scheduling System
	6.1 System Design
	6.2 System Implementation

	7 Evaluation
	7.1 Benchmark Suite
	7.2 End-to-End Comparison
	7.3 Scheduling Latency
	7.4 Validating Degradation
	7.5 System Overhead
	7.6 Large-Scale Validation

	8 Discussion
	9 Related Work
	10 Conclusion
	References

