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SP-Chain: Boosting Intra-Shard and Cross-Shard
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Abstract—A promising way to overcome the scalability limi-
tations of the current blockchain is to use sharding, which is to
split the transaction processing among multiple, smaller groups
of nodes. A well-performing blockchain sharding system requires
both high performance and high security in both intra- and cross-
shard perspectives. However, existing protocols either have issues
in protecting security or trade off great performance for security.
In this paper, we propose SP-Chain, a blockchain sharding system
with enhanced Security and Performance for both intra- and
cross-shard perspectives. For the intra-shard aspect, we design a
pipelined two-phase concurrent voting scheme to provide high
system throughput and low transaction confirmation latency.
Moreover, we propose an efficient unbiased leader rotation
scheme to ensure high performance under malicious behavior.
For the cross-shard aspect, a proof-assisted efficient cross-shard
transaction processing mechanism is proposed to guard cross-
shard transactions with low overhead. We implement SP-Chain
based on Harmony, and evaluate its performance via large-scale
deployment. Extensive evaluations suggest that SP-Chain can
process more than 10,000 tx/sec under malicious behaviors with
a confirmation latency of 7.6s in a network of 4,000 nodes.

Index Terms—Blockchain, blockchain sharding, cross-shard
transaction processing, intra-shard transaction processing

I. INTRODUCTION

S INCE the advent of Bitcoin [33], blockchain systems
have continued to have a significant impact on society.

However, the low system throughput and high transaction con-
firmation delays of such systems greatly hinder their usability
across various infrastructures and applications. Consequently,
sharding [7], [30], [48], [2], a promising blockchain scaling
solution, has been proposed. Herein, the entire blockchain
state is divided into multiple non-overlapping shards, each
maintained by a group of nodes.

Performance and security are critical areas of concern in
blockchain sharding systems [30], [21]. To improve sharding
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performance and security, considerations need to be made from
both intra-shard and cross-shard perspectives. In blockchain
sharding, each shard must not only handle transactions within
the shard but also transmit a large number of cross-shard
transactions to other shards [48], [44], [12], [24]. However,
as will be discussed below, existing protocols either have
issues ensuring security within and between shards or sacrifice
significant performance for security.

Intra-shard security and performance: Within each shard,
a specific leader is typically selected to propose blocks. Mali-
cious leaders or attacks on leaders can severely affect intra-
shard security and performance. Specifically, most existing
sharding protocols [30], [21], [50], [12], [22], [23] require
each shard’s leader to produce blocks within a certain time
frame and to know the next leader in advance. This allows
attackers to easily launch targeted attacks on the leaders [25],
weakening system security (for example, colluding with the
leader for Byzantine behavior or launching DDoS (Distributed
Denial-of-Service) attacks against the leader). Moreover, when
a leader is found to be malicious or under attack, a complex
view change process is required to elect a new leader [5],
thereby reducing system performance.

Another issue is that many existing sharding protocols adopt
generic Byzantine Fault Tolerance (BFT) consensus protocols
for intra-shard consensus, requiring extensive communication
among shard members. Specifically, such consensus protocols
(e.g., PBFT, Practical Byzantine Fault Tolerance) [5] used
in partial-synchronous networks typically require multi-stage
communication (e.g., pre-preparation, preparation, commit) to
ensure security in poor network connectivity and high latency
situations. However, these protocols are inefficient when ap-
plied to blockchain sharding. In sharding systems, each shard
generally has high network connectivity and a low and fixed
message propagation cap [48], [21], [13], [50], [26]. Under
such conditions, a more efficient consensus protocol with
less communication overhead can be proposed for sharding
systems.

Cross-shard security and performance: Many cross-shard
transactions occur in blockchain sharding systems. Malicious
leaders may send incorrect cross-shard transactions to other
shards [50]. Because each shard maintains information iso-
lation, the shard receiving the transaction cannot verify the
validity of the cross-shard transaction, endangering system
security. However, some existing sharding protocols ignore
how to ensure the security of cross-shard transactions [48],
[21], [12]. Other solutions [44], [50], [23] require each cross-
shard transaction to be accompanied by a large amount of
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additional proof information to ensure security, bringing ex-
cessive overhead to the system.

To simultaneously improve intra-shard and cross-shard per-
formance and security, the following challenges need to be
addressed. First, how to design a secure and efficient leader
election protocol that can both resist attacks on leaders and
efficiently elect new leaders. Second, how to design an efficient
intra-shard consensus protocol that takes advantage of the
characteristics of sharding systems. Third, how to design
efficient and secure cross-shard transaction processing mecha-
nisms. To address these challenges, we propose the following
design points:
Random Leader Rotation. To address the first challenge, the
leader of each shard is frequently, randomly, and automatically
changed. Specifically, the leaders are rotated on a per-block
cycle. To prevent attackers from knowing subsequent leaders in
advance, leaders are selected based on distributed randomness
only before each block is proposed. To ensure performance and
security during the distributed randomness generation process,
we propose a chain-based randomness generation mechanism.
Herein, nodes within each shard use the signature information
of previously confirmed blocks to efficiently generate unbiased
distributed randomness. In addition, the automatic leader rota-
tion mechanism eliminates the originally complex view change
process, further improving the efficiency of leader election.
Two-Phase Concurrent Voting. To address the second chal-
lenge, we propose an efficient consensus mechanism suitable
for sharding systems with low communication overhead. By
utilizing the advantages of a small number of nodes, good
network connectivity, and a high synchronization rate within
each shard, we propose a synchronous consensus protocol that
compresses the previous preparation and commit stages into
one without violating security. Therefore, we reduce the 3
rounds of communication required by traditional consensus
protocols to 2, thus accelerating the speed of intra-shard
consensus.

More importantly, to further enhance consensus efficiency,
we make both the computation and communication steps run
in parallel, whereas in traditional consensus protocols these
steps are processed serially. In traditional protocols, the leader
first packages transactions into a block. Then, the leader
broadcasts the block. Nodes receiving the block will vote
and reach a consensus. After reaching a consensus, nodes
commit the block into the blockchain. Our concurrent voting
protocol parallelizes these computation and communication
steps. Specifically, when a shard’s leader produces a new
block, the members of that shard vote on and reach a consensus
on the previous block. Also, while the leader broadcasts
the new block, each node commits the previous block into
the blockchain. This proposed scheme provides fast block
generation and confirmation rates, bringing high throughput
and low latency to the system.
Proof-Assisted Efficient Cross-Shard Transaction Process-
ing. To address the third challenge, we require cross-shard
transactions to carry batched and pruned proofs for forward-
ing. Specifically, to allow shards to safely verify the received
cross-shard transactions, we require cross-shard transactions to

carry proof [28], demonstrating their validity in the sending
shard. To reduce the additional overhead that proof brings to
network transmission, we propose a batch proof mechanism.
In this scheme, the transactions sent to the same shard are
accompanied by one pruned proof (instead of each transaction
requiring separate proof). This proof can help nodes batch
verify the validity of all transactions sent to the same shard.

This paper mainly makes the following contributions:
• We propose SP-Chain, a novel blockchain sharding system

that significantly improves both intra-shard and cross-shard
security and performance.

• We design a pipelined two-phase concurrent voting protocol
for intra-shard consensus, which greatly increases through-
put and lowers latency compared to traditional sequential
BFT consensus.

• We introduce an unbiased leader rotation mechanism based
on signature-derived randomness that ensures no predictable
leader pattern, enhancing security against leader targeting
attacks while maintaining high efficiency.

• We develop an efficient proof-assisted cross-shard transac-
tion processing scheme that securely handles transactions
across shards with minor overhead.

• We implement a prototype of SP-Chain based on Harmony1

[42] and conduct extensive large-scale experiments (up to
4,000 nodes). Our evaluation demonstrates that SP-Chain
achieves over 10,000 transactions per second (TPS) with low
confirmation latency, outperforming state-of-the-art sharding
systems.

II. BACKGROUND AND RELATED WORK

A. Blockchain Sharding

In traditional blockchain protocols [33], [45], all network
nodes have to agree on all the transactions. This scheme leads
to very low throughput and high latency for transactions to
be packed into blocks and confirmed. An alternative way
is to partition nodes into disjoint shards and let each shard
maintain the states of a subgroup of users [30]. Under this
method, the throughput increases proportionally to the number
of committees. The transaction confirmation latency is also
reduced since one committee has fewer nodes. This technique
is known as sharding and is considered an excellent way to
help blockchain scale well.

A well-performing blockchain sharding system needs to
ensure good security as well as high performance. Unlike tra-
ditional blockchain systems, in blockchain sharding systems,
there are a large number of cross-shard transactions that are
transmitted among shards [44], [21], [48], [35], [14], [24],
[36]. Nodes need to not only process transactions within a
shard, but also handle transactions across shards. Therefore,
it is necessary to consider both intra- and cross-shard aspects
when analyzing the security and performance of blockchain
sharding. However, previous works have problems with both
intra- and cross-shard security and performance.
Issues from Cross-Shard Aspect. Cross-shard transaction
processing is a significant part of the blockchain sharding

1A well-known public blockchain sharding project that was once ranked in
the top 50 in the cryptocurrency space in terms of market capitalization
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system. However, existing cross-shard transaction processing
schemes still have drawbacks on protecting security, or they
increase large amount of communication overhead when se-
curing transactions. OmniLedger [21] requires an honest client
to participate during the cross-shard transaction process. A
malicious client can lock the cross-shard transactions and
obstruct their executions. Such behavior brings troubles for
both system security and efficiency. Some works [48], [13],
[12], [22] does not consider the leader to be evil when dealing
with cross-shard transactions, making the cross-shard transac-
tion execution less secure. Other works [44], [50] proposes
to attach proofs to each cross-shard transaction to protect
security. However, this mechanism increases the lots of com-
munication overhead, reducing system efficiency. BrokerChain
[15] introduces special "broker" accounts to reduce cross-
shard transfers in account-based sharding, helping balance the
workload across shards. However, its intermediary accounts
add protocol complexity. Authors in [29] propose a flexible
sharding protocol that integrates a cross-shard Byzantine fault
tolerance (CSBFT) consensus, allowing multiple shards to
coordinate on cross-shard transactions in a single consensus
round and thereby cutting down confirmation delay. The CS-
BFT, however, incurs extra cross-shard coordination overhead
for each transaction. LightCross [38] focuses on minimizing
cross-shard communication rounds by using trusted hardware
(TEE). Nonetheless, LightCross’s reliance on TEE devices in-
troduces additional trust and hardware assumptions. ShardCon
[49] embeds cross-shard transaction handling into a unified
Byzantine consensus spanning the involved shards. However,
coordinating a BFT consensus among multiple shards for
each cross-shard transaction incurs high communication and
computation costs, especially as the number of shards grows.

In SP-Chain, to protect the security of cross-shard trans-
actions with high efficiency, we propose the proof-assisted
efficient cross-shard transaction processing mechanism. In-
stead of heavy cross-shard proofs, special hardware reliance,
complex two-phase commit exchanges, or full multi-shard
consensus for each transaction, SP-Chain attaches compact
cryptographic proofs (e.g., pruned Merkle proofs [28]) to
cross-shard transactions, allowing involved shards to indepen-
dently verify transaction outcomes. With such design, one
pruned proof is attached to a batch of transactions to verify
them together, reducing the overhead. This design secures
cross-shard transactions (even against adversarial senders or
leaders) with high efficiency.

Issues from Intra-Shard Aspect. Existing sharding works
reach consensus with limited efficiency. A major reason is
that most of them [30], [21], [13], [8], [50], [12], [14], [22],
[29], [23] use BFT-typed consensus protocols suitable for
scenarios with poor network conditions (i.e., partially syn-
chronous or asynchronous). Those protocols usually require
multiple rounds of communication (≥3) to reach consensus,
slowing down the efficiency of reaching consensus. However,
it is widely assumed that the network has reasonably good
synchronization within each shard (i.e., bounded delays), as
is common in such systems [48], [13], [50], [26], [21]. In
[48], authors apply a BFT-typed consensus protocol that is

suitable for good network condition, yet their protocol still
require complex communication. Authors in [1] also propose
a consensus protocol for good network condition, but their
protocol requires view change to change the leader under ma-
licious cases, reducing efficiency. Some works [44], [24] use
Proof-of-Work (PoW) protocol as their intra-shard consensus.
However, PoW-based protocol typically has low performance
as it cannot guarantee instant finality, and it is easy to
fork. Cherubim [27] introduces a quadruple-pipelined two-
phase commit (4P-2PC) that parallelizes intra-shard consensus
and cross-shard transaction processing to boost throughput.
However, the scheme’s complexity still incurs significant co-
ordination overhead. In SP-Chain, we exploit the good and
synchronous network condition in each shard and propose the
two-phase concurrent voting consensus protocol. It reduces
the number of communication rounds in consensus (2 rounds)
under synchronous network without compromising security,
and parallelizes both the computation and communication
steps that would otherwise be handled serially in the traditional
consensus process, thus significantly improving the consensus
efficiency.

In previous sharding systems, the leader is vulnerable to
be attacked. The reason is that, in existing protocols [30],
[48], [21], [12], [22], [14], a leader keeps producing blocks
for a period of time and the rotation of the leader can be
known in advance, leaving the chance for attackers to attack
the leader. Moreover, when the leader is found to be malicious
or attacked, their consensus protocols perform a complex view
change process to replace the leader, which is inefficient.
Despite the emergence of various new types of blockchain
sharding systems in the last few years, most of them, however,
also suffer from the aforementioned vulnerability of the leader
to attacks as well as malicious leaders affecting performance
[24], [23], [29], [27], [38], [49], [15], [46]. For example,
Cherubim [27] treats the underlying Byzantine consensus as a
black box and does not specifically address leader fairness –
a malicious or monopolizing leader could still hinder perfor-
mance or bias the process. LightCross [38] does not modify
the intra-shard consensus (it builds on an existing PBFT-style
engine FISCO-BCOS), so issues of leader fairness or sub-
optimal consensus throughput per shard remain unaddressed.
ShardCon’s [49] design prioritizes cross-shard consistency
and formal security proofs, but it does not fundamentally
enhance intra-shard consensus performance or address the
potential performance bottleneck of a faulty leader before a
view change triggers. In SP-Chain, we design an unbiased
distributed randomness generation scheme with low overhead,
and propose an efficient and secure leader rotation mechanism
that regularly and randomly rotates the shard leader, based
on our consensus protocol and the distributed randomness.
Consequently, SP-Chain avoids the single-leader performance
bottleneck and mitigates malicious leader behavior, a feature
absent in most of the recent state-of-the-art blockchain shard-
ing systems (e.g., [29], [27], [38], [49], [15], [46], [18], [17]).

B. Distributed Randomness
Distributed randomness is often used by blockchain to

generate random groups or to elect leaders. However, exist-
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ing distributed randomness generation methods either can be
biased or involve high communication complexity. Algorand
[11] proposes to use the verifiable random function (VRF)
[32] to randomly select committee members. However, the ran-
domness (seed) used in VRF can be biased by the adversary.
Elastico [30] uses PoW results to generate randomness, which
can be biased by adversaries. Ouroboros [20] uses the publicly
verifiable secret sharing (PVSS) scheme [4] to generate the
random seed for leader selection. Omniledger [21] and Gosig
[25] leverages VRF [41] for its unbiased leader selection.
Rapidchain exploits verifiable secret sharing (VSS) [9] for
cryptographic sortition. However, these schemes involve high
communication complexity (O(n2)) and thus not efficient.
In SP-Chain, nodes use unbiased signature information from
already confirmed blocks to quickly generate distributed ran-
domness. This mechanism needs no extra communication
among nodes and thus allows efficient and secure production
of distributed randomness for leader election.

C. Alternative Cross-Shard Transaction Processing Schemes

Alternatively, cross-shard transaction execution can be of-
floaded to layer-2 mechanisms such as state channels [34]
and Plasma chains [37]. In a state-channel-based approach,
participants lock assets on-chain and conduct numerous trans-
fers off-chain, only settling the final state on-chain. This
avoids most on-chain cross-shard communication but requires
continuous client involvement – users must remain online (or
employ trusted "watchers") to respond to disputes or malicious
counter-parties, and the method typically only supports a
limited set of participants per channel. Plasma sidechains
take a different route by anchoring sharded (or child-chain)
transactions to a main chain via periodic commitments. Plasma
designs can facilitate many off-chain transactions, but they
introduce significant trust assumptions and latency: users
depend on an honest Plasma operator and must engage in
complex exit protocols to withdraw funds safely. For example,
funds withdrawals from a Plasma chain are often delayed
by a predetermined challenge period (on the order of one to
two weeks) to allow fraud proofs, and users need to actively
monitor the system to ensure the security of their assets. These
limitations – high client burden, delayed finality, and reliance
on external trusted parties or timely responses – make purely
off-chain approaches less desirable for cross-shard verification
in an open system.

In contrast, SP-Chain addresses the above limitations within
its on-chain sharding design. The cross-shard transaction
mechanism of SP-Chain is integrated into the protocol so that
no special action is required from clients beyond initiating
the transaction. Unlike OmniLedger’s client-dependent cross-
shard commits or state channels that assume 100% avail-
ability of participants, SP-Chain achieves atomic cross-shard
confirmation without user intervention. This is enabled by a
proof-assisted verification: each cross-shard transaction carries
a cryptographic proof (using pruned Merkle proofs) that can
be batched and verified by the destination shard’s validators,
eliminating any need to trust a separate intermediary (as in
Plasma) or to exchange multiple round-trip messages off-

chain. By enforcing cross-shard validity through the consen-
sus of involved shards, SP-Chain maintains security under
standard BFT assumptions and avoids introducing new trust
dependencies. In summary, SP-Chain’s approach preserves
the trustless security of on-chain sharding while minimizing
overhead, effectively overcoming the client participation re-
quirements and security vulnerabilities of state-channel and
Plasma-based solutions.

III. SYSTEM AND THREAT MODEL

A. System Model

SP-Chain proceeds in epochs. There are multiple slots
t in each epoch e. We assume there are n nodes in the
network for each epoch (noting that n might be changing as
epoch changes). Each node is given a public/secret key pair
(PK,SK) (e.g., via a Public-Key Infrastructure (PKI) [50]).
All nodes are partitioned into m shards (a.k.a. committees).
Thus, there are k = n/m nodes (a.k.a. members) in each
shard, including one leader.

Our network model is similar to many previous works
[48], [13], [50]. Specifically, the authenticity of all messages
disseminated in the network is protected by the signature of
the sender. The connections between honest nodes are well
connected. Like many sharding-related studies [48], [13], [50],
[26], we use a synchronous gossip protocol [19] to transmit
messages across the network. This means that, within a pre-
known, fixed amount of time ∆, any message that is sent
or forwarded by an honest node will be delivered to all
honest nodes, i.e., the communication network is synchronous
within each shard. To address the issue of poor responsiveness
existing in any synchronous consensus and achieve long-term
responsiveness, we require each shard to agree on a new ∆
for about once a week, which is a similar approach to existing
works [48]. In addition to the intra-shard consensus, the rest of
SP-Chain is built on the assumption of a partial-synchronous
network. Without loss of generality and similar to many other
blockchain systems [48], [21], [30], [13], [50], [44], all nodes
that participated in our system have equivalent and enough
computational resources.

SP-Chain adopts the account model to represent the state
of the blockchain, where each account has its own states.
The states of one account are maintained by one certain
shard, for computation and storage scalability. Which shard
an account’s state should be stored by is determined by its
address. The account address is mapped to a shard based
on the output of a random oracle (e.g., the remainder of the
account address divided by the number of shards). When an
account initiates a transaction, that transaction is routed to
the corresponding shard based on the address of its sender
account. How to design smarter allocation mechanisms for
accounts and transactions (e.g., [6], [39], [14], [24], [38]) is
orthogonal to this work and will therefore be discussed in our
future work.

B. Threat Model

We build a similar threat model as previous works do [48],
[13], [50]. In our model, there exists a Byzantine adversary
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who can take control of < 1/3 fraction of the total nodes.
Similar to the previous works, the communication channel is
synchronous in one shard. Therefore, each shard can achieve
an optimal fault resiliency of 1/2. Corrupted (Byzantine) nodes
may collude and behave arbitrarily, such as generating and
sending invalid messages (transaction manipulation), sending
messages to different nodes with different values (equivoca-
tion), or not sending any or all of the messages (silence attack).
Other nodes besides the above are called honest nodes, they
will always obey the protocol and do not do anything beyond
what is specified.

We assume the adversary is mildly-adaptive, which is a sim-
ilar assumption to most existing blockchain sharding works,
meaning that the adversary can only corrupt a fixed set of
nodes at the beginning of each epoch (e.g., one day) and the
set of corrupted nodes remains unchanged within an epoch.
Moreover, we allow the adversaries to have stronger attack
ability than previous studies, who can launch target attack
on leaders. For example, an adversary can bribe a leader and
change the leader to a Byzantine node, or it can launch DDoS
attacks against a leader so the leader’s message cannot be
transmitted to others. Also, all nodes can access to a collision-
resistant external random oracle, similar to other works [48],
[50].

To mitigate Sybil attacks, similar to existing works [21],
[48], [13], [24], [42], each participating node must obtain
a Sybil-resistant identity through an offline proof-of-work
puzzle, or proof-of-stake, or PKI-based identity issuance pro-
cess. This requirement makes the generation of new identities
expensive and verifiable, preventing a malicious adversary
from cheaply acquiring arbitrarily many node identities. Thus,
the adversary is effectively limited to controlling at most
the assumed fraction (<1/3) of all nodes. Moreover, at each
epoch’s shard reconfiguration, node identities are uniformly
re-distributed across shards and validated (see Section V-D),
ensuring that no shard can be overwhelmed by colluding Sybil
nodes. These measures, built into the protocol, collectively
enforce Sybil-resistance under our adversary model.

IV. SYSTEM OVERVIEW

SP-Chain consists of four main components, leader rotation,
intra-shard consensus, cross-shard transaction processing, and
shard reconfiguration, shown in Figure 1. Our protocol selects
a new leader in each slot to propose one block in each
shard based on unbiased randomness. Then, the intra-shard
consensus is executed. When the consensus is reached, the
(cross-shard) transactions are sent and executed. Each epoch
consists of multiple slots followed by a reconfiguration phase,
during which the shard members are reshuffled. We now
explain each component and the design intuition in more
detail.

Leader Rotation. To prevent attacks on the leaders and
maintain high performance when leaders are malicious or
attacked, we propose a leader rotation scheme. The leader
rotation in SP-Chain is a mechanism by which a new block
proposer is chosen every block-producing cycle (i.e., one
slot). Specifically, the leaders are changed frequently and

Fig. 1. Overview of SP-Chain.

randomly to prevent the attackers from knowing the leaders
and launching targeted attacks. In each slot, each shard elects
a new leader among the nodes. To ensure the security of the
leader rotation process, the leader shall be elected based on
an unbiased randomness retrieved from the confirmed block.
Our distributed randomness generation scheme guarantees
high efficiency when electing the new leader, as no extra
communications are required. More importantly, as the leaders
are rotated automatically in each slot (no matter it is malicious
or honest), the view change process is eliminated, achieving
high efficiency even under attacks.

Intra-Shard Consensus. To boost the intra-shard consensus
performance, we propose the two-phase concurrent voting
consensus protocol. We leverage the features of good network
synchronization within each shard, and propose an efficient
synchronous consensus protocol with less rounds of com-
munication. More importantly, we make both computation
and communication steps run in parallel (which are handled
sequentially in previous protocols), and propose the concurrent
voting protocol to ensure high block generation and confirma-
tion speed, hence improving system performance.

Cross-Shard Transactions. After a block in a shard is con-
firmed, the cross-shard transactions are sent to corresponding
shards. We should efficiently resist the malicious behaviors of
leaders in cross-shard transaction processing. Therefore, we
propose the proof-assisted cross-shard transaction processing
scheme. In this mechanism, the transactions in a block are
divided into batches according to the different shards to which
they are sent. One pruned proof is generated and attached for
one batch of transactions to reduce the overhead. The shard
who receives the cross-shard transactions then verifies them
based on the proof and packs them into the block.

Shard Reconfiguration. Reconfiguration happens at the end
of each epoch. During the reconfiguration phase, all the shards
reshuffle their shard members. SP-Chain applies the Cuckoo
rule [40], [48] for reconfiguration to allow the shard’s nodes
to change.

V. PROTOCOL DESIGN

This section presents the detailed design of SP-Chain. We
first describe our two-phase concurrent voting intra-shard
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Fig. 2. Overview of two-phase voting intra-shard consensus.

consensus in Section V-A. Based on the proposed consensus
protocol, we describe the leader rotation mechanism in Section
V-B. Next, we describe how cross-shard transactions are effi-
ciently and securely processed in Section V-C. Finally, finish
this section by briefly describing the shard reconfiguration in
Section V-D.

A. Intra-Shard Consensus

Our intra-shard consensus mechanism has two major design
points: 1) Based on the feature that each shard contains a small
number of nodes and has a good network synchronization
rate, we design an efficient, BFT-typed synchronous voting
consensus protocol with two-phase communication; 2) Based
on the two-phase voting, we propose the concurrent voting
scheme that converts the serially handled computation and
communication steps in traditional consensus into parallel.

1) Two-Phase Voting: Each consensus round in a shard
consists of two phases under a synchronous network model:
phase 1 – block proposal and broadcast, followed by phase
2 – voting and block commitment. Figure 2 illustrates the
workflow for a single round. By leveraging network synchrony
(known message delay bounds) and a small committee size per
shard, this design reduces the communication rounds from
the usual three (pre-prepare, prepare, commit in PBFT-style
protocols) to two, while still tolerating up to 50% faulty
nodes in each shard (which corresponds to the standard <1/3
byzantine fault tolerance across the network).

Phase 1: Block Proposal and Broadcast. At the start of a
slot, the elected leader assembles pending transactions into a
new block and broadcasts the block along with a short digest of
the block to all other shard members. The block digest includes
essential metadata (e.g. block height, slot number, leader ID)
and a hash of the block, allowing members to quickly perform
a pre-check before the full block arrives. Because the digest is
small, it propagates faster: ∆d denotes the maximum network
delay for the digest, whereas ∆b is the maximum delay for
the full block. Upon receiving the digest (at some time δ ≤
∆d from the start of broadcast), each member starts a local
timer and waits for the full block. No global clock sync is
required – each node uses the digest’s arrival as a reference
point for timing. By time ∆b, every honest member should
have received the complete block from the leader. (If the block
fails to arrive in time or is invalid, the protocol will reject that
leader’s proposal and move to the next slot.)

Fig. 3. Overview of pipelined concurrent voting.

Phase 2: Voting and Block Commitment. Once a member’s
local timer reaches ∆b after digest reception, it proceeds to
validate the received block and then broadcasts its vote on the
block to the shard. A vote contains the validator’s signature,
the current slot number, and an indication of whether the
block is considered valid. We let ∆v be the maximum network
delay for vote messages. Because different validators may start
their timers at slightly different moments (up to ∆d apart
due to network latency of the digest), each validator waits
an additional ∆d + ∆v after sending its own vote to ensure
receipt of votes from all other members. By the end of this
voting phase, every member will have collected votes from
a majority of the committee (when the leader and network
behaved correctly). If more than half of the shard’s nodes
voted to approve the block, the block is committed to the
shard’s blockchain. Each node then officially adds the new
block to its ledger. If the block fails to gather a majority of
yes-votes (or if the leader’s proposal was never received), the
block is rejected and the shard simply moves on to the next
slot without committing it.

Remarks. There are usually 3 rounds of communication (e.g.,
pre-prepare, prepare, commit) in previous consensus protocols
[30], [21], [13], [50] under partial-synchronous network. In
our proposed protocol, there are 2 rounds of communication.
The first round is block broadcast, which is similar to the
pre-prepare phase in previous consensus. The second round is
voting, which can be seen as the compaction of the prepare
and commit phase. The two-phase voting consensus protocol
exploits the features of the synchronous network in each shard,
such as the guaranteed delay upper bound and the high con-
nectivity between honest nodes. In this synchronous network
context, the proposed protocol reduces the communication
overhead without compromising security. More importantly,
our design leverages the fact that each shard consists of a
small number of nodes. This feature keeps ∆d, ∆b and ∆v

at a small value, which shortens the interval of each slot and
improves the protocol efficiency.

2) Concurrent Voting: To maximize throughput, SP-Chain
pipelines the above two phases across consecutive slots, shown
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in Figure 3. This means nodes can work on different phases
of different blocks in parallel. For example, while the shard
members are busy voting on the block from slot t− 1 (Phase
2 for block bt−1), the new leader for slot t can concurrently
begin packaging transactions for the next block bt (the start
of Phase 1 for that round). Likewise, when the leader of slot
t later broadcasts block bt, the members are simultaneously
committing block bt−1. This two-slot overlap ensures that
there is almost no idle time: computation (block assembly and
insertion) is done in parallel with communication (broadcast-
ing and voting) in a continuous pipeline.

Additional Challenges and Solutions. The concurrent voting
brings additional security and efficiency challenges. Details
are described as follows.

First, the concurrent voting enables the leader to pack the
transactions into block bt when the members are voting for
block bt−1. However, in concurrent voting, the leader when
generating block bt cannot decide which block should bt be
chained after, as the voting for the last block is not over yet.
Therefore, after packing transactions, the leader should wait
for the voting finish to finally seal the block bt. The voting
contains the voter’s signature, current slot number, and the
hash of the latest valid block the voter thinks. When the voting
phase is over, the leader decides which block should bt be
chained after, according to the voting results (e.g., when more
than k/2 of the members think bt−1 is valid, then bt is chained
after bt−1). The leader then constructs the block header and
finish the transaction packaging.

Second, if block bt−1 is invalid, the transactions in block
bt might need to be re-packed in concurrent voting, which
damage the system performance. To address this, the leader’s
transaction packaging for block bt needs to be executed after
it receives the broadcast of block bt−1. After the leader
for generating block bt receives the broadcast for bt−1, it
first verifies bt−1 and packs transactions which are mutually
exclusive to the transactions in bt−1 (e.g., transactions sent by
different accounts). In this way, the block bt can be generated
successfully no matter the block bt−1 is valid or not.

Remarks. Our concurrent voting is different from previous
pipelined consensus protocols [25], [47], where they focus on
the parallelization of the communication. In concurrent voting,
we decouple the consensus process in a more fine-grained way,
where both communication and computation are parallelized.
Also noting that the computation power is usually assumed
to be sufficient. Therefore, the network is the bottleneck,
rather than computation. Hence, in practice, the transaction
package and block commitment (computation) take less time
than voting and block broadcasting, respectively. Finally, since
each node’s clock is not synchronized, a node may receive a
vote (or digest) before its waiting time ∆d + ∆v (or ∆d) is
over. In this case, the node verifies the received message while
waiting for the waiting time to end.

Theoretical Basis for Parameter Choices (∆d, ∆b, ∆v). Un-
der the synchronous network assumption (i.e., every message
is delivered within a known maximum delay ∆), we choose
the intra-shard communication timeouts ∆d, ∆b, and ∆v to
be small multiples of this bound for each consensus phase

(see Section VII-A for exact values). The theoretical rationale
is that allocating on the order of one full worst-case network
delay per sub-phase provides enough slack to absorb worst-
case delay variance while ensuring all honest nodes receive
the required digests, blocks, and votes before progressing. By
waiting up to a couple of ∆ intervals in each phase (e.g., a
slightly longer window for the larger block broadcast, and
around one ∆ for smaller digest and vote messages), the
protocol tolerates maximum network latency differences so
that even the slowest honest participant’s message arrives in
time. At the same time, keeping these delays a bit longer than
∆ preserves consensus responsiveness, as nodes move to the
next step as soon as the expected worst-case propagation time
elapses, avoiding any unnecessary idle waiting. This careful
setting of ∆d, ∆b, and ∆v thus upholds consensus safety under
the synchronous model (no node decides prematurely) while
minimizing latency overhead, maintaining both reliability and
efficiency in reaching agreement.

B. Leader Rotation

Based on the concurrent voting consensus protocol, we now
propose the random leader rotation mechanism to determine
each block’s producer securely and efficiently. When a node
enters a new slot, it will judge whether to be the new leader
through distributed randomness generation. Each leader is
responsible for proposing one new block. To prevent malicious
nodes from biasing the result of leader rotation, the choice
of randomness is critical. Therefore, we propose an unbiased
distributed randomness generation scheme that can ensure the
security of leader rotation.

Chain-Based Randomness Generation. At the beginning of
each slot, a new random number is calculated to elect the
leader of that slot. Specifically, when a node starts slot t, it
extracts the signature information from the latest confirmed
block (e.g., bt−2, as the consensus is not reached for bt−1

due to concurrent voting). Each node uses the signature
information and the current slot number t as a seed, input the
seed to a publicly known pseudo-random number generation
function (i.e., the random oracle mentioned in Section III-B).
This function will uniformly map the value of the seed to one
of the nodes. The selected person is the leader in slot t and is
responsible for generating block bt.

Choice of Signature Information. The most crucial point
in the above process is the choice of signature information.
When the selected signature information is not biased, it can
be ensured that the leader election is unbiased. For this reason,
we design that when lt (leader of slot t) generates a block,
it will sign the current slot number t and leave the signature
information SIGlt(t) in the block header. In this way, each
member can use the signature from the latest confirmed block
(e.g., SIGlt−2(t− 2)) as the seed to calculate the new leader.
For example:

lt = H(SIGlt−2
(t− 2), t), (1)

where H(·) is the random oracle that uniformly maps the input
to one of the leader candidates.
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C. Cross-Shard Transactions

The processing of cross-shard transactions should ensure
safety and efficiency simultaneously. Specifically, since each
shard does not know other shards’ state, a shard that receives
cross-shard transactions (a.k.a. destination shard) cannot di-
rectly verify whether the received cross-shard transactions are
confirmed in the source shard (shard that sends cross-shard
transactions). A malicious leader can therefore send arbitrary
cross-shard transactions or generate dummy signatures to de-
ceive the destination shards [50]. To prevent such problems, we
design a low-overhead, proof-assisted cross-shard transaction
processing scheme to achieve the purpose of ensuring security
while maintaining high efficiency.

We leverage the Merkle Tree (i.e., a cryptographic tree
structure where each leaf is a hash of data, and each non-
leaf node is the hash of its children) to verify the correctness
of a transaction. A straightforward idea is to attach a Merkle
proof (i.e., a way to prove that a leaf is part of a Merkle tree
by showing the necessary sibling hashes) to each cross-shard
transaction so that the destination shard can verify the validity
of the cross-shard transaction, but this approach introduces
lots of overhead. To reduce the overhead, our main idea is
that, for the transactions in a block, we arrange them and
construct Merkle Tree according to different shards. Based
on the constructed Merkle Tree, the transactions sent to
the same shard are attached with one pruned Merkle proof
together. One such proof can be used to verify this batch
of transactions simultaneously. An illustration for processing
cross-shard transactions is shown in Figure 4.
Constructing Merkle (Sub)trees According to Shards. The
transactions packed into a block are no longer randomly
arranged and constructed into a Merkle Tree as traditional
approaches. In SP-Chain, transactions sent to the same shard
will be sorted first according to their transaction hash values,
as shown in Figure 4. The sorted transactions sent to the
same shard will then be constructed into a Merkle Subtree.
Different Merkle Subtrees (representing transactions sent to
different shards) will be merged into a complete Merkle Tree,
including transactions sent to all shards. The Merkle root of
the complete Merkle Tree will be written into the block header
and verified by members during consensus.
Sending of Cross-Shard Transactions. After a block is
confirmed by consensus, the leader producing the block will
send the cross-shard transactions contained in the block to the
corresponding shards. While sending cross-shard transactions,
the leader will broadcast the block header to all other shards.
To enable cross-shard transactions to be verified by the des-
tination shard, the leader also needs to broadcast the roots
of all Merkle Subtrees to the network. In our design, cross-
shard transactions sent to the same shard will be sent in batch.
Moreover, the Kademlia routing algorithm [31] is used for the
routing of cross-shard transactions.
Receipt and Verification of Cross-Shard Transactions.
After receiving the messages mentioned above, the destination
shard reconstructs the corresponding Merkle Subtree root,
and then reconstructs the Merkle Tree root based on other
received Merkle Subtree roots. After the reconstruction, any

Fig. 4. Cross-shard transactions processing in a block.

node in the destination shard can judge whether the received
transactions are modified by comparing the reconstructed
Merkle Tree root with the Merkle Tree root in the signed block
header. To prevent the leader from forging shard members and
signatures, a shard member table (see Section V-D for details)
is maintained by each node. The table contains the valid public
keys of all nodes in all shards. In this way, after receiving the
header, the destination shard can check whether there is an
illegal member’s signature by comparing the member table.

D. Shard Reconfiguration

The main components of our shard reconfiguration are
similar to RapidChain [48], which includes: 1) Offline PoW
to prevent Sybil attacks; 2) Epoch randomness generation;
3) Committee reconfiguration; 4) node fast initialization after
joining the committee. The main difference between our
design and theirs lies in the epoch randomness generation.
The epoch randomness is used to solve the offline PoW
and reshuffle shard members. In SP-Chain, for efficiency
and security, we use our chain-based randomness to generate
epoch randomness. Specifically, since the block headers are
broadcasted (Section V-C), the reference committee (a.k.a.
beacon chain) [48], [42] can collect the seed information in all
confirmed blocks in the last epoch. The reference committee
then XOR the seeds to obtain a new epoch seed and use it
to generate the epoch random number. Each new node can
request the randomness of this epoch as a fresh PoW puzzle.
Additionally, during shard reconfiguration, node change in-
formation (join or leave) will be broadcast. According to the
node change information, each shard generates a state block
containing the shard member table (of all shards).

VI. SECURITY AND PERFORMANCE ANALYSIS

We first analyze the system failure probability during each
epoch. Under negligible system failure probability, we then
analyze the security for our main components and discuss their
overhead.

A. Epoch Security

We first calculate the failure probability of each epoch.
Similar to previous works [8], [48], [21], [30], we use the
hypergeometric distribution for calculation. In particular, let
X be a random variable representing the number of Byzantine
nodes assigned to a shard of size k = n/m, given the overall
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network size of n nodes among which up to F nodes are
Byzantine. The failure probability for the system in each epoch
is at most:

Pr[X ≥ ⌊k/2⌋] = m·
k∑

x=⌊k/2⌋

(
F
x

)(
n−F
k−x

)(
n
k

) . (2)

Ensuring Negligible Failure Probability. We should carefully
choose the shard size to bound the failure probability of the
system to be negligible. As will be explained in Section VII-A,
our choice of shard size can limit the failure probability to be
less than 2−20 ≈ 9 · 10−7 (time-to-failure of more than 4580
years for one-day epoch), which is a wide-adapted probability
threshold [8], [48].

Under negligible epoch failure probability, we next analyze
the security and performance of our system.

B. Analysis of Randomness Generation and Leader Rotation

We formalize the security of our chain-based distributed
randomness scheme for leader rotation. In particular, we prove
that the scheme’s output is unbiasable (fair) and unpredictable
under standard cryptographic assumptions, meaning no ad-
versary can manipulate or guess the leader selection beyond
a negligible probability. We also note that the randomness
is publicly verifiable and the generation process is scalable
(incurring minimal overhead) [41].

Definition 1 (Unbiasability/Fairness). A randomness gen-
eration scheme is unbiasable if no coalition of Byzantine
(malicious) nodes, up to a threshold f , can influence the
distribution of the random output. In the context of leader
rotation among k shard members, unbiasability means each
member has an equal probability 1/k of being selected as
leader (deviating at most negligibly due to adversarial actions).

Definition 2 (Unpredictability). A scheme’s output is unpre-
dictable if, prior to its generation, no computationally bounded
adversary can guess the output with more than negligible
advantage over random chance. For leader rotation, this means
that until the randomness is revealed (by the confirmation of
the current block), the identity of the next leader cannot be
predicted except with probability close to 1/k.

Theorem 1 (Fairness of Leader Selection). Under the assump-
tion of an honest majority in each shard (at most f < k/2
Byzantine nodes in a shard of size k) and an existentially
unforgeable digital signature scheme, the leader selection
in each slot of SP-Chain is unbiased. In other words, the
randomness derived from the previous block’s signature yields
a uniform random leader except with negligible probability.

Proof. The leader for each new slot is determined by applying
a public random oracle H(·) (modeled as a cryptographic hash
function) to the prior confirmed block’s signature (and slot
number). Because the slot number and block contents are fixed
once a block is finalized, the input to H is fixed and outside an
adversary’s control at the time of leader election. A malicious
leader cannot bias this process: given a unique identity and
key pair per node (enforced by Sybil-resistant identity issuance
and periodic reconfiguration of shard membership), a leader

can produce at most one valid signature on a given block.
Any attempt to produce an alternate seed (e.g., by forging
another node’s signature or using an illegitimate identity)
would require breaking the signature scheme’s unforgeability
or introducing a fake identity, both of which are assumed infea-
sible (negligible probability). Furthermore, since H is random-
oracle unpredictable, the output is uniformly distributed over
the space of possible leader identifiers. No biased influence
can be exerted by the adversary beyond choosing not to sign
or withholding the block (which would simply forfeit their
turn). Thus, each eligible node has equal chance to be chosen
by the hash, and no adversary (up to f nodes) can skew
this distribution except with negligible probability (e.g., by
controlling a proportion of identities, which is bounded by f/k
for each shard). This establishes unbiasability of the leader
rotation mechanism.

Theorem 2 (Unpredictability of Leader Selection). The
signature-based randomness used for leader rotation is unpre-
dictable until the moment of its use. Formally, even a Byzantine
adversary (with up to f corrupted nodes per shard) cannot
obtain any information about the next slot’s leader prior to the
decision of the lastet confirmed block, except with negligible
probability.

Proof. At the start of a slot t, the new leader is determined
from the latest confirmed block’s signature (from slot t− 2).
By the properties of the hash function H , the mapping from a
valid signature σ to an output leader index is computationally
indistinguishable from random. No party learns σ (hence the
next leader) until the block at t−2 is confirmed (it is confirmed
at the beginning of t−1). In a synchronous network, all honest
nodes finalize the block (and observe σ) nearly simultaneously
within a known bound ∆. A malicious leader at t−2 gains no
useful advantage: they cannot selectively choose σ to influence
H(σ||t) (by Theorem 1, σ is essentially fixed by the correct
signing process), and they learn the next leader only moments
before others (at most on the order of the network delay ∆).
Thus, prior to the block confirmation at t− 2, the probability
of any party predicting the next leader is at most 1/k plus a
negligible factor. This satisfies the unpredictability property.

Verifiability and Scalability. The randomness genera-
tion is publicly verifiable – all inputs (the previous block
hash/signature, public slot number, and the hash function) are
publicly known, so any node or third party can independently
recompute and verify the leader selection outcome. Moreover,
the scheme is scalable: deriving randomness from existing
blockchain data avoids any extra communication rounds. Each
node simply performs a local hash computation to determine
the leader, incurring O(1) communication overhead (in con-
trast to heavier protocols like VSS-based beacons). This means
our leader rotation mechanism adds virtually no networking
cost while providing cryptographically strong randomness.

C. Analysis of Intra-Shard Consensus

We now rigorously define and prove the safety and liveness
properties of the intra-shard consensus protocol (the pipelined
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two-phase concurrent voting combined with periodic leader ro-
tation). We assume a synchronous network model with known
maximum message delay ∆, and that each shard has an honest
majority (f < k/2 Byzantine nodes out of k). Under these
conditions, we show that the consensus protocol maintains
consistency (all honest nodes agree on the same shard state)
and makes progress (new blocks eventually commit).

Definition 3 (Safety – Consistency). A consensus protocol
satisfies safety (or consistency) if no two honest nodes ever
decide different blocks in the same round/slot. In a blockchain
shard, this means that at the end of each slot, all honest shard
members have committed the same block (or know that no
block was committed in that slot). Equivalently, there are no
"forks" within a shard’s ledger visible to honest participants.

Definition 4 (Liveness). Liveness means that the protocol
continues to make progress despite adversarial interference.
For the shard consensus, liveness requires that any valid trans-
action submitted will eventually be included in a committed
block. More concretely, in every epoch (or within a bounded
number of slots), if the current leader is malicious or fails,
the protocol will still eventually commit a new block under a
future leader. This ensures that the shard’s chain grows and
honest transactions are not starved indefinitely.

Theorem 3 (Safety and Liveness of Intra-Shard Consensus).
Under the synchronous network and honest-majority assump-
tions, the two-phase concurrent voting protocol with automatic
leader rotation achieves both safety and liveness: (i) Safety:
All honest nodes in a shard agree on the same block each slot
(no conflicting commits occur). (ii) Liveness: The consensus
will successfully commit new blocks in a timely manner, even
in the presence of malicious leaders, as long as at least one
leader in a succession of slots is honest (which is guaranteed
by the rotation and majority assumption).

Proof. Safety: We first consider a single slot with a designated
leader. When an honest leader proposes a block, all honest
replicas will receive the block digest (hash) within time ∆
(by synchrony). Due to the two-phase voting design, an honest
node waits a fixed pre-vote period (e.g., ∆b as specified) after
receiving the proposal before casting its vote, to allow slower
nodes to catch up. In the worst case, the fastest honest node
receives the block at time t0 and the slowest at t0 +∆ (with
∆ ≤ ∆d in the parameters of our protocol). By the time
the slowest honest node begins voting (after waiting ∆b), the
fastest honest node has already broadcast its vote. All honest
votes thus propagate and are received by every honest node
within an additional ∆ (bounded by ∆v). By the end of the
allotted waiting time (on the order of ∆d +∆b +∆v for the
protocol parameters), every honest node has collected votes
from all other honest nodes. A quorum of >k/2 consistent
votes for the proposed block is reached, and all honest nodes
will commit that block. No conflicting block can gather a
quorum because either (a) there was a single proposal that
all voted on, or (b) if a Byzantine leader tried to send
divergent proposals (equivocation), honest nodes would detect
the mismatch in block digests and immediately truncate the
waiting period to vote against the faulty leader’s block. In an

equivocation scenario, honest votes will not favor two different
blocks: at worst, honest nodes reject the leader’s proposals
altogether, resulting in no block for that slot rather than a fork.
Additionally, if a malicious node attempts to cast two different
votes, this double-voting is identifiable (each vote is signed by
the node); honest nodes discard conflicting or invalid votes, so
only one vote from each honest node counts. With an honest
majority, no conflicting block can accumulate enough honest
votes to be considered decided. Therefore, it is impossible for
two different blocks to both reach commit threshold in the
same shard, preserving safety.

Liveness: The automatic leader rotation ensures that even
if the current slot’s leader is Byzantine (e.g., fails to send
a proposal or sends an invalid one), the protocol will not
deadlock. If a leader equivocates or sends malformed data,
honest nodes detect it (by invalid signatures or inconsistent
digests) and treat that block as failed; the slot will pass with
no commit. Thanks to frequent rotation, a new leader will
be selected in the next slot. Given the honest majority, with
overwhelming probability an honest leader will be chosen
after at most a few rotations (indeed, the probability of
continuously picking malicious leaders for many consecutive
slots is negligible). When an honest leader eventually takes
charge, they will propose a valid block and the above safety
argument shows all honest nodes will commit it. Even in
the case of a silence attack (a malicious leader simply does
nothing), all honest nodes will detect the absence of a valid
proposal by the end of the slot duration and move on to
the next leader. Thus, a faulty leader may delay progress for
at most one slot, but cannot prevent an honest leader in a
subsequent slot from committing a block. As long as at least
one out of any consecutive set of leaders is honest (which is
guaranteed given f < k/2), the shard will continue to append
new blocks. This guarantees liveness: every valid transaction
will eventually be processed when it is proposed under an
honest leader (or a malicious leader’s turn passes without
effect, and an honest leader later includes the transaction).

In summary, the intra-shard consensus protocol maintains
one consistent chain per shard (safety) and will always produce
new blocks (liveness) under the stated assumptions. Byzantine
behavior such as equivocation, duplicate voting, or silence
are tolerated by design: honest nodes either circumvent the
misbehavior within the same slot (e.g., by accelerating the
voting upon detecting equivocation) or move to the next
slot’s leader, ensuring the protocol never violates safety and
eventually commits all pending transactions.

D. Analysis of Cross-Shard Transactions
Finally, we formalize the security guarantees of our cross-

shard transaction processing mechanism and discuss its over-
head. Cross-shard transactions in SP-Chain are designed to
achieve atomicity (the transaction executes in all involved
shards or not at all, eventually) and integrity (no tamper-
ing or inconsistency in transaction data across shards), even
under Byzantine participants. We assume the cryptographic
primitives are secure (hash functions are collision-resistant
and signatures are unforgeable) and each shard has an honest
majority as before.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3573978

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 09,2025 at 08:15:19 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2024 11

Definition 5 (Atomicity of Cross-Shard Transactions). A
cross-shard transaction protocol provides eventual atomicity
if for every transaction involving a source shard (origin of
funds/assets) and a destination shard, it guarantees that either
both of the following hold in the long run: the source shard’s
state reflects the withdrawal (debit) and the destination shard’s
state reflects the corresponding deposit (credit), or neither
shard’s state reflects a completed transaction (no debit nor
credit takes permanent effect). In simpler terms, funds or
assets are neither lost nor duplicated: a cross-shard transfer
will eventually complete in full, or be as if it never occurred.

Definition 6 (Integrity of Cross-Shard Transactions). Integrity
means that the content of a cross-shard transaction cannot
be altered or forged during its transfer between shards. The
destination shard will only accept the deposit if it exactly
matches the transaction that was confirmed in the source
shard. Any attempt by an adversary to modify the transaction
amount, recipient, or any associated data, or to introduce a fake
cross-shard transaction, must fail verification and be rejected.
This property ensures the consistency of transaction semantics
across shards.

Theorem 4 (Security of Cross-Shard Transaction Processing).
In SP-Chain’s cross-shard protocol, assuming honest majori-
ties and secure cryptography, all cross-shard transactions
satisfy atomicity and integrity. Specifically: (i) Atomicity: For
any cross-shard transaction that debits an account in a source
shard, the corresponding credit in the destination shard will
eventually be committed (even if adversaries cause delays), so
that the transaction’s net effect is all-or-nothing. (ii) Integrity:
No adversary can tamper with the transaction data or execute
a cross-shard transfer illegitimately; the deposit will only be
accepted if it is authorized by a confirmed withdrawal in the
source shard (as proven by cryptographic proofs).

Proof. SP-Chain’s cross-shard execution follows a two-phase
approach (inspired by atomic commit protocols and prior
shard designs [44], [42]): the transaction’s withdrawal phase
occurs in the source shard, then a deposit phase in the
destination shard. Once the source shard commits the with-
drawal (deducting the sender’s funds and logging the intent to
transfer), a cryptographic proof of this event is relayed to the
destination shard. This proof includes the Merkle inclusion
proof of the transaction in the source shard’s block and the
digital signatures attesting that block’s validity. The security
properties follow from this design:

Atomicity: If the withdrawal sub-transaction in the source
shard fails to commit (e.g., the source leader never includes
it, or the source consensus does not finalize it), then natu-
rally no funds are deducted and the cross-shard transfer has
no effect (the transaction can be retried or aborted without
inconsistency). If the withdrawal does commit in the source
shard, the protocol guarantees that the deposit will eventually
commit in the destination shard. Even a malicious leader in the
destination shard cannot permanently stall the deposit: because
leaders rotate, an honest leader in that destination shard will
eventually be elected and will process the pending deposit. At
worst, a Byzantine leader might delay including the deposit,

but they cannot cause the source’s withdrawal to revert – the
funds are already moved out of the source account and are
effectively held awaiting deposit. Clients are aware of the
status (they receive confirmation from the source shard) and
can inform the destination shard or retry the transfer message if
needed. Thus, with an eventually honest leader and persistent
retransmission, the deposit will be executed. The net result is
that after a finite delay, the destination account is credited.
The transaction is never half-completed: there is no scenario
where the source deducted funds but the destination never
receives them – the worst-case outcome is a delay until an
honest node finalizes the deposit. This meets the condition of
eventual atomicity. (Likewise, it is impossible for a deposit
to occur without its corresponding withdrawal: see integrity
below.)

Integrity: The integrity is ensured by cross-shard veri-
fication using cryptographic proofs. When the destination
shard receives the deposit request, it requires a proof that
the corresponding withdrawal was confirmed in the source
shard. This proof is the Merkle branch of the transaction
in the source shard’s block, along with that block’s Merkle
root and the source shard’s block header (which contains
signatures from the source shard’s committee). Every node
in the destination shard maintains an updated shard member
table listing the public keys of all other shard committees
(this table is refreshed each epoch during reconfiguration).
Using this, the destination shard’s nodes can authenticate the
source block’s signatures and thus trust the Merkle root. If
a malicious actor alters the transaction (e.g., changing the
amount or recipient in the deposit message), the Merkle proof
will not match the altered data, and honest nodes in the
destination shard will reject it. Similarly, an adversary cannot
forge a valid proof for a transaction that never occurred in
the source shard: without control of the majority of the source
committee (which we assume they lack), they cannot produce a
block header with a valid collective signature for a fabricated
transaction. Any mismatch in signatures or Merkle roots is
detected and the deposit is refused. Therefore, the only way a
deposit is accepted is if it exactly corresponds to a legitimately
confirmed withdrawal in the source shard. This guarantees that
the state updates in the two shards are consistent and no cross-
shard transaction can be modified or injected by Byzantine
participants.

Communication Overhead Analysis. Suppose a block con-
tains a total of N cross-shard transactions, where the number
of cross-shard transactions sent to shard j is Nj . In our
design, since we organize the Merkle tree according to shards,
we only need to send the root of each Merkle subtree to
verify cross-shard transactions. Therefore, for each cross-
shard transaction, the additional communication overhead is
O(m/Nj). Correspondingly, in [44], the extra communication
overhead of each cross-shard transaction is O(log2(N)). There
might be thousands of transactions in a block, and most of
them are cross-shard [44], [48], [21]. However, there usually
are only dozens of shards at most. Therefore, our cross-shard
processing scheme has a lower overhead under general cases.
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(a) Latency of broadcasting a digest. (b) Latency of broadcasting a block (w/ digest). (c) Latency of broadcasting a vote.
Fig. 5. Latency of broadcasting a digest, a block (with digest), and a vote.

VII. IMPLEMENTATION AND EVALUATION

A. Experimental Setup

We implement SP-Chain based on Harmony [42] in Go
language with 5,000+ lines of code. We implement BLS aggre-
gated signature [3] in the prototype to reduce the signature size
for better performance. For the baselines, we choose several
notable existing blockchain sharding systems for performance
comparison, including Monoxide [44], OmniLedger [21], and
RapidChain [48]. Actually, the main protocols in SP-Chain can
be easily applied to most existing sharding systems to improve
system performance.

The choice of the experimental environment is similar to
that in previous work [48]. Specifically, we deploy SP-Chain
on Amazon EC2 with up to 32 machines, each running up to
125 SP-Chain nodes. By default, the total network size scales
up to 4,000 nodes. The machine is selected as c5.24xlarge,
each with a 96-core Intel Xeon Platinum 8275L CPU, 192
GB memory, and a 25-Gbps communication link. It is worth
noting that, since each node only maintains the state of its
own shard and some metadata for cross-shard communication,
the memory footprint per node remained modest. To simulate
geographically-distributed nodes, by default, we consider a
latency of 100 ms for every message and a bandwidth of 20
Mbps for each node. In each shard, we assume that when the
adversaries observe the leader, they have the ability to attack
it in the next slot. Moreover, in each shard, the total malicious
nodes are less than half of all nodes in a shard. We set each
transaction size to 512 bytes, and each block contains up to
4,096 transactions, resulting in a block size of 2MB, similar to
existing works [48]. The transactions are based on historical
data of Ethereum [51], in which the proportion of cross-shard
transactions increases with the number of shards (e.g., when
the number of shards is 16, the cross-shard transaction ratio
is 15/16 = 93.75%).

TABLE I
CHOICE OF # OF NODES PER SHARD AND CORRESPONDING FAILURE

PROBABILITY.

# of shards 4 6 8 10 12 14 16
# of nodes per shard 170 190 210 220 225 230 250
Failure probability 4.6 8 5 5 8 6 2

(·10−7)

Choice of Shard Size. We first determine the number of
nodes per shard in SP-Chain based on Equation 2. The rule

Fig. 6. Throughput comparison results.

Fig. 7. Transaction confirmation latency comparison results.

for selecting the shard size is: the failure probability of each
shard should be less than 2−20 ≈ 9 · 10−7 (time-to-failure of
more than 4580 years for one-day epoch) [8], [48]. Table I
shows the choice of shard size under different shard numbers
and the corresponding failure probability. Results show that
our choice of shard size makes the probability of failure less
than 9 ·10−7 at any scale, ensuring the security of the system.
The following experiments will be conducted based on the
shard size determined by Table I.

TABLE II
CHOICE OF △d , △b AND △v .

# of shards 4 6 8 10 12 14 16
# of nodes 170 190 210 220 225 230 250per shard
△d (ms) 445 446 476 497 512 538 564
△b (ms) 2496 2737 2825 3236 3286 3397 3518
△v (ms) 541 542 581 616 626 651 683

Choice of △. The broadcast upper bound latency of digest,
block and vote (△d, △b and △v) are the 3 most important
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Fig. 8. Throughput breakdown.

parameters in our system. To determine them, we evaluate
the actual time spent in broadcasting digests, blocks, and
votes in the system, and show the experimental results in
Figure 5. Specifically, the bottom/top of each bar is the
minimum/maximum delay in the broadcast, and the horizontal
line connected to each bar is the average delay. Based on
the measured actual broadcast delay, we set the broadcast
delay upper bound as delaymax + σ. Where delaymax is the
actual maximum broadcast delay, σ is the standard deviation
obtained by fitting the broadcast delay to a normal distribution.
Table II shows the calculated delay upper bounds △d, △b and
△v under different shard sizes. By default, we will conduct
experiments based on these values.

B. System Throughput

We evaluate the system throughput and scalability of SP-
Chain under varying network sizes from 680 up to 4,000
nodes, in direct comparison with Monoxide, OmniLedger,
and RapidChain. Figure 6 presents the throughput results
across these scales. SP-Chain consistently achieves the highest
throughput at every network size. For example, on a 680-node
network SP-Chain sustains approximately 3,500 TPS, which
already significantly exceeds the throughput of RapidChain
(1,900 TPS), OmniLedger (1,200 TPS), and Monoxide (400
TPS). As the network size grows, this gap widens. Under
the largest tested scale of 4,000 nodes, SP-Chain processes
10,305 TPS, whereas RapidChain and OmniLedger reach only
about 7,400 TPS and 3,900 TPS respectively, and Monoxide
remains 2,600 TPS. In other words, at 4,000 nodes SP-Chain
achieves roughly 1.4× the throughput of RapidChain, about
2.6× that of OmniLedger, and around 4× that of Monoxide.
Furthermore, SP-Chain’s throughput increases almost linearly
with the expansion of network size, demonstrating superior
scalability.

C. Transaction Latency

We now compare the average transaction confirmation
latency of SP-Chain against baselines as the network size
increases. Figure 7 shows the confirmation delay results for
network sizes from 680 to 4,000 nodes. Across all scales,
SP-Chain achieves substantially lower latency than the other
protocols. At the 680-node scale, a transaction in SP-Chain is
confirmed in roughly 6s, whereas RapidChain requires about
8s, OmniLedger about 13s, and Monoxide around 15s on

average for confirmation. As the network grows, the confirma-
tion latency of every protocol rises due to larger shard sizes
and increased cross-shard coordination. SP-Chain’s latency,
however, grows very modestly and remains the lowest among
the systems. In a 4,000-node network, SP-Chain confirms
transactions in about 7.6s, which is roughly half of that in
OmniLedger and Monoxide, and about 15% lower than in
RapidChain. These results demonstrate that SP-Chain sustains
low confirmation latency even as the system scales, outper-
forming prior protocols on this metric. Combining throughput
and latency, our evaluation shows that SP-Chain does not trade
off latency for throughput – it delivers both higher throughput
and faster confirmations than various baselines across the
range of network sizes tested.

D. System Decomposition

In this section, we decompose SP-Chain and evaluate the
impact of different system components on the throughput in
detail. We mainly analyze how much the system throughput
is improved by concurrent voting and leader rotation.
Concurrent Voting and Leader Rotation. Figure 8 shows
the SP-Chain throughput results after removing the concurrent
voting or leader rotation mechanism. The yellow/green bar
indicates the case that concurrent voting/leader rotation is
removed from SP-Chain. The results show that the concurrent
voting mechanism can increase throughput by up to 22%.
The leader rotation mechanism increases the throughput by
up to 37%. This is mainly because, with the leader rotation
mechanism, the system eliminates the view change process.
In cases where the leaders are attacked by adversaries, the
system’s efficiency is thus greatly increased. Under the net-
work scale of 4,000 nodes, the concurrent voting and leader
rotation mechanism increases the system throughput by 20%
(10,305 vs 8,612) and 34% (10,305 vs 7,692), respectively. In
summary, the concurrent voting and leader rotation mechanism
improves the throughput of the system significantly.

TABLE III
PERFORMANCE OF SP-CHAIN AT 4,000 AND 10,000 NODES.

Shards Nodes/Shard Failure Prob. Latency (s) TPS
16 250 2× 10−7 7.6 10,305
40 250 5× 10−7 8.1 24,509

E. Scalability Beyond 4,000 Nodes

To further evaluate SP-Chain’s scalability beyond 4,000
nodes. We deploy the system in a larger network of 10,000
nodes, composed of 40 shards with 250 nodes per shard.
The results of this large-scale experiment are summarized
in Table III. SP-Chain continues to deliver high throughput
and low latency at 10,000 nodes: the end-to-end transaction
confirmation latency is 8.1 seconds, while throughput reaches
24,509 transactions per second. The system’s failure proba-
bility remains extremely low, at approximately 5× 10−7 (per
epoch), which is well below the 9 × 10−7 benchmark used
to ensure negligible failure risk. Comparing to the 4,000-
node case, the 10,000-node deployment demonstrates near-
linear scaling. Throughput increases by about 2.4× (24,509 vs
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Fig. 9. Throughput under different network latency.

Fig. 10. Transaction confirmation latency under different network latency.

10,305) with only a modest rise in confirmation delay (8.1s vs
7.6s). These results validate that SP-Chain can scale to large
networks with minimal performance degradation, confirming
that the system maintains its high performance even beyond
4,000 nodes.

F. Impact of Network Latency

To evaluate SP-Chain under adverse network conditions
(e.g., network churn with fluctuating delays), we simulate a
high-latency environment. Specifically, each inter-node mes-
sage is delayed by a random interval between 100 ms and
1000 ms. We compare SP-Chain’s performance in this high-
latency scenario to the default low-latency case (100 ms)
across various shard counts.

Figure 9 presents the throughput results, with blue bars for
the baseline and red bars for the high-latency case. Under
high network latency, the throughput is only modestly reduced
compared to the low-latency case. For instance, at 16 shards
the system achieves around 8,900 TPS with high delay,
approximately 14% lower than the 10,305 TPS under low-
latency conditions. This minor degradation indicates that SP-
Chain’s pipelined consensus and concurrent block processing
effectively tolerate substantial message latency jitter. The con-
sensus mechanism continues to produce blocks at a high rate,
highlighting robust performance even when network delays
fluctuate by an order of magnitude.

The high-latency scenario’s effect on transaction confirma-
tion time is likewise well-contained. Figure 10 shows the
median transaction confirmation latency (time to finality) for
SP-Chain under both low and high network latency conditions.
As expected, introducing large message delays leads to higher
confirmation times, but the impact is moderate. On average,
the confirmation latency rises by only about 2 seconds when
moving from the baseline to the high-latency scenario.

VIII. DISCUSSION AND FUTURE DIRECTIONS

A. Potential Attack Vectors and Mitigations

We now enumerate some attack vectors and concisely
explains how SP-Chain neutralizes each threat.

Cross-Shard Replay Attacks. In SP-Chain, cross-shard
transactions are protected by our proof-based verification
mechanism that prevents replay across shards. Each cross-
shard transaction must carry a cryptographic proof of its
inclusion in the source shard’s ledger (as described in Section
V-C). This batched Merkle proof ties the transaction to a
specific confirmed block and state, allowing the destination
shard to verify its validity before acceptance. A transaction
replayed without the correct proof (or with a proof already
used) will be rejected by the receiving shard, ensuring that
cross-shard replay attacks are effectively mitigated.

Randomness Manipulation via Block Withholding. SP-
Chain’s leader election protocol is designed to be unbiased
and resistant to manipulation (Section V-B). A new leader is
chosen for every block using a random seed derived from
the previous block’s committed signatures. An adversarial
leader cannot influence this process without aborting their own
block proposal. If a leader attempts to withhold a block to
sway the randomness, the protocol simply rotates to the next
leader for the subsequent slot. With automatic per-block leader
rotation and no gain from stalling, block withholding yields
no advantage in biasing the random seed, thwarting this attack
vector.

Adaptive Adversaries and Leader Selection Biases. By de-
sign, SP-Chain prevents adaptive adversaries from exploiting
leader selection. Leaders are rotated frequently and randomly,
so no node remains leader beyond a single block. The next
leader is determined just before each block using unpredictable
distributed randomness, meaning attackers cannot know or
influence who comes next (as detailed in Section V-B). This
ephemeral and random leadership schedule leaves adversaries
with minimal time to adapt or target specific leaders, elim-
inating any consistent bias that could be exploited in the
leader selection process. Even a well-resourced attacker cannot
reliably preempt or co-opt the leader, which preserves the
protocol’s fairness and security against adaptive strategies.

Censorship Attacks. SP-Chain mitigates transaction censor-
ship through rapid leader turnover and verifiable cross-shard
communication. Because leadership changes every block, a
malicious leader cannot continuously suppress a transaction–
any transaction omitted in one block can be included by the
next leader once the adversary’s turn ends. Moreover, the
cross-shard transaction scheme makes any censorship attempt
evident. If a leader tries to drop or alter a cross-shard transfer,
the inconsistency will be detected when the destination shard
recomputes the Merkle root and compares it against the signed
block header. Honest nodes would notice the mismatch and
refuse to acknowledge the tampered data, forcing eventual
inclusion of the legitimate transaction. Thus, by design (see
Section V-C), SP-Chain ensures that censorship is at most
temporary and cannot persist undetected or uncorrected.
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B. Real-World Deployment and Limitations

We now summarize the practical considerations for de-
ploying SP-Chain, while highlighting how the protocol’s core
mechanisms address each challenge.

Integration with Existing Ecosystems. SP-Chain’s design
can be integrated with contemporary blockchain architectures.
Our Harmony-based prototype demonstrates that SP-Chain’s
protocols are easily applicable to existing sharded networks.
For example, Ethereum 2.0’s multi-shard architecture could
adopt SP-Chain’s pipelined consensus and unbiased leader
rotation to improve throughput and fairness. Similarly, SP-
Chain’s efficient cross-shard transaction processing would
enable seamless asset transfers across shards in a multi-chain
ecosystem like Ethereum.

DeFi Use Cases and Regulatory Fairness. For DeFi
applications, which demand high throughput and fairness, SP-
Chain offers low-latency processing (as shown in Section VII)
and an unbiased leader election protocol that helps mitigate
front-running. Front-running–where insiders exploit transac-
tion ordering–is illegal in traditional markets, yet it remains
a challenge in DeFi; SP-Chain’s fair leader rotation makes
such exploits significantly harder on-chain. By preventing
any single validator from consistently controlling transaction
ordering, SP-Chain aligns with regulatory expectations for
market fairness and bolsters trust in decentralized exchanges
and financial platforms.

Cross-Border Payments and Enterprise Blockchains. Be-
yond DeFi, SP-Chain is applicable to cross-border payment
networks and enterprise blockchains. Global payment systems
can leverage SP-Chain’s high scalability for fast, low-cost
international transactions; shards might correspond to different
currencies or regions, with SP-Chain’s cross-shard mecha-
nism ensuring secure atomic transfers across them. Similarly,
enterprise blockchain deployments can adopt SP-Chain in a
permissioned setting by partitioning consortium participants
into shards for parallel processing. The protocol’s Byzantine
fault tolerance and rotating leadership guarantee that no single
organization can monopolize block production, preserving
fairness and performance in an enterprise context.

Energy Efficiency Trade-offs. SP-Chain is designed to be
energy-efficient: instead of proof-of-work, it uses a Byzan-
tine fault-tolerant consensus with finality, avoiding wasteful
mining. By processing transactions in parallel across shards,
nodes handle only a fraction of the total workload, reducing
redundant computation and lowering the overall energy cost
per transaction relative to a single-chain system. Coordinating
multiple shards does introduce some communication overhead;
however, this cost is offset by throughput gains, keeping
energy per transaction comparable to (or lower than) an
unsharded architecture while delivering much higher total
throughput.

Deployment Challenges and Limitations. Despite its bene-
fits, SP-Chain faces several real-world deployment challenges.
Integrating SP-Chain into an existing blockchain may require
bridging infrastructure or consensus modifications; however,
many issues (e.g., malicious leader handling and cross-shard

security, addressed in Sections V-B and V-C) are intrinsically
solved by its design, easing deployment in adversarial settings.
A remaining limitation is the reliance on timely network
communication–if network latency exceeds expected bounds,
consensus efficiency could degrade. SP-Chain also depends on
a secure source of distributed randomness for leader selection,
which must be managed in production. Finally, broader con-
cerns like governance and regulatory compliance (for example,
identity management in enterprise shards or legal frameworks
for cross-border use) lie outside the protocol’s scope and must
be addressed at the ecosystem level.

C. Future Directions and Research Opportunities

One promising direction is to leverage machine learning
to enhance the shard leader selection process. SP-Chain’s
current leader rotation is random and unbiased to ensure
fairness and security, but incorporating data-driven or learning-
based strategies could further boost efficiency. For example,
a reinforcement learning model or reputation scoring system
could dynamically select leaders based on past performance
and reliability [16]. By favoring nodes with consistently high
throughput and honest behavior, the system might reduce
downtime or stalls caused by suboptimal leaders, thus improv-
ing overall sharding efficiency without compromising security.

Another critical research avenue is integrating post-quantum
cryptography into SP-Chain’s cross-shard transaction mech-
anism. While SP-Chain currently relies on classical crypto-
graphic assumptions (e.g., digital signatures and hash-based
proofs) for cross-shard security, these could become vulnerable
with the advent of quantum computing. To future-proof the
system, one can replace or augment these primitives with post-
quantum cryptosystems [10]. For instance, using quantum-
resistant digital signatures or key exchange protocols (such as
lattice-based or multivariate polynomial schemes [43]) would
ensure that cross-shard transaction validation remains secure
against quantum-capable adversaries. Adopting such crypto-
graphic upgrades would not require fundamental changes to
the SP-Chain protocol, thereby preserving its performance
while extending its security longevity.

Finally, we highlight the broader real-world impact of SP-
Chain and the new research opportunities it enables. By
achieving high throughput and robust security in a sharded
blockchain, SP-Chain serves as a practical blueprint for scal-
ing distributed ledgers in real-world scenarios (e.g., financial
networks or large-scale IoT deployments). Its design principles
and techniques can inspire further innovation beyond our
specific implementation. For example, other researchers and
practitioners could adapt SP-Chain’s concurrent consensus
or cross-shard proof mechanisms to improve interoperability
between different blockchain platforms, or to build next-
generation applications that demand both scalability and se-
curity.

IX. CONCLUSIONS

We present SP-Chain, a sharding-based blockchain system
with scalability, high throughput, low latency and reliable
security. We exploit blockchain sharding systems’ features
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and design an intra-shard consensus protocol called concurrent
voting for the sharding system. This protocol can significantly
improve system performance. Based on this protocol, we
propose an unbiased leader rotation scheme. It can help the
system maintain high efficiency in the presence of malicious
behaviors. An efficient and verifiable cross-shard transaction
processing mechanism ensures the security of cross-shard
transactions. We have implemented a prototype of SP-Chain.
Our empirical evaluation demonstrates that SP-Chain scales
smoothly to network sizes of up to 4,000 nodes showing better
performance than previous works.
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