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Abstract—Data-intensive clusters increasingly employ in-
memory solutions to improve I/O performance. However, the
routinely observed file popularity skew and load imbalance create
hot spots, which significantly degrade the benefits of in-memory
caching. Common approaches to tame load imbalance include
copying multiple replicas of hot files and creating parity chunks
using storage codes. Yet, these techniques either suffer from
high memory overhead due to cache redundancy or incur non-
trivial encoding/decoding complexity. In this paper, we propose
an effective approach to achieve load balancing without cache re-
dundancy or encoding/decoding overhead. Our solution, termed
SP-Cache, selectively partitions files based on their popularity
and evenly caches those partitions across the cluster. We develop
an efficient algorithm to determine the optimal number of
partitions for a hot file—too few partitions are incapable of
mitigating hot spots, while too many are susceptible to stragglers.
We implemented SP-Cache in Alluxio, a popular in-memory
distributed storage for data-intensive clusters. EC2 deployment
and trace-driven simulations show that, compared to the state-of-
the-art solution called EC-Cache [1], SP-Cache reduces the file
access latency by up to 40% in both the mean and the tail, using
40% less memory.

I. INTRODUCTION

Today’s data-parallel clusters critically rely on in-memory
solutions for high-performance data analytics [2]-[7]. By
caching data objects in memory, I/O-intensive applications
can gain order-of-magnitude performance improvement over
traditional on-disk solutions [2], [4], [5].

However, one key challenge faced by in-memory solutions
is the severe load imbalance across cache servers. In produc-
tion clusters, data objects typically have the heavily skewed
popularity—meaning, a small number of hot files account for
a large fraction of data accesses [1], [8], [9]. The cache servers
containing hot files hence turn into hot spots. This problem is
further aggravated by the network load imbalance. It is reported
in a Facebook cluster that the most heavily loaded links have
over 4.5x higher utilization than the average for more than 50%
of the time [1]. The routinely observed hot spots, along with
the network load imbalance, result in a significant degradation
of I/O performance that could even eliminate the performance
advantage of in-memory solutions (Sec. II).

Therefore, maintaining load balance across cache servers is
the key to improving the performance of cluster caches. State-of-
the-art solutions in this regard include selective replication [8]
and erasure coding [1], both of which resort to redundant
caching to mitigate hot spots.
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Selective replication creates multiple replicas for files based
on their popularity: the more popular a file is, the more replicas
it has. File access requests can then be distributed to multiple
servers containing those replicas, hence mitigating the load
on the hot spots. However, replication results in high memory
overhead as hot files are usually of large sizes [1], [8], [9].
Given the limited memory space, selective replication does not
perform well in cluster caches [1], [10] (Sec. III-A).

Erasure coding comes as an alternative solution to achieve
load balancing with reduced memory overhead [1]. In particular,
a (k,n) erasure code divides a file into k partitions and
generates n — k parity partitions. Any k of the n partitions are
sufficient to decode the original file. This results in better load
balancing as the load of read requests are spread across multiple
servers, and the memory overhead is usually much smaller
than that of replication. However, erasure coding incurs salient
encoding/decoding overhead. In fact, even with the highly
optimized implementation [11], the computational overhead
can still delay the I/O requests by 30% on average [1].

In this paper, we propose a different approach that achieves
load balancing in cluster caches without memory redundancy
or encoding/decoding overhead. Our approach, which we call
selective partition, divides files into multiple partitions based on
their popularity: the more popular a file is, the more partitions
it is split into. File partitions are randomly cached by servers
across the cluster. The benefits of this approach are three-
fold. First, it evenly spreads the load of read requests across
cache servers, leading to improved load balancing. Second,
it increases the read parallelism of hot files, which, in turn,
improves the I/O performance. Third, simply splitting files into
partitions adds no storage redundancy, nor does it incur the
computational overhead for encoding/decoding.

However, it remains a challenge to judiciously determine
how many partitions a file should be split into. On one hand,
too few partitions are insufficient to spread the load of read
requests, making it incapable of mitigating hot spots. On the
other hand, reading too many partitions from across servers
adds the risk of being slowed down by stragglers.

To address this challenge, we model selective partition as a
fork-join queueing system [12], [13] and establish an upper-
bound analysis to quantify the mean latency in reads. We show
that the optimal number of partitions can be efficiently obtained
by solving a convex optimization problem. Based on this result,
we design SP-Cache, a load-balanced, redundancy-free cluster
caching scheme that optimally splits files to minimize the mean
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latency while mitigating the impact of stragglers. We show that
SP-Cache improves load balancing by a factor of O(Lyax)
compared to the state-of-the-art solution called EC-Cache [1],
where L.« measures the load of the hottest file.

We have implemented SP-Cache atop Alluxio [2], [14],
a popular in-memory distributed storage that can be used
as the caching layer on top of disk-based cloud object
stores (e.g., Amazon S3 [15] and Azure Storage [16]) and
compute-collocated cluster file systems (e.g., HDFS [17] and
Gluster [18]). We evaluated SP-Cache through both EC2 [19]
deployment and trace-driven simulations. Experimental results
show that despite the presence of intensive stragglers, SP-
Cache reduces the mean and the tail (95" percentile) read
latency by up to 40% compared to EC-Cache [1]. Owing to its
redundancy-free nature, SP-Cache achieves all these benefits
with 40% less memory footprint than EC-Cache.

II. BACKGROUND AND MOTIVATION

In this section, we briefly survey the cluster caching systems
and motivate the need to achieve load balancing therein.

A. Cluster Caching

Due to the recent technological advances in datacenter
fabrics [20] and the emergence of new high-speed network
appliances [21]-[23], the gap between network bandwidth
and storage I/O bandwidth is rapidly narrowing [24]-[27].
Consequently, the performance bottleneck of cloud systems is
shifting from network to storage I/O. Prior work has shown
that accessing data from the local hard disk provides no salient
benefits over remote reads [28], [29]. As disk locality becomes
irrelevant, cloud object stores, such as Amazon S3 [15], Win-
dows Azure Storage [16], and OpenStack Swift [30], gradually
replace compute-collocated storages—notably HDFS [17]—as
the primary storage solutions for data-intensive applications.

However, cloud object stores remain bottlenecked on disk
I/0O [1], as reading from disk is at least two orders of magnitude
slower than reading from memory. In light of this problem,
cluster caching systems, such as Alluxio [14], Memcached [6],
and Redis [31], are increasingly deployed in front of cloud
object stores to provide low-latency data access at memory
speed. In this paper, we primarily target the storage-side caching
to improve the I/O performance. Our solution can also be
applied to compute-collocated file systems, such as HDFES [17],
provided that high-speed networks are available.

B. Load Imbalance and Its Impact

A plaguing problem faced by cluster caching is the routinely
observed load imbalance across cache servers. We show
through experiments that severe load imbalance results in
significant I/O latencies, marginalizing the performance benefits
provided by cluster caching.

Load Imbalance Prior works [1], [8] have identified two
sources of load imbalance in production clusters: the skewed
file popularity and the imbalanced network traffic.

It has been widely observed in datacenters that file (data
object) popularity is heavily skewed and usually follows a
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Fig. 1: Distribution of file popularity (blue) and size (orange)
observed in a Yahoo! cluster [32].

Zipf-like distribution [1], [2], [8], [9]. That is, a large fraction
of data access requests are contributed by only a small number
of hot files. Fig. 1 depicts the distribution of popularity and
file size in the Yahoo! cluster trace [32]. The trace contains the
collective statistics of data accesses to over 40 million files in
a period of two months. We observe that the majority of files
(~ 78%) have cold data that has rarely been accessed (< 10
times). Only 2% are hot with high access counts (> 100).
These files are usually much larger (15-30x) than the cold
ones. Consequently, cache servers containing these files are
easily overloaded given their large sizes and high popularity.

This problem is further aggravated in the presence of network
load imbalance, which is prevalent in production datacenters [1],
[33]-[35]. For example, a recent study [1] measured the ratio
of the maximum and the average utilizations across all up- and
down-links in a Facebook cluster. The result shows that the
ratio stays above 4.5x more than half of the time, suggesting
a severe imbalance.

Impact of Load Imbalance The skew in file popularity,
together with the imbalanced network traffic, create hot spots
among cache servers. To illustrate how these overloaded
machines may impair the system’s I/O performance, we stress-
tested a small cluster of cache servers.

Setup: We deployed Alluxio [14]—a popular in-memory
distributed storage—on a 30-node Amazon EC2 [19] cluster.
The nodes we used are m4.large instances, each with a dual-
core processor, 8 GB memory, and 0.8 Gbps network bandwidth.
The cluster is used to cache 50 files (40 MB each). We launched
another 20 m4. large instances as clients. Each client submits
the file read requests to the Alluxio cluster as a Poisson process
with a rate from 0.25 to 0.5 requests per second. Therefore,
the aggregated access rates are 5-10 requests per second. We
created imbalanced load with skewed file popularity following
a Zipf distribution with exponent 1.1 (i.e., high skewness).

Diminishing benefits of caching: We ran two experiments.
In the first experiment, all files were cached in memory;
in the second experiment, we disabled cluster caching and
spilled files to the local hard disk. For each experiment, we
measured the mean read latency under various request rates
and depict the results in Fig. 2. When the cluster is less loaded
(5 requests per second), in-memory caching provides salient
benefits, improving the mean read latency by 5x. However, as
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Fig. 2: The average read latencies with and without caching
as the load of read requests increases.

the load ramps up, the hot spots among cache servers become
more pronounced, and the benefits of caching quickly diminish.
Notably, with request rate greater than 9, the read latency is
dominated by the network congestion on hot-spot servers, and
in-memory caching becomes irrelevant.

Therefore, there is a pressing need to achieve load balancing
across servers. We next review existing techniques and show
that they all fall short in minimizing latency.

III. INEFFICIENCY OF EXISTING SOLUTIONS

Prior art resorts to redundant caching to achieve load
balancing, either by copying multiple replicas of hot files—
known as selective replication [8], [36]—or by creating coded
partitions of data objects, e.g., EC-Cache [1]. However, these
techniques enforce an unpleasant trade-off between load
balancing and cache efficiency. On one hand, caching more
replicas (coded partitions) helps mitigate hot spots as the load
of read requests can be spread to more servers. On the other
hand, the overhead in memory and/or computation due to
redundant caching harms efficiency.

A. Selective Replication

Selective replication replicates files based on their popular-
ity [8], [36], i.e., the more popular a file is, the more replicas
are copied across servers. A file read request is then randomly
served by one of the servers containing the replica of that
file. This way, the load of read requests are evenly distributed,
leading to improved load balancing.

While selective replication is proven effective for disk-based
storage [8], it does not perform well for cluster caching [1],
[10], as replication incurs high memory overhead. To illustrate
this problem, we deployed an Alluxio cluster following the
settings described in Sec. II-B, where the top 10% popular
files were copied to multiple replicas. The aggregated request
rate is set to 6. We gradually increased the number of replicas
and examined how the mean latency in reads can be improved
at the expense of increased memory overhead. Fig. 3 depicts
the results. We observe a linear growth of memory overhead
in exchange for only a sublinear improvement in read latency.
Given that in-memory caches remain a constrained resource in
production clusters and the fact that popular files are usually of
large sizes (Fig. 1), selective replication often results in poor
cache efficiency with very low hit ratio (more in Sec. VII-F).
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Fig. 3: Average read latency and cache cost in percentage with
different replica numbers of the top 10% popular files.

B. Erasure Coding

State-of-the-art solutions employ erasure coding [37], [38]
to load-balance cache servers without incurring high memory
overhead. In particular, a (k,n) erasure coding scheme evenly
splits a file into k partitions. It then computes n — k parity
partitions of the same size. The original file can be decoded
using any k out of the n partitions, allowing the load of
its read requests to be spread to m servers. The memory
overhead is (n — k)/k, which is lower than that of selective
replication (at least 1x) in practical settings. An efficient
implementation of this approach goes to EC-Cache [1] which
late-binds partitions during reads to mitigate stragglers. That
is, instead of reading exactly k partitions, EC-Cache randomly
fetches k + 1 partitions and waits for any k partitions to
complete reading. EC-Cache significantly outperforms selective
replication in both the median and tail read latencies [1].

However, EC-Cache requires non-trivial decoding (encoding)
overhead during reads (writes). Even with a highly optimized
coding scheme [39] and implementation [11], the decoding
overhead may still delay the read requests by up to 30% [1]. To
verify this result, we ran EC-Cache in an Amazon EC2 cluster
with 30 r3.2xlarge memory-optimized instances, each having
61 GB memory and 8 cores. Following [1], we used a (10, 14)
coding scheme (i.e., memory overhead 40%) to cache files of
various sizes. We launched an EC-Cache client submitting file
read requests and measured the incurred decoding overhead,
i.e., the decoding time normalized by the read latency. The
results are deferred to appendix A due to the page limit. We
observed more prominent decoding overhead with large files.
Notably, for files greater than 100 MB which account for most
of the file accesses in production clusters (Fig. 1), the decoding
overhead consistently stays above 15%. We stress that this
result is measured in the presence of a less advanced network,
where we observed 1 Gbps bandwidth between instances. We
expect the read latency dominated by the decoding overhead
with high-speed networks (> 40 Gbps bisection bandwidth).

To sum up, existing load balancing solutions either suffer
from high cache redundancy or incur non-trivial decoding/en-
coding overhead—either way, the I/O performance is impaired.

IV. LOAD BALANCING WITH SIMPLE PARTITION

In this section, we consider a simple, yet effective load-
balancing technique which uniformly splits files into multiple
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Fig. 4: Average read latency using simple partition in a 30-node
cluster, with and without stragglers.

partitions so as to spread the I/O load. We explore the potential
benefits as well as the problems it causes.

A. Simple Partition and Potential Benefits

We learn from EC-Cache [1] that dividing files into smaller
partitions improves load balancing, yet the presence of parity
partitions necessitates the decoding overhead. A simple fix is to
split files without creating coded partitions. Intuitively, simple
partition provides two benefits over EC-Cache. First, it requires
no overhead for decoding/encoding. Second, it adds no storage
redundancy, attaining the highest possible cache utilization.
Simple partition also retains two benefits provided by EC-
Cache. First, it mitigates hot spots under skewed popularity
by spreading the load of read requests to multiple partitions.
Second, it provides opportunities for read/write parallelism,
which, in turn, speeds up the I/O of large files.

To validate these potential benefits, we configured EC-Cache
in a “coding-free” mode using a (k, k) coding scheme (i.e.,
no parity partition). Specifically, we evenly split a file into &
partitions and randomly cached them across the cluster. No
two partitions of a file were placed on the same server. We
re-ran the experiments in Sec. II-B using simple partition. For
the purpose of stress-testing, we configured the aggregated file
request rate to 10 from all clients. Note that at such a high
rate, the average read latency would have stretched over 20 s
without load balancing (Fig. 2). We study how simple partition
can speed up I/O with increased read parallelism k. The results
are depicted as a solid line in Fig. 4. The average read latencies
drop to 1-1.3 s, suggesting 17-22x improvement over stock
Alluxio without partition. We stress that these improvements are
achieved without any decoding overhead or cache redundancy.
In contrast, the replication scheme studied in Sec. III-A is only
able to attain the average latency of 2 s with 1.4x memory
footprint (Fig. 3) in the presence of even lighter load (i.e., 6
requests per second).

B. Problems of Simple Partition

However, simple partition is not without problems. First, it
uniformly divides each file into k partitions, irrespective of its
size and popularity. This is unnecessary and inefficient. For less
popular files, which usually dominate in population [8], [9],
spreading their load provides marginal benefits in improving
load balancing. Rather, the increased read parallelism may
result in salient networking overhead due to TCP connections
and the incast problem [40], [41]. Referring back to Fig. 4

(solid line), with too many partitions (k > 15), the networking
overhead outweighs the benefits of improved load balancing.

Second, simple partition is susceptible to stragglers, as
reading from many servers in parallel is bottlenecked by the
slowest machine. To illustrate this problem, we manually
injected stragglers into the cluster. Specifically, for each
partition read, we slept the server thread with probability 0.01
and delayed the read completion by a factor randomly drawn
from the distribution profiled in the Microsoft Bing cluster
trace [42]. We measured the average read latency and depict
the results as the dashed line in Fig. 4. As the read parallelism
k increases, the latency caused by stragglers quickly dominates,
leading to even longer delay.

In light of these problems, we wonder: is it possible to
achieve load-balanced, redundancy-free cluster caching using
file splitting while still being resilient to stragglers? We give
an affirmative answer in the following sections.

V. SP-CACHE: DESIGN AND ANALYSIS

In this section, we present SP-Cache, a load balancing
scheme that selectively partitions hot files based on their sizes
and popularities. We analyze its performance and seek an
optimal operating point to minimize the average read latency
without amplifying the impact of stragglers.

A. SP-Cache Design Overview

SP-Cache employs selective partition to load-balance cluster
caches under skewed popularity. In a nutshell, it evenly splits
a file into small partitions, where the number of partitions is
in proportion to the expected load of that file. Specifically, for
file 4, let S; be its size and P; be its popularity. The expected
load of file i is measured by L; = S; P;. Let k; be the number
of partitions file ¢ is split into. With SP-Cache, we have

ki = [aL;] = [aS;P;], (D

where « is a system-wide scale factor applied to all files. This
results in the uniform load across partitions, i.e., L;/k; ~ o~ 1.

SP-Cache randomly places k; partitions across N servers
in the cluster, where no two partitions are cached in the
same server. Random placement improves load balancing. It
ensures each server to store approximately an equal number
of partitions. Given the uniform load across partitions, each

server is expected to have the balanced load.

B. Benefits

SP-Cache is more efficient than simple partition (Sec. IV).
It differentiates the vital few from the trivial many, in that
a small number of hot, large files (vital few) are subject to
finer-grained splitting than a large number of cold, small files
(trivial many). As the former is the main source of congestion,
spreading their load to more partitions mitigates the congestion
on the hot spots more than doing so to the latter. Moreover,
given the small population of hot files [8], [9], splitting them
results in fewer partitions than splitting a large number of cold
files. This, in turn, results in a reduced number of concurrent
TCP connections, alleviating the incast problem [40], [41].
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Moreover, we show that SP-Cache achieves better load
balancing than EC-Cache [1]. In particular, we denote by X5
the total load on any particular server under SP-Cache, where
XSP is a random variable. Let X¥C be similarly defined for
EC-Cache. We use the variance of X5F (XEC) to measure the
degree of load imbalance—a higher variance implies the more
severe load imbalance. The following theorem holds.

Theorem 1. Consider SP-Cache with scale factor o and EC-
Cache with a (k,n) erasure code. In a cluster where the number
of servers is much greater than the number of partitions of
any particular file under the two schemes, we have

Var(X ") gzi L;
Var(XSP) kY. L;

Theorem 1 can be established by showing that the load from
each file follows Bernoulli distribution under the two caching
schemes. The complete proof is deferred to appendix B.

It is easy to show that under heavily skewed popularity, the
variance bound (2) approaches % Liax, where L.y measures
the load of the hottest file, ie., Ly.x = max; L;. As «
and k are both constants, Theorem 1 states that compared
to EC-Cache, SP-Cache improves load balancing by a factor
of O(Lpax) in a large cluster.

2

C. Determining the Optimal Scale Factor

Despite the promising benefits offered by SP-Cache, it
remains a challenge to judiciously determine the scale factor
a. On one hand, choosing a small « results in a small number
of partitions that are insufficient to mitigate the hot spots.
On the other hand, choosing a too large « results in high I/O
parallelism, adding the risk of being slowed down by stragglers.

We address this challenge with the optimal scale factor which
is large enough to load-balance cluster caches, but also small
enough to restrain the impact of stragglers. Specifically, we
model SP-Cache as a fork-join queue [12], [13] and establish
an upper bound for the mean latency as a function of scale
factor . Based on this analysis, we propose an efficient search
algorithm which exponentially increases « to reduce the mean
latency until the improvement becomes marginal. We settle on
that «v as a sweet spot, for it yields “just-enough” partitions to
attain load balancing.

Model We model SP-Cache as a fork-join queue [12], [13]
illustrated in Fig. 5. In particular, SP-Cache “forks” each file
read to multiple reads on its partitions. Upon completion, all
those partition reads “join” together to reassemble the file.
For tractable analysis, we consider Poisson arrivals of the
read requests for each file. We shall verify in Sec. VII-F that
this technical assumption is not critical with real-world request

arrival sequences. Let \; be the request rate of file ¢. We
measure the popularity of file ¢ as

P, =

st\j ’ )

We model each cache server as an independent M/G/1
queue [43] with a FIFO service discipline. We derive the mean
service delay on server s, which is the partition transfer delay
averaged over all reads. Specifically, let Cs be the set of files
having partitions cached on server s, and B, the available
network bandwidth. For a partition of file ¢ € Cj, the transfer
delay depends on its size % and the network bandwidth Bj. To
account for the possible network jitters, we model the transfer
delay as exponentlally distributed with mean - B
that file ¢’s partition gets accessed is simply its request rate
normalized by the aggregated rate, i.e., A;/As, where A; is
the aggregated request rate on server s and is given by

As = Ziecs A 4)
The mean service delay on server s is then computed as
Ai _Si
Hs = Ziecs As kiBs* o)

Note that to make the analysis tractable, we assume a non-
blocking network (i.e., no delay in the network) and do not
model the stragglers. Our goal is to analyze the impact of scale
factor o on load balancing with respect to the mean latency.

Mean Latency We denote by (); s as the read latency file ¢
experiences on server s, which includes both the queuing delay
and the service delay (transfer delay of a partition). As the file
read is bottlenecked by the slowest partition read, the mean
read latency of file ¢ is given by

ﬂ = ]E[maxszcsai Qi,s]' (6)

Summing up the mean latency over files, weighted by their
popularities, we obtain the mean read latency in the system:

T =Y, PT,. 7)

The mean read latency critically depends on scale factor a.
Intuitively, having a large « results in a large number of small
partitions, which reduces both the overall queuing delay (better
load balancing) and the transfer delay (small partitions).

Upper Bound Analysis Unfortunately, exactly quantifying
the mean latency (7) in the fork-join system remains intractable
due to the complex correlation between the partition placement
(Cs) and the queueing dynamics [44]-[46]. Instead, we resort to
establishing a tight upper bound to quantify the mean latency.

Prior work [44] shows that in a fork-join queue, the mean
latency can be upper-bounded by solving a convex optimization
problem. Applying this result [44, Lemma 2], we bound the
mean read latency for file ¢ as follows:
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Fig. 6: Comparison of the derived upper bound and the average
read latency measured in the EC2 cluster.

where z is an auxiliary variable introduced to make the upper
bound as tight as possible, and Var[-] measures the variance.

While the latency bound (8) is not closed-form, it can be
efficiently computed as (8) is a convex optimization problem
given the expectation and variance of latency @); s. Using
the Pollaczek-Khinchin transform and the moment generating

function for M/G/1 queue [43], we have
A T2
[Qz s] = B + 2(1— pé) )

and 9 A3 A2(r2)?
)+ 3a5n Tt

Var(Qi o] = (554 (10)

where I'2 and I'? denote the second and third moments of the
service delay on server s, and p; is the request intensity and is
given by ps, = Aus. Since the service delay is exponentially

distributed with mean ks—B, we have

2= co, 2 2(25)% (11)
and

L =Yico, &t 6(55)% (12)

Summary: Putting it all together, given the scale factor «,
we upper-bound the mean read latency as follows. We first
compute the number of partitions k; = [«.S; P;] for each file 4,
based on which the expectation and variance of its read latency
can be obtained, i.e., (9) and (10). Plugging them into (8),
we solve a convex optimization problem and obtain the upper
bound of the mean read latency for file i. We now upper-bound
the mean latency of the system by replacing the latency of
each file with its upper bound in (7).

Experimental verification: To examine how accurate the
derived upper bound characterizes the mean read latency, we
deployed a 31-node EC2 cluster and used it to cache 300 files
(100 MB each) under skewed popularity. The detailed settings
of our experiment are given in Sec. VII-A. Fig. 6 compares
the derived upper bound and the mean latency measured in the
cluster with various scale factors. The upper bound, though
derived in a fork-join queuing model under some technical
assumptions, closely tracks the average read latency measured
in the EC2 cluster. Yet, as our model does not account for the
networking overhead (TCP connections and incast problem)
and stragglers, the measured latency occasionally goes above
the theoretical upper bound.

Determining the Optimal Scale Factor We observe in Fig. 6
that as scale factor « increases, the mean latency dips quickly
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Fig. 7: Architecture overview of SP-Cache. (a) Applications
interact with SP-Client for file access. (b) SP-Client periodi-
cally re-partitions files based on the instructions of SP-Master.

until an “elbow point” is reached (o = 1), beyond which the
latency plateaus for a short while and starts to rise as « turns
large (o > 2). This is by no means an accident. Intuitively,
configuring a larger « results in better load balancing owing
to finer-grained partitions. The price paid is the increased
networking overhead and straggler impact. The gains outweigh
the price before o reaches the elbow point, by which the load
imbalance remains the main source of read latency. However,
this is no longer the case after o passes the elbow point. The
load is sufficiently balanced across servers, and the overhead
of networking and stragglers becomes increasingly prominent,
eventually dominating the latency.

Therefore, we should settle on the “elbow point” for the
optimal scale factor. We use the derived upper bound to
accurately estimate the mean latency. To locate the elbow point,
we resort to an exponential search algorithm. Specifically, the
search starts with an « such that the most heavily loaded file
is split into % partitions. The algorithm iteratively searches
the optimal «. In each iteration, it inflates o by 1.5x and
examines the improvement in the derived latency bound. The
search stops when the improvement drops below 1%. We shall
show in Sec. VII that using the scale factor determined by this
simple algorithm, SP-Cache reduces the mean (tail) latency by
up to 50% (55%) as compared to EC-Cache [1].

VI. IMPLEMENTATION

We have implemented SP-Cache atop Alluxio [14], a popular
in-memory storage for data-parallel clusters. In this section,
we describe the overall architecture of SP-Cache and justify
the key design decisions made in the implementation.

A. Architecture Overview

Fig. 7(a) gives an overview of the system architecture. SP-
Cache consists of two components: SP-Master and SP-Client.
The SP-Master implements the main logic of selective partition
described in Sec. V. It oversees many Alluxio cache servers
and maintains the metadata (e.g., popularity) of files stored on
those servers. The SP-Client, on the other hand, accepts the
read/write requests from applications and interacts with cache
servers for partition collecting, file reassembling, and load re-
balancing based on the instructions issued by the SP-Master.

Reads Fig. 7(a) shows the data flow for reads. Upon receiving
a file request, the SP-Client contacts the SP-Master, who
returns a list of cache servers containing the partitions of the



requested file. The master also updates the access count for the
requested file, so as to keep track of the file popularity for future
load re-balancing. The SP-Client then communicates with the
servers in the list and reads file partitions in parallel. Upon the
completion of parallel reading, the client reassembles partitions
to recover the original file and passes it to the application.

Writes SP-Cache directly writes a new file to a randomly
selected cache server without splitting, given that cold files
usually dominate in population (Sec. II). For each file stored
in the cluster, SP-Cache keeps track of its popularity and
periodically adjusts the number of partitions based on its load:
once the file turns hot, it will get re-partitioned. We elaborate
on how this can be done in the next subsection.

B. Periodic Load Balancing with Re-partitioning

As file popularities may change over time, SP-Cache
periodically load-balances cache servers by re-partitioning
the stored files. Following the recommendations in [8], SP-
Cache re-partitions files every 12 hours based on the access
count measured in the past 24 hours. To do so, the SP-Master
instructs each cache server to report its current network
bandwidth (measured through sample reads). Based on the
bandwidth and the popularity information, the master computes
the optimal scale factor o using the method described in
Sec. V-C. Specifically, our implementation uses CVXPY [47]
to solve Problem (8). The master launches an SP-Client to
re-partition files. As illustrated in Fig. 7(b), the SP-client
collects files from cache servers, splits each file into a number
of partitions based on the new scale factor, and randomly places
those partitions across cache servers.

The effectiveness of periodic load balancing is supported
by the evidence that the file popularity in production clusters
is relatively stable in a short term (e.g., days). In fact, it has
been observed in a Microsoft cluster that around 40% of the
files accessed on any given day were also accessed four days
before and after [8]. A similar conclusion can also be drawn
from the Yahoo! cluster trace [32]: nearly 27% of the files
remain hot for more than a week.

C. Implementation Overhead

Metadata SP-Cache requires only a small amount of metadata
maintained in the master node. For each file ¢, the SP-Master
stores the partition count k; and a list of the k; servers
containing those partitions. Compared to the file metadata
maintained in Alluxio, the storage overhead is negligible.

Computational Overhead Finding the optimal scale factor
« appears the main computational overhead in our implemen-
tation. Nevertheless, our evaluations show that even with 10k
files, the optimal scale factor can be configured within 90
seconds (details in Sec. VII-B). As the computation is only
needed every 12 hours, its overhead can be amortized and is
less of a concern.

VII. EVALUATIONS

In this section, we provide comprehensive evaluations on SP-
Cache through EC2 deployment and trace-driven simulations.
The highlights of our evaluations are summarized as follows:
1) The upper-bound analysis in Sec. V provides a reliable
guidance to search for the optimal scale factor with low
computational overhead (Sec. VII-B).

2) With 40% less memory overhead than EC-Cache [1],
SP-Cache reduces the average read latency by 29-50%
and the tail latency by 22-55% (Sec. VII-C).

3) SP-Cache is resilient to stragglers, improving the read
latencies by up to 40% over EC-Cache in both the mean
and the tail (Sec. VII-D).

4) With limited cache budget, SP-Cache achieves a higher
cache hit ratio than EC-Cache (Sec. VII-E).

A. Methodology

Cluster Setup We have deployed SP-Cache in an Amazon
EC2 cluster with 51 r3.2xlarge instances. Each node has 8
CPU cores, 61 GB memory. We measured 1 Gbps network
bandwidth between instances using iPerf. We used 30 nodes
as the cache servers, each with 10 GB cache space, one node as
the master, and the remaining 20 nodes as clients continuously
submitting read requests as independent Poisson processes.

Skewed Popularity We configured the skewed file popularity
to follow a Zipf distribution [1], [48]-[50]. Unless otherwise
specified, the exponent parameter of the Zipf distribution is
set to 1.05 (i.e., high skewness).

Metrics We use the mean and the tail (95" percentile) read
latencies as the primary performance metrics. We calculate the
improvement of latencies as

Latency improvement = % x 100%, (13)

where Dgp and D denote the latencies measured under SP-
Cache and the compared scheme, respectively.

In addition, we measure the degree of load imbalance by
the imbalance factor, defined as

Lmax— Lavg

n= ; (14)

where Lyax and L, are the maximum and average load
across servers. Lower values of 7 imply better load balancing.

Lavg

Baselines We benchmark SP-Cache against three baselines.

EC-Cache: We used a (10,14) erasure coding scheme in
EC-Cache, which is shown to achieve the best performance [1].
The cache redundancy is 40%. The EC-Cache implementation
we used in evaluations is provided by the authors of [1].

Selective replication: For a fair comparison, we copied the
top 10% popular files to 4 replicas. Therefore, assuming equal-
sized files, the overall cache redundancy incurred by selective
replication is 10% x 4 = 40%—the same as that of EC-Cache.

Fixed-size chunking: Fixed-size chunking is a common
practice for many distributed storage/caching systems, e.g.,
HDEFS [17], Windows Azure Storage [16], and Alluxio [14].
With fixed-size chunking, files are split into multiple chunks
of a constant size, distributed randomly across servers.
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B. Configuration of the Scale Factor and Partition Size

We first show that SP-Cache is able to configure the optimal
scale factor o based on the derived upper bound. We ran the
experiment with 300 files (100 MB each), and set the total
access rate to 8 requests per second. Fig. 6 compares the
derived upper bound and the average read latency measured
in the experiments. Notice that in Fig. 6, we explore a larger
range of « than what SP-Cache would search (Sec. V-C) to
demonstrate the tightness of the bound. We observe that the
“elbow point” of the upper bound well aligns with that of the
mean latency, suggesting that the upper-bound analysis can be
used to accurately locate the optimal scale factor a.

Overhead The computational overhead of configuring the
optimal « depends on the number of files, as it requires the
latency upper bound (8) to be computed for each file. To
quantify this overhead, we measured the runtime required
to configure the optimal « in the master node with 1-10k
files. Fig. 8 shows the average configuration time in 5 trials,
where the error bars depict the maximum and the minimum.
With more files, the configuration time linearly increases.
Nevertheless, even with 10k files, it takes SP-Cache no more
than 90 seconds to finish configuration. Since the configuration
is only needed every 12 hours, its overhead is negligible.

Partition size Fig. 9 shows the optimal partition sizes SP-
Cache chooses for files ordered by popularity in an experiment
with 100 files (100 MB each). SP-Cache only partitions the top
30% of hot files but leaves the others untouched (no splitting).
The variance in the optimal partition numbers also indicates
that configuring a uniform partition number regardless of the
file popularity would be highly inefficient, even with a small
number of files.
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Fig. 11: Mean and tail (95") latencies under skewed file
popularity.

C. Skew Resilience

We evaluated SP-Cache against the two baselines under
skewed popularity in the EC2 cluster with naturally occurred
stragglers. We cached 500 files each of size 100 MB. Note
that the total cache space (300 GB) is sufficient to hold all 500
files and their replicas (parity partitions). For the purpose of
stress-testing, we configured the aggregated request rate from
all clients to 18.

Load Balancing To study how well SP-Cache results in better
load balancing than the two baselines, we measured the load of
each server (i.e., the amount of data reads) under each scheme.
Fig. 10 compares the load distributions under the three schemes.
SP-Cache achieves the best load balancing, with imbalance
factor n = 0.18. This is 2.4x and 6.6x better than EC-Cache
(n = 0.44) and selective replication (n = 1.18), respectively.

Read Latency Fig. 11 compares the mean and tail read
latencies of the three schemes under various request rates.
Owing to the improved load balancing, SP-Cache consistently
outperforms the two baselines. The benefits of SP-Cache
become more prominent as the request rate surges. In particu-
lar, compared to EC-Cache (selective replication), SP-Cache
significantly improves the mean and tail latencies by 29-50%
(40-70%) and 22-55% (33-63%), respectively.

Fixed-size chunking Fig. 12 compares SP-Cache against
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Fig. 12: Mean and tail (95") latencies compared with fixed-size
chunking.

fixed-size chunking with chunk size of 4, 8, and 16 MB. We
observe similar problems as simple partition (Sec. IV-B). On
one hand, configuring small chunks results in heavy network
overhead due to the increased read parallelism. We see in
Fig. 12a that at low request rates (< 15), the average read
latency increases as the chunk size gets smaller, e.g., up to
46% (32%) slower than SP-Cache with 4 MB (8 MB) chunks—
an evidence that network overhead dominates. On the other
hand, configuring large chunks, though saving the network
overhead, fails to mitigate hot spots under heavy loads (request
rate > 15). In fact, the mean latency with 16 MB chunks is
over 2x that of SP-Cache when the access rate rises to 22.
In terms of the tail latency, fixed-size chunking achieves
comparable performance to SP-Cache with small chunk sizes
(e.g., 4 and 8 MB), as it effectively reduces the hot spots,
which are the main source of congestions in our experiments.

D. Resilience to Stragglers

Redundant caching is proven resilient to stragglers [1],
[8]. To evaluate how SP-Cache, which is redundancy-free,
performs in this regard, we turn to controlled experiments
with more intensive stragglers than that has been observed in
the EC2 cluster. Specifically, we manually injected stragglers
following the pattern profiled from a Microsoft Bing cluster
trace (Sec. IV-B). We turned each cluster node to stragglers
with probability 0.05 (i.e., intensive stragglers [42]).

Fig. 13 shows the results. Despite intensive stragglers,
SP-Cache reduces the mean latency by up to 40% (53%)
compared to EC-Cache (selective replication). Yet, the presence
of stragglers results in prolonged tail latencies. In fact, SP-
Cache exhibits slightly longer tails than the two redundant
caching baselines at low request rate, as reading files from many
locations adds the chance of encountering an injected straggler.
As the request rate increases, most of the read requests get
congested on the hot spots, and the load imbalance becomes the
main source of the tail latency. Consequently, the tail latencies
under the two baselines quickly ramp up. In contrast, SP-Cache
effectively tames load imbalance across servers, reducing the
tail by up to 41% (55%) over EC-Cache (selective replication).

E. Hit Ratio with Throttled Cache Budget

We stress that the benefits of SP-Cache evaluated so far
were realized with 40% less memory than the two baselines.

File request rate File request rate

(a) Average latency. (b) Tail latency (95" percentile).

Fig. 13: Mean and tail (95") latencies with injected stragglers.
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Should the same cache budget be enforced, SP-Cache would
have attained even more significant benefits. To this end, we
throttled the cluster caches and measured the cache hit ratio
under the three load-balancing schemes. Specifically, we refer
to the cluster settings in Sec. VII-C and used the LRU (least-
recently-used) policy for cache replacement. Fig. 14 compares
the cache hit ratio of the three schemes with various cache
budget. Owing to the redundancy-freeness, SP-Cache keeps
the most files in memory and achieves the highest cache hit
ratio. In comparison, selective replication falls short, as caching
multiple replicas of hot files requires to evict the same number
of otherfiles out of the memory.

E Trace-driven Simulation

Previous evaluations have assumed the uniform file size
and Poisson arrivals of the read requests. We next remove
these assumptions through trace-driven simulations with the
real-world size distribution and request arrivals.

Workload We synthesized the workload based on the file
size distribution and the request arrivals from two public traces.
Specifically, our simulation generated 3k files. The file sizes
follow the distribution in the Yahoo! traces [32] (Fig. 1); the file
popularity follows a Zipf distribution with exponent 1.1. We
assume that a larger file is more popular than a smaller one. As
the Yahoo! trace [32] provides no request arrival information,
we refer to the Google cluster trace [51] which contains the
submission sequence of over 660k Google cluster jobs (e.g.,
MapReduce and Machine Learning). Since cluster jobs usually
read input at the beginning, we simply use the job submission
sequence as the read request arrivals.

Settings We simulated a cluster of 30 cache servers, each with
10 GB memory and 1 Gbps network bandwidth. We manually
injected stragglers into the simulated cluster as described in
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Sec. VII-D. We assume that a cache miss causes 3x longer read
latency than a cache hit. We used a (10, 14) coding scheme in
EC-Cache and set the decoding overhead as 20% (Sec. III-B).

Results Fig. 15 shows the distributions of the read latencies
under the three load-balancing schemes. SP-Cache keeps in the
lead with the mean latency of 3.8 s. In comparison, the mean
latencies measured for EC-Cache and selective replication are
6.0 s and 44.1 s, respectively. As hot files have large sizes in
production clusters, redundant caching results in even lower
cache utilization, inevitably harming its I/O performance.

VIII. LIMITATION AND DISCUSSION

While SP-Cache significantly outperforms the existing solu-
tions, our current implementations have several limitations. We
discuss those limitations and leave them for future explorations.

Short-term Popularity Variation With periodic load bal-
ancing, SP-Cache is unable to timely handle the short-term
popularity shifts, e.g., bursts of access to certain files. To
address this problem, we can enable online and dynamic
adjustment of partition granularity in case that some files
may turn hot (or cold) in a short period of time. We expect
SP-Cache to respond to popularity variations much faster
than EC-Cache and selective replication. To quickly adjust
the partition granularity in an online fashion, SP-Cache can
split and combine the existing partitions. This can be done in
a distributed manner and incurs only a small amount of data
transfer. In contrast, EC-Cache needs to collect all the partitions
at the master node for re-encoding; selective replication incurs
1x bandwidth and storage overhead for every additional replica.

Fault Tolerance While SP-Cache manages to minimize the
impact of stragglers, it does not provide fault tolerance for non-
transient stragglers which can be arbitrarily slow to the extent
of a complete failure. We stress that such fault tolerance cannot
be achieved without cache redundancy [1], [8]. Nevertheless,
since the underlying storage system readily handles storage
faults (e.g., the cross-rack replication of HDFS [17] and
S3 [15]), SP-Cache can always recover the lost data from
stable storages relying on the checkpointing and recomputing
mechanism of Alluxio.

IX. RELATED WORK

Cluster caching has been broadly employed in data-intensive
clusters as disk I/O remains the primary performance bottleneck
for data analytics [4], [6], [9]. To achieve load-balanced

caching, various techniques have been proposed, including data
placement optimizations and replication/partition schemes.

Data placement One common approach for load balancing
is to optimize the data placement scheme by designing the
mapping function from files to servers. For instance, consistent
hashing [52], [53] is a popular choice to implement such
mappings. Adaptively adjusting the hash space boundaries [36],
[54] can further improve the mapping efficiency. Unlike these
works, SP-Cache obviates the need for placement optimizations
by eliminating the skew in the per-partition load (Sec. V-B).
The server load can then be balanced with random placement.

Replication Replication has been the de facto load balancing
technique used in the disk-based object stores, including
Amazon S3 [15], OpenStack Swift [30], and Windows Azure
Storage [16]. Given the skewed popularity, replicating all files
uniformly wastes the storage capacity. Selective replication [8],
[55] comes as a solution. However, as popular files often have
large sizes, selective replication incurs high memory overhead,
and is ruled out as a practical solution for cluster caching.

File Partition EC-Cache [1] is the work most related to
SP-Cache, which also takes advantage of file partition to load-
balance cache servers. SP-Cache is by no means a “coding-free”
version of EC-Cache. Instead, it judiciously determines the
partition number of a file based on its load contribution, whereas
EC-Cache simply settles on a uniform partition scheme. To
our knowledge, SP-Cache is the first work that systematically
explores the benefits of selective partition.

X. CONCLUSIONS

In this paper, we have designed, analyzed, and developed
SP-Cache, a load-balanced, redundancy-free cluster caching
scheme for data-parallel clusters. SP-Cache selectively splits
hot files into multiple partitions based on their sizes and
popularities, so as to evenly spread the load of their read
requests across multiple servers. We have established an upper-
bound analysis to quantify the mean latency, and used it to
guide the search of the optimal partition number for each file.
SP-Cache effectively eliminates the hot spots while keeping the
impact of stragglers to the minimum. We have implemented
SP-Cache atop Alluxio. EC2 deployment and trace-driven
simulations showed that SP-Cache significantly outperforms
existing solutions with better load balancing in a broad range
of settings. Notably, with 40% less memory footprint than EC-
Cache, SP-Cache improves both the mean and the tail latencies
by up to 40%, even in the presence of intensive stragglers.
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APPENDIX
A. Decoding overhead of EC-Cache

To evaluate the decoding overhead of EC-Cache, we ran
EC-Cache in an Amazon EC2 cluster with 30 r3.2xlarge
memory-optimized instances. Following [1], we used a (10, 14)
coding scheme. We launched an EC-Cache client submitting file
read requests and measured the incurred decoding overhead,
i.e., the decoding time normalized by the read latency. We
depict the evaluation results in Fig. 16.
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Fig. 16: Decoding overhead in EC-Cache. Boxes depict the
25% 50", and 75" percentiles. Whiskers depict the 5" and
95" percentiles.

B. Proof of Theorem 1

Consider any particular server. Denote X; as the load
contributed by file ¢ to this server. We have

X = ZiXi7

Assuming independent partition placement across files, we
have

Var(X) =, Var(X;). (15)

To facilitate the derivation of Var(X;), we define a binary
random variable a; indicating whether the request for file 7 is
served by this server. The load X; can be expressed as

L.
Xi=aig;,

where k; denotes the (non-parity) partition number of file @
and % calculates the partition-wise load of file 7.

Under SP-Cache, each server has a probability of kjip to

be selected to cache the partitions of file . Therefore, afp
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follows Bernoulli distribution with parameter
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Under EC-Cache, each server has a probability of "Z to

cache the partitions of file 7; each server caching the partitions
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Suppose that the server number N is much larger than the
partition number k;. With (15), we have

L, 2 kfo41 L3
Var(XEC) Ei(kEc) N Zi rECN a Z'LZ
3P ~ - 5P~ I T RECSS L.
Var(XSP) Zl(kLsﬁDPk}v >, = k > Li
7
which completes the proof. [

ARTIFACT DESCRIPTION

We have open-sourced the implementations of SP-Cache
for public access [56]. Note that we do not provide the
implementation for EC-Cache [1], as the release of the source
code must be granted by the authors in [1]. We present the
Artifact Description to illustrate how to reproduce the evaluation
results of SP-Cache.

A. Description

1) Check-list (artifact meta information):

e Algorithm: SP-Cache.

o Program: Java project and python programs.

o Compilation: GCC 4.6.3; Java 1.7.0.

e Run-time environment: Linux 3.4.37-40.44.amznl.
x86_64.

o Hardware: Intel® Xeon® CPU E5-2670 v2.

o Output: the log files generated by SP-Cache.

o Experiment workflow: install the dependent python
packages; compile SP-Cache; set up the cluster; generate
test datasets and run experiments.

o Publicly available: yes.

2) How software can be obtained (if available): SP-
Cache can be cloned from GitHub using the following URL:
https://github.com/sp-cache-for-sc/SP-Cache.git.

3) Hardware dependencies: We run experiments in a 51-
node EC2 cluster with instance type of r3.2xlarge. To set up
the EC2 cluster, we can use the scripts provided by the Spark
community [57].

4) Software dependencies: SP-Cache requires GCC 4.6.3 or
above, python 2.7 or above and Java 1.7 or above. To solve the
convex programming for the derivation of the upper bound (8),
SP-Cache relies on the python package CVXPY. To compile
the entire project, maven 3.2.1 or above is required.

5) Datasets: The design target of SP-Cache is general-
purpose data read/write in data-parallel clusters. Therefore,
we generate files with dummy data in the evaluations.

B. Installation

On the master node of the cluster, clone SP-Cache from
GitHub:

$ git clone https://github.com/sp-cache-for-sc/
SP-Cache.git

Next, install maven and add the path as an environmental
variable:



$ wget http://mirror.olnevhost.net/pub/apache/
maven/binaries/apache-maven-3.2.1-bin.tar.gz

$ tar xvf apache-maven-3.2.1-bin.tar.gz

$ echo 'export M2_HOME=/path/to/maven' >> .
bash_profile

$ echo 'export M2=$M2_HOME/bin' >> .bash_profile

$ echo 'export PATH=$M2:$PATH' >> .bash_profile

$ source .bash_profile

Install the dependent python packages:

$ pip install numpy
$ pip install cvxpy

Next, compile SP-Cache with maven:

$ cd SP-Cache

$ mvn clean install -DskipTests=true -Dlicense.
skip=true -Dcheckstyle.skip -Dmaven.javadoc.
skip=true

Finally, synchronize the SP-Cache project to all nodes in
the cluster with the spark-ec2 script:

$ spark-ec2/copy-dir SP-Cache

Now, we are ready to set up SP-Cache and run the
experiments.

C. Experiment workflow

In the SP-Cache project, we have included the bash scripts
for cluster setup, launching SP-Cache, running experiments
and collecting the experimental results.

Before launching SP-Cache, we first need to set the memory
capacity on each worker (cache server), which could be
configured in the file alluxio-env.sh inside the conf folder:

$ ALLUXIO_WORKER_MEMORY_SIZE=${
ALLUXIO_WORKER_MEMORY_SIZE:-"10GB"}

Next, synchronize the conf folder and set up the cluster for
evaluations:

$ ./setup.sh

Now, the SP-Cache cluster has been set up. We generate the
test files with

$ ./pre_benchmark.sh $1 $2

where the two parameters are file size in MB and the exponent
parameter for the Zipf-distributed popularity, respectively.
To run the experiment, we use the following command:

$ ./run_benchmark.sh $1 $2 $3

The three input parameters are the client number, the total
request number each client shall submit and the request arrival
rate.

Notice that each client keeps the experiment logs locally.

We can collect and merge them with
$ ./collect_results.sh $1

where the parameter represents the client number.

D. Evaluation and expected result

The collected results will be placed in the results
folder. Specifically, the read latency from all clients will
be written to the file all_latency.txt. The cache hits and
server loads will be merged into files all_fileHit.txt and
all_workerLoads. txt, respectively.

E. Experiment customization

Scale factor: SP-Cache will record the access counts
of all files and update the partition numbers every 12
hours to re-balance the load. To efficiently evaluate the
performance of SP-Cache after load re-balancing, we
provide a shortcut to re-partition files without having
to wait for 12 hours. We will manually trigger the re-
partition of SP-Cache assuming that the popularities has
been well estimated. Specifically, we run a python script
python-sp-server/scale_factor_configuration.py to
configure the scale factor, which is exactly what SP-Cache
would do every 12 hours. The only difference is that we
directly use the exponent parameter to calculate the popularities
instead of relying on the historic access counts within the
learning window. Next, we can specify the configured scale
factor in the /pre_benchmark.sh to re-partition the files and
then run the experiments.

Straggler probability: the straggler probability for SP-Cache
is configured by reading the file strag_prob.txt in the
/root/test_files folder. For experiments with naturally-
happening stragglers (Sec. VII-C), write 0.0 in this file.
For experiments with intensified straggler patterns from the
Microsoft Bing cluster (Sec. VII-D), write 0.05 in this file.

Cache volume: to run the experiments with throttled cache
budget (Sec. VII-E), set the corresponding cache capacity of
each server in the configuration file conf/alluxio-env.sh
and repeat the procedures in C'.

FE. Notes

For the performance study of EC-Cache and selective
replication, we have deployed the source codes shared by
the authors of EC-Cache [1]. However, we are currently not
able to provide the information of their codes since the EC-
Cache project has not been open-sourced yet. Nonetheless, we
have reported the experimental configurations of EC-Cache and
selective replication in the paper, ensuring a fair comparison
of their performances with SP-Cache.
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