
TOPPINGS: CPU-Assisted, Rank-Aware Adapter Serving for LLM Inference

Suyi Li†∗, Hanfeng Lu†∗, Tianyuan Wu†, Minchen Yu‡, Qizhen Weng⋄, Xusheng Chen,
Yizhou Shan, Binhang Yuan†, Wei Wang†

†HKUST ‡CUHK-Shenzhen ⋄TeleAI, China Telecom Huawei Cloud

Abstract
Low-Rank Adaptation (LoRA) is a popular approach that

adapts a base large language model (LLM) to domain-specific
tasks by adding lightweight trainable adapters. In this paper,
we present TOPPINGS, a system that efficiently serves many
LoRA adapters derived from a common base LLM. TOP-
PINGS pins the base model on GPUs and dynamically loads
the requested LoRA adapters from host memory as new re-
quests arrive. In view of the high GPU loading overhead,
which not only delays the time-to-first-token of the newly
arrived request but also interrupts the ongoing decoding of
all inflight queries when continuous batching is in use, TOP-
PINGS proposes a CPU-assisted LoRA serving approach. It
simultaneously uses CPUs to compute the lightweight adap-
tion for prefilling as the requested LoRA adapter is being
loaded onto GPUs; it then switches to the GPUs after loading
completes to resume the remaining computation. TOPPINGS
develops a highly optimized synchronization mechanism and
pipeline loading scheme to efficiently coordinate LoRA com-
putation on the CPUs and GPUs. TOPPINGS further designs
a rank-aware scheduling algorithm that optimally schedules
heterogeneous LoRA requests to maximize the SLO attain-
ment. Compared with the state-of-the-art LoRA serving sys-
tems, TOPPINGS improves the average request serving latency
by up to 1.7× and achieves an SLO attainment of up to 99%.

1 Introduction

Large language models (LLMs) are making significant strides
in generative AI [50, 60]. Deploying LLMs for domain-
specific tasks requires specialization [3, 4, 12, 33, 34], which
involves adapting a pre-trained base model to different down-
stream tasks. Low-Rank Adaptation [7, 12, 22] (LoRA) has
emerged as a popular parameter-efficient fine-tuning (PEFT)
approach. It preserves the base model’s parameters and adds
small trainable rank decomposition matrices to each Trans-
former layer, allowing the creation of numerous lightweight

*Equal contribution

128 256 512
No. of adapters in a server

40

60

Ti
m

e
pe

r T
ok

en
 (m

s)

GPU OOM

Cached
S-LoRA

dLoRA
Toppings

1 2 3 4
No. of Different LoRAs Ranks

40

50

Ti
m

e
pe

r T
ok

en
 (m

s) Random
FirstFit

dLoRA
Toppings

Figure 1: Time per token (TPT) performance on Llama2-
7B. CACHED: the ideal case. Left: server node performance
of existing works. Right: cluster-wide performance under
different scheduling methods.

LoRA adapters from a single base model. As LoRA gains pop-
ularity, efficiently serving them with LLMs in a multi-tenant
cloud becomes critically important [6, 34, 42, 46, 54].

Typical LoRA serving systems maintain thousands of
LoRA adapters on inference servers, offering APIs for end
users to access specialized LLM inference [6, 35, 42, 46, 54].
Critical to the serving efficiency is multiplexing a single base
LLM to facilitate multi-tenant LoRA serving [6, 42], where
an inference server can serve requests to different LoRAs in
a batch using one LLM. Within a server, the base LLM runs
on GPUs and a stock of LoRAs reside in host memory. The
server node takes two steps to serve new requests, adhering to
the continuous batching paradigm [24, 26, 31, 56]. First, it in-
terrupts the inference of running batch, loads demanded LoRA
adapters onto GPUs, and executes the prefill computation for
the new requests. Second, it includes the new requests into the
running batch and executes the decoding computation for the
entire batch. At the cluster scale, a scheduler receives users’
requests and routes them across server nodes to maximize
throughput [6] or ensure load balancing [54].

Despite the capability of batch serving and request orches-
tration, existing systems overlook two fundamental challenges
in large-scale multi-tenant LoRA adapter serving [6, 42, 54].

First, on-demand loading LoRA adapters onto GPUs for
new requests introduces high latency overheads. Specifically,
when the desired LoRAs for new requests are not present
on GPU, they must be fetched from host memory before
prefill can commence, which can take tens of milliseconds

depending on the adapter size and PCIe bandwidth [15]. Con-
sequently, this delays not only the time-to-first-token of the
arriving request, but also the ongoing decoding of all inflight
requests. Notably, LoRA loading is more than one-off over-
head. As new requests keep arriving, the decoding of inflight
requests frequently interrupts, cumulatively delaying token
generations by 49% on average in our experiments (§2.3).

Second, in multi-tenant LoRA serving, users often re-
quest heterogeneous LoRA adapters with varying LoRA
ranks [7, 12, 42]. Though heterogeneous adapters can be
batched together to multiplex one base LLM using special-
ized CUDA kernels [6, 42], disregarding the heterogeneity
and batching LoRAs blindly can increase the batch decod-
ing latency by up to 1.5×. This increase is due to the high
GPU memory I/O overheads introduced by large-rank LoRAs,
which also impact the low-rank LoRAs computation in the
same batch [6, 42]. Therefore, at the cluster level, the system
should judiciously schedule requests of heterogeneous Lo-
RAs to ensure that the heterogeneity does not compromise
SLOs in latency. This necessitates the scheduler to accurately
model the inference latency for a given batch of heteroge-
neous adapters, which is challenging due to the combinatorial
complexity of batching heterogeneous adapters.

We introduce TOPPINGS*, a new multi-tenant LoRA serv-
ing system to address these challenges. Compared to previous
practices in LoRA serving, TOPPINGS improves efficiency
and scalability of multi-tenant LoRA serving: it effectively
scales to serve more LoRAs within a server and accommodate
higher heterogeneity in a cluster (Fig. 1). TOPPINGS achieves
this with two novel designs, which we elaborate as follows:

CPU-assisted LoRA serving. Similar to the existing LLM-
multiplexing solutions [6, 42], TOPPINGS maintains the base
LLM on GPUs and all adapters in host memory. When a
new request arrives, TOPPINGS dynamically loads the desired
adapter onto the GPU with a loading pipeline (§4.1). Mean-
while, it concurrently utilizes CPUs to compute the LoRA
adaption to early-start the prefill computation. As a PEFT ap-
proach, LoRA computation is lightweight, with computational
load in the order of 1 GFLOPs, making it feasible to run on
CPUs. Once adapter loading completes, TOPPINGS switches
to the GPU to handle adaption and the remaining prefill com-
putation, if not finished. It then proceeds to decoding, together
with other inflight requests that were previously interrupted
by the new arrival under continuous batching [24, 26, 31, 56].

Nevertheless, implementing CPU-assisted LoRA serving
poses several challenges. LLMs are constructed using the
Transformer architecture, which consists of multiple attention
layers [52]. During inference, the computed output of the base
LLM needs to be synchronized with that of the LoRA models
at each layer. Since these computations are split between the
CPU and GPU, efficient layer-wise synchronization between

*“Topping” is a layer of food added to another food base to enhance flavor.
Here, it metaphorically refers to a LoRA that adapts a base LLM’s outputs.

the two processors is crucial to performance. Also, the fre-
quent triggering of LoRA computations (e.g., 32 times per
prefill in Llama2-7B [50]) leads to high invocation overheads,
such as inter-process communication (IPC) and data trans-
fer, increasing inference latency by 79.4% in our experiment.
Moreover, CPUs’ constrained parallel processing capabilities
may create a new bottleneck when computing adaption for
long prompts, especially in comparison to GPUs.

We address these challenges with a series of optimization
designs. To efficiently coordinate on-GPU LLM computa-
tion and on-CPU LoRA computation, TOPPINGS develops a
specialized CUDA operator that optimally overlaps the two
computations by means of asynchronous memory copy and
signaling. It also uses shared memory for fast data exchange
between the base LLM process and multiple CPU LoRA pro-
cesses without data copying and (de)serialization, reducing
the LoRA invocation overhead to less than 1 ms. Furthermore,
TOPPINGS designs a profiling-guided parallelization scheme
to scale out LoRA computations across multiple CPUs, so
as to eliminate the potential bottleneck. Together, TOPPINGS
accelerates the request serving by 1.7× on average (§7.2).

Rank-aware request scheduling. We observe significant
performance variations in decoding when batching different
sets of heterogeneous LoRA adapters (§2.3). This highlights
the need for intelligent request scheduling that takes into ac-
count the rank heterogeneity and its impact on decoding. To
this end, we construct a performance model based on ker-
nel profiling and characterization [6, 42]. This model can
accurately predict the decoding latency for a given batch of
heterogeneous adapters, despite the combinatorial complexity
of batching heterogeneous adapters. With the performance
model, we design a rank-aware scheduler to enhance cluster-
wide serving performance and meet latency SLOs. Specifi-
cally, when a new request arrives, the scheduler examines all
inference servers that possess the desired LoRA adapters and
evaluates a cost score for each server using the performance
model. This score measures the additional latency cost and
SLO violation risk on the current ongoing requests if the new
request were to be served on that server. The scheduler then
routes the request to the server with the minimum cost score.

We have implemented TOPPINGS based on LightLLM [31]
and evaluated its performance using Llama2-7B/70B [50]
with requests generated from real-world and synthetic
traces [40, 61]. Evaluation results show that TOPPINGS out-
performs S-LoRA [42] and dLoRA [54], the state-of-the-art
solutions, improving the average serving latency of inference
requests by up to 1.7×. Even compared to the ideal, yet non-
implementable baseline that caches all adapters on GPUs (no
loading), TOPPINGS incurs only 7% overhead. We further
tested TOPPINGS with long prompts of 2k to 30k tokens and
observed consistent advantages. Additionally, we evaluated
the rank-aware scheduling algorithm through testbed experi-
ments and large-scale simulations. Compared to the popular
scheduling policies used in existing systems [6, 54], TOP-

PINGS reduces the average time per token by up to 57% and
achieves an SLO attainment of 99%.

2 Background and Motivation

In this section, we give a primer to LLM inference and low-
rank adaptation (LoRA). We also discuss the key challenges
that arise when serving LoRA models in a multi-tenant cloud.

2.1 LLM Inference

Generative LLM inference. LLM inference is a process
that involves generating a sequence of output tokens in re-
sponse to an input prompt. This process consists of two
phases: prefill and decoding. During the prefill phase, the
LLM processes the prompt to generate the first response to-
ken and the key-value cache (KV cache) for each token; the
decoding phase then uses the previous KV cache to generate
new tokens iteratively and appends the KV cache accordingly.
The decoding phase continues until a specified condition is
met, such as emitting an end-of-sequence (<eos>) token.

LLM adaption. Parameter-efficient adaptation of LLMs en-
hances their performance for domain-specific tasks [33,34,46].
One popular approach is Low-Rank Adaptation or LoRA [22],
which introduces an adapter to modify the intermediate LLM
inference results while keeping the original LLM parame-
ters unchanged. Specifically, given a pre-trained LLM weight
matrix W ∈ RH1×H2 , an adapter consists of two low-rank ma-
trices A ∈ RH1×r and B ∈ Rr×H2 , where r is the LoRA rank.
LoRA adapts this weight matrix to W′ = W+AB. Let y be
the original output of this layer given by y = xW. With LoRA
adaption, the updated computation becomes

y′ = xW+xAB = xW′. (1)

The LoRA adapter is highly efficient in terms of parameter
space because the rank r× (H1 +H2)≪ H1×H2. Therefore,
LoRA adaption is widely applied in the attention modules of
transformer-based LLMs [22, 42]. When deploying LoRA-
adapted models for inference, the computation load required
by the LoRA adapter (xAB) is orders of magnitude smaller
than that of the original weights xW in terms of floating-point
operations, if we compute these two parts separately [6].

2.2 Multi-Tenant LoRA Serving

The need of LLM-multiplexing. A naive way to serve a
LoRA adapter [22] is to merge its weights into the weights
of the base LLM. However, this approach does not scale to
multi-tenant LoRA serving: because one base model can only
merge with one adapter at a time, serving n different LoRAs
requires duplicating n copies of the base LLM, wasting GPU
memory and missing opportunities for batch inference [26].

Time

R1

GPU

<EOS>applean

aisHeLoad & Pre

areHowLoad & Pre

Dec 2,3Dec 1,2,3Load & Pre 3Dec 1,2Load & Pre 2Dec 1

R2

R3

R2 arrival
Interrupts R1

R3 arrival
Interrupts R1 & R2

Figure 2: Continuous batching in which the decoding phase
(Dec) is preempted to perform prompt processing upon a
request arrival, which involves loading the requested LoRA
adapter (Load) and prefilling (Pre).

On-demand Pre-caching Toppings
1.0

1.2

1.4

No
rm

. l
at

en
cy 1.37

R1

1.29

R2

1.19

R3
1.09
R4

1.16

R1

1.14

R2
1.09
R3

1.05
R4

1.20

R1

1.18

R2

1.12
R3

1.06
R4

Figure 3: The normalized serving latency of first four identical
LoRA requests (rank=128, 128 input tokens, 32 output tokens)
with inter-arrival of 200ms under different approaches.

In practice, many LoRA adapters are developed based on
common LLM series (e.g., Llama2 [50]), and multiple LoRA
adapters originating from the same LLM can multiplex that
LLM for GPU-efficient inference. This can be achieved by
computing LoRA adaption xAB on the fly and adding this
result back to the intermediate results xW before subsequent
computations. As the computation of xAB is lightweight,
multiple LoRA computations can be batched during inference.

Continuous batching. Existing LLM serving systems em-
ploy the continuous batching strategy optimized for LLM’s
iterative auto-regressive generation process [1, 24, 26, 31, 56].
Continuous batching operates at the iteration level, where
completed requests are immediately removed from the run-
ning batch after each iteration and new requests can join the
running batch in just one iteration, without waiting for the
entire batch inference to complete. Continuous batching sig-
nificantly improves the token generation throughput while
minimizing the request queuing delays. Fig. 2 illustrates this
batching process used in existing systems [24, 26, 31], where
the decoding and prefill phases interleave as new requests
arrive. Upon a request’s arrival, the decoding phase (Dec) is
preempted by prompt processing, which involves loading the
requested LoRA adapter (Load) and prefilling (Pre). During
this period, all the inflight requests are suspended, resulting in
a decoding interruption. Once prompt processing completes,
the new request joins the running batch, and the system com-
bines them together to continue the decoding process.

Underutilized CPUs. LLM inference highly demands GPUs
while CPUs are often underutilized. Recent LLM cluster anal-
ysis reveals that the median GPU utilization is 99%, whereas
the CPU utilization is less than 10% for 75% nodes [23].

2.3 Challenges

However, simply enabling LLM-multiplexing and continuous
batching is insufficient to achieve optimal performance for

0.0 0.2 0.4 0.6
Prop. of Loading-Interruption

0.0

1.0
CD

F RPS=3
RPS=6
RPS=9

32 64 128 256
LoRA Ranks

0

50

L
a
te

n
c
y
 (

m
s
)

13.6
26.1

44.5

73.6Prefill 256 Tokens

Figure 4: Left: The proportion of decoding-interruption over-
head during the entire token generation of each request. Right:
The latency of loading a single adapter of different ranks. The
adapter applies to the projection matrices of a Llama2-7B. Pre-
filling 256/1k tokens takes 44ms/90ms, respectively, longer
than 90%/99% of prompts in the real-world dataset [61].

multi-tenant LoRA serving, as it imposes two challenges.

C1: High cumulative decoding-interruption overhead. To
save GPU memory, existing systems only cache the base LLM
on GPU while keeping all its LoRA adapters in host mem-
ory [6, 42]. When a new request arrives, the corresponding
adapter is loaded from the host to the GPU, initiating an
adapter loading that must complete before the prefill phase
can begin (Fig. 2). This results in a severe cold-start prob-
lem, where adapter loading can take between a few to tens of
milliseconds depending on the adapter size* (Fig. 4-Right).
Cold-start delays the time-to-first-token of the prefill request
and becomes even more detrimental under continuous batch-
ing, where the arrival of a new request interrupts the ongoing
decoding of all inflight queries (e.g., R3’s arrival interrupts R1
and R2 in Fig. 2). Consequently, the cold-start latency adds
to the decoding-interruption overhead, delaying all inflight
requests. To illustrate this problem, we set up a simple experi-
ment where five identical LoRA requests sequentially arrive,
with the i-th arrival interrupting the decoding of the ongoing
i−1 requests. Fig. 3 illustrates the output generation latency
of the first four requests normalized by that of the last one
with different serving approaches. Compared to pre-caching
all adapters on GPU, the cold-start introduced by on-demand
loading cumulatively extends the decoding interruption: ear-
lier requests observe longer latency as they are delayed by
more cold starts of late arrivals.

In a scenario where new requests keep arriving, the decod-
ing of inflight requests is frequently interrupted, resulting in
a significant cumulative delay in token generation. We empir-
ically validate this by multiplexing a Llama2-7B model with
512 LoRA adapters (rank=64). These adapters have skewed
popularity (Fig. 12-Left) following the Microsoft Azure Func-
tion (MAF) trace [40]. We configured Poisson request arrivals
with various aggregate loads. Fig. 4-Left shows the proportion
distribution of the cumulative decoding-interruption overhead,
which, on average, accounts for 13%, 22%, and 29% of the en-
tire request serving time when the aggregate load is 3, 6, and 9
requests per second (RPS), respectively. The median number
of interruptions per request is 4 when RPS=3 and increases
to 10 and 25 as the RPS increases to 6 and 9, respectively.

*Larger adapters are increasingly common as they usually allow LLMs
to generate better response [7, 12, 51, 55].

Figure 5: The decoding latency variation of batching hetero-
geneous LoRA adapters. Left: BGMV. Right: MBGMV.

To avoid adapter loading, a simple approach is to pre-cache
all LoRA models in GPU. However, this approach is expen-
sive: a single rank-64 adapter that adapts attention projection
weights WQ,WK ,WV of the Llama2-7B demands approx-
imately 100 MiB, equivalent to the size of a KV cache of
200 tokens. Pre-caching all adapters will swallow up GPU
memory, degrade system throughput significantly [26], and
cause GPU out of memory (OOM) errors (§7.2). A recent
production trace [27] reveals that LoRA invocations follow
a long-tailed distribution. Achieving a 50% hit rate requires
caching over 200 LoRAs, which consumes more than 20 GiB
of GPU memory for Llama2-7B. This is not well justified
as most GPU memory should be reserved for KV-cache to
maximize throughput [26].

C2: Cluster-level request scheduling for heterogeneous
LoRA serving. In multi-tenant LoRA serving, users of-
ten request to use heterogeneous LoRA adapters with vary-
ing ranks [7, 42, 51, 55]. These heterogeneous adapters can
be batched together to multiplex one base LLM using spe-
cialized kernels, such as the Batched Gather Matrix-Vector
Multiplication (BGMV) kernel in Punica [6] or the Multi-size
Batched Gather Matrix-Vector Multiplication (MBGMV) kernel
in S-LoRA [42]. Rank heterogeneity in a batch of adapters
directly affects their serving performance. Specifically, when
batching a set of heterogeneous LoRA adapters, BGMV pads
adapters of smaller ranks to the highest rank to perform batch
operations, while MBGMV does not use padding [42]. As a
result, BGMV’s performance is determined by the maximum
rank in the batch, whereas MBGMV’s performance depends on
the average rank. We measure the decoding latency of batch
serving heterogeneous LoRAs using these two kernels with
various batch configurations, and depict the results in Fig. 5.
We observe significant performance variations when batch-
ing different sets of heterogeneous adapters. With the same
batch size, rank heterogeneity can increase batch decoding la-
tency by 28%. This highlights the need for intelligent request
scheduling that considers the impacts of rank heterogeneity
on performance to satisfy SLO.

To illustrate this point, we refer to a toy example shown
in Fig. 6, where Instance 1 handles 24 requests with LoRA
rank=32, and Instance 2 runs 16 requests with rank=64. Using
Punica’s BGMV kernel, the decoding latencies are 34.8 ms and
35.8 ms for Instances 1 and 2, respectively. With S-LoRA’s
MBGMV, the latencies are 35.3 ms and 35.9 ms for Instances 1
and 2, respectively. Assume a decoding latency SLO of 36ms,

New Request, Rank64
Instance 1

24×Rank32
BMGV Lat=34.8ms
MBGMV Lat=35.3ms

Instance 2

16×Rank64
BMGV Lat=35.8ms
MBGMV Lat=35.9ms

+

Instance 1

24×Rank32
Lat=34.8ms

Instance 2

17×Rank64
Lat=35.9ms

Instance 1

25×Rank64
Lat=38.0ms

Instance 2

16×Rank64
Lat=35.8ms

Schedule to Instance 1 Schedule to Instance 2

Instance 1

24×Rank32
Lat=35.3ms

Instance 2

17×Rank64
Lat=37.1ms

Instance 1

24×Rank32
1×Rank64
Lat=35.9ms

Instance 2

16×Rank64
Lat=35.9ms

BGMV

MBGMV

Figure 6: An toy example illustrating performance variations
when scheduling a single request. With a decoding latency
SLO of 36 ms, the new request should be routed to Instance 2
with BGMV, while Instance 1 with MBGMV.

System Cumulative
loading overhead

(un)merging
overhead

Multi-LoRA
computation

Cluster-wide
scheduling

Punica [6] High Zero Fast Rank-agnostic
S-LoRA [42] High Zero Fast Rank-agnostic
dLoRA [54] Zero High Slow Rank-agnostic
TOPPINGS Low Zero Fast Rank-aware

Table 1: Comparison of existing systems on server efficiency
(LoRA loading, merging, computing) and cluster scheduling.

and we need to determine the optimal schedule for a new
request with rank=64. With the BGMV kernel, assigning the
request to Instance 2 would meet the SLO, while sending it to
Instance 1 would increase the maximum rank of the batched
requests to 64, resulting in an SLO violation due to the pro-
cessing of 25 higher-rank requests on Instance 1. However,
with MBGMV, where latency is proportional to average LoRA
ranks, scheduling the request to Instance 1 preserves the SLO,
while routing it to Instance 2 leads to a violation.

However, modeling serving latency based on the rank het-
erogeneity is challenging due to the combinatorial complexity.
With a common maximum serving batch size B = 64 and a
small number of N = 5 different LoRA types, there are a total
of ∑

B
b=1

(N+b−1
b

)
≈ 1.1×107 different rank combinations.

2.4 Concurrent Work and Their Inefficiency
Model serving system design primarily aims optimizing serv-
ing efficiency within a server and request scheduling across a
cluster [20,54,59]. In Table 1, we compare concurrent adapter
serving systems [6, 42, 54] in terms of adapter loading and
computing within a server, and scheduling at the cluster scale.

Adapter loading. By default, both Punica [6] and S-
LoRA [42] load adapters on demand, leading to high cumula-
tive decoding-interruption overhead (C1), which we elaborate
in evaluation (§7). Though S-LoRA suggests using predictive
prefetching, it does not provide details, and frequent mispre-
dictions are expected given the bursty inference request work-
loads [54,59]. dLoRA [54] pre-caches all LoRA adapters into
GPUs. Though pre-caching avoids loading overhead, it fall

Rank-aware
Scheduler

Local LoRA
Repository

LLM Inference Servers

Request Queue

Global LoRA Registry
LoRA
(GPU)

Base LLM
(GPU)

Shared
Memory

LoRA
(CPU)

Requests

Streaming
Outputs

Figure 7: An architecture overview of TOPPINGS.

shorts in serving a large number of adapters, causing GPU
OOM or degraded performance in our evaluation (§7.2).

Multi-LoRA computation. Critical to the inference ef-
ficiency is LLM-multiplexing. Notably, Punica [6], S-
LoRA [42], and TOPPINGS adopt efficient GPU kernels for the
on-the-fly LoRA computation (§2.2). dLoRA [54] proposes
a dynamic batching approach, which dynamically merges
adapters with the base model to serve requests of the same
adapter in a batch and unmerges adapters to serve requests
of different adapters. However, deciding when to merge and
unmerge adapters during inference introduces additional over-
head [54] and results in slow computation, as evident in §7.2.

Scheduling. Despite the impact of heterogeneous LoRA
adapters on request scheduling, the cluster scheduling policy
in concurrent systems [6, 42, 54] are rank-agnostic, resulting
in significant delays that violate SLOs (§7.4).

3 TOPPINGS Overview

In this section, we provide a high-level overview of TOP-
PINGS, a LoRA serving system that efficiently tackles the two
challenges mentioned earlier. Within a server, TOPPINGS uses
a CPU-assisted approach to hide the long cold-start latency.
It uses CPUs to simultaneously execute the requested LoRA
adapter while loading it onto the GPU, effectively overlap-
ping the adapter loading with the prefill computation (§4)
to mitigate the cumulative decoding-interruption overhead.
At the cluster scale, TOPPINGS optimizes the scheduling of
requests to heterogeneous LoRA adapters using a rank-aware
scheduling algorithm, significantly enhancing cluster perfor-
mance and SLO compliance (§5). Fig. 7 illustrates the system
architecture, which consists of a cluster of LLM inference
servers, a scheduler, and a global LoRA registry.

LLM inference server. Each LLM inference server main-
tains a long-running service of the base LLM on the GPU.
It also stores a set of heterogeneous LoRA adapters in an
in-memory local LoRA repository. During inference, the
server coordinates LoRA computations on the CPU and GPU.
Specifically, it adapts the BGMV kernel from [6] to perform
LoRA computation efficiently on the GPU. For CPU-based
LoRA execution, it utilizes four techniques to enhance its effi-
ciency: 1) pipelined adapter loading, 2) asynchronous invoca-
tion, 3) shared memory data transfer, and 4) profiling-guided
parallelization, which we elaborate in §4.

32 64 128
Adapter Rank

0.0

0.5
La

te
nc

y
(s

) Time to first token (TTFT)
Strawman
Toppings

32 64 128
Adapter Rank

0.00

0.10 Time per token (TPT)

Figure 8: Performance of Llama2-7B on A100. The strawman
solution increases TTFT by up to 4× and TPT by up to 1.4×.

Rank-aware scheduler. The scheduler receives requests
and routes them to the appropriate servers to meet SLOs. To
make informed scheduling decisions, it uses a performance
model to predict the latency cost by considering the rank
heterogeneity of the serving batch, which we explain in §5.

Global LoRA registry. It stores the metadata of all adapters,
such as the LoRA ranks, the path to their weights file, etc.

Workflow. As illustrated in Fig. 7, new requests arrive at the
scheduler (1), which uses the rank-aware scheduling algo-
rithm described in §5 to route them to appropriate inference
servers (2). Following the continuous batching strategy [56],
the LLM inference server fetches requests from the request
queue (3) and provides generative inference services using
the corresponding LoRA adapters (4). New tokens generated
by the LLM are then streamed back to the users (5).

4 CPU-Assisted LoRA Serving

In this section, we present TOPPINGS’s design of CPU-
assisted LoRA serving to address the high cumulative
decoding-interruption overhead (§2.3). We start with a straw-
man solution. Then, we proceed to describe LoRA compu-
tation on GPU and CPU and discuss the challenges of effi-
ciently combining the two executions to reduce the decoding-
interruption overhead (§4.1). We then present optimization
techniques that address these challenges (§4.2).

Strawman Solution. To reduce the cumulative decoding-
interruption overhead, a strawman solution is to overlap
adapter loading with ongoing decoding. That is, when a new
request arrives, the system asynchronously loads its adapter
onto the GPU without interrupting the ongoing decoding of
inflight requests. When the adapter is fully loaded, the system
then switches to the prefilling computation of the new request.
Though the strawman solution can avoid decoding interrup-
tions, it makes new requests suffer from longer loading over-
head and degrades serving performance (Fig. 8), especially
the time-to-first-token (TTFT), which is the time required to
generate the first output token and is critical to user experi-
ence [11]. The strawman solution motivates TOPPINGS to
early-start the prefill with LoRA computation on the CPU.

4.1 LoRA Computation on GPU and CPU

A parameter-efficient adapter, LoRA requires lightweight
computation (§2.1) and can run on either GPU or CPU.

GPU LoRA. As the base LLM is “pinned” on GPU, running
LoRA adapters on the same device saves the communication
overhead and is usually more efficient than running them on
CPU. To maximize the token throughput, LoRA computa-
tions (i.e., xAB in Eq. (1)) are batched in each attention layer
during base LLM inference. This can be achieved with a spe-
cialized CUDA operator [6, 42]. In TOPPINGS, we adapt the
Batched Gather Matrix-Vector Multiplication (BGMV) opera-
tor [6], which parallelizes the LoRA weight gathering and
computation for efficient execution. The LoRA output is then
added to the base output in the self-attention computation,
following in Eq. (1). For an efficient implementation, we in-
corporate the operators of GPU LoRA computation into the
base LLM inference process, as shown in Fig. 9.

CPU LoRA. LoRA computation, which is highly
lightweight at approximately 1 GFLOPs (§2.1), can also be
executed using CPUs. However, computing LoRA on CPUs
requires layer-wise synchronization with the base LLM in-
ference running on the GPU. Specifically, at each attention
layer, the base inference process transfers the input tensor x
in Eq. (1) from the GPU device memory to the host memory
(Fig. 9). The CPU LoRA process then performs computation
and transfers the result xAB back to the GPU device. Mean-
while, the base inference process proceeds to compute xW,
which is finally adapted with the received LoRA output fol-
lowing Eq. (1). Though CPU LoRA requires synchronization,
it can start immediately as the LoRA weights are already in
memory. We hence utilize it to mitigate cold start and the
cumulative decoding-interruption overhead in GPU LoRA.

CPU-assisted LoRA serving with pipeline loading. When
a new request arrives and the corresponding adapter is not
available on the GPU, the server fetches it from host memory
and, in the meantime, early-starts its prefill computation using
the CPU LoRA instead of waiting for the adapter loading to
complete. As an adapter has a layered structure as the base
LLM, we design a pipeline loading scheme to overlap commu-
nication and computation [5]. Given an adapter with N layers,
we divide it into M layer groups. TOPPINGS uses the CPU to
compute the first layer group, while in the meantime loading
the second layer group onto the GPU. TOPPINGS carefully
determines the group size to ensure that CPU computation
and GPU loading of one layer group complete at around the
same time by profiling the latency of CPU LoRA computa-
tion, adapter loading and GPU LoRA computation. Starting
from the second group, the GPU pipeline is established, al-
lowing TOPPINGS to parallelize GPU computation of the
m-th group and GPU loading of the (m+1)-th group, where
m = 2,3, . . . ,M− 1. In case of latency variations in LoRA
loading and LoRA computation, Toppings can dynamically
decide where to execute LoRA computation during inference.
If the weight of the LoRA model layer has been loaded, Top-
pings executes the LoRA computation on the GPU; otherwise,
it executes it on the CPU. Pipeline loading is particularly ef-

Norm

Self-Attention

Norm & FFN

WK WVWQ

x LoRA on
GPU?

GPU LoRA
Yes

No

Shared
Memory

Base LLM
Process

CPU LoRA
CPU LoRA
CPU LoRA
CPU LoRA

Figure 9: Illustration of coordinated LoRA computation on
GPU and CPU per transformer block’s attention layer.

Synchronization Time Saved
F1 F4 CUDA computation Kernels F2 CUDA MemCpy Kernel
F3 Signal

F1

F4F’2

F4

CPU

GPU

F’3…
F’2 F’3

Toppings

LoRA CPU F5

F5 LoRA Computation

F1

F2

F2

F4
Native

F4

CPU

GPU

… F3

LoRA CPU F5

New OpsF’2 F’3

F FKernel Launch Kernel Execution

Figure 10: Execution timeline of Native LoRA Invocation
using default CUDA synchronize primitives and LoRA Invo-
cation with TOPPINGS’s operator in base LLM process.

fective when serving large adapters (e.g., rank > 64), reducing
the prefill latency by up to 15% compared with no pipelining
(M = 1), as shown in §7.3.

Fig. 9 shows the orchestrated CPU and GPU LoRA com-
putations, where CPU LoRAs run as isolated, concurrent pro-
cesses for resource/failure isolation and better performance.

Challenges. Hosting LoRA computation in isolated CPU
processes poses three challenges to system implementation.
First, running LoRA in CPU processes requires layer-wise
synchronization between the GPU-based LLM inference to
ensure data validity. Second, frequent triggering of LoRA
computation in each attention layer leads to high invocation
overhead, such as inter-process data transfer. Third, using
CPU to compute adaptation can be slow given its limited
parallelization capability, especially when the prompt is long.

4.2 Efficient GPU-CPU LoRA Coordination
In this subsection, we tackle the system challenges mentioned
earlier with three optimization techniques.

Sync-free CPU LoRA invocation. Most LLM serving sys-
tems achieve low latency through asynchronous GPU com-
putation in PyTorch-like frameworks [26, 31, 42, 50]. By de-
fault, GPU operations (e.g., CUDA kernels) are executed asyn-
chronously. They are first launched on CPU and enqueued to
the GPU device queue, but not necessarily executed until later.
For example, in Fig. 10, CUDA kernel F2 is first launched
on CPU, and then executed on GPU asynchronously. The
order in which the kernels are added to the stream dictates
their execution order. Hence, adapter serving requires careful
coordination between base LLM inference running on GPU

and LoRA invocation running on CPU to ensure correctness
and good performance.

In native PyTorch, having the base LLM process invoke
CPU LoRA requires explicit synchronization, which blocks
subsequent kernels from launching. To illustrate this problem,
we refer to Fig. 10-Top, which depicts the native PyTorch invo-
cation timeline from the base LLM process’s perspective. The
CUDA kernel F1 computes the input matrix x. Meanwhile, the
base LLM process launches F2 on CPU, a CUDA MemCpy ker-
nel to transfer the input matrix x to the host memory for CPU
LoRA’s access. After F1 execution completes on GPU, the
GPU executes the enqueued F2 kernel. Once the data transfer
completes, the base process uses a signaling operator F3 to
notify CPU LoRA processes to compute xAB(F5). It then
launches the next CUDA kernel F4. This implementation re-
quires explicit synchronization (shown as a yellow block with
slashes) to ensure that the memory copy (F2) completes be-
fore the signaling (F3). However, the synchronization blocks
the subsequent F4 from launching, resulting in significant
inference delay and GPU underutilization.

To address this issue, we introduce a customized operator
that eliminates explicit synchronization by fusing an asyn-
chronous MemCpy kernel with a CUDA signaling kernel. The
CUDA signaling kernel writes a semaphore variable in host
shared memory* to achieve signaling. As shown in Fig. 10-
Bottom, instead of relying on synchronization, we fuse F2
and F3 into an asynchronous CUDA kernel [F ′2,F

′
3], where

F ′2 performs asynchronous MemCpy and F ′3 asynchronously
signals the intended CPU LoRA processes through chang-
ing the semaphore in the shared memory. As a result, the
fused kernel [F ′2,F

′
3] can be added to the GPU device queue

without waiting for the completion of F1. Note that data valid-
ity and consistency is preserved in this case because CUDA
device queue follows a sequential, strict first-in-first-out ex-
ecution ordering. The semaphore variables employed will
synchronize and ensure the correctness of memory read and
write operations. Since the new operator requires no explicit
synchronization, subsequent base model kernels, such as F4,
can launch without being blocked, eliminating unnecessary
synchronization overhead. In §7.3, we show that our kernel
can reduce the prefill latency by 15% compared to imple-
mentation with explicit synchronization. The design of the
sync-free operation is not limited to LoRA computation and
can be adapted to other workloads if necessary.

Shared memory data transfer. Transferring data and sig-
nals between the base LLM process and the isolated CPU
LoRA processes requires inter-process communication (IPC).
This is a one-to-N communication involving one base LLM
inference process and multiple CPU LoRA processes. (We
explain why multiple CPU LoRA processes later.) We cre-
ate shared memory blocks in the host memory, i.e, DRAM,
for fast inter-process signaling and data transfer, eliminat-

*The term "shared memory" refers to the shared memory in host memory.

ing the need for data copying and (de)serialization (Fig. 9).
The CPU processes periodically poll from the semaphore in
the shared memory. Once it changes, LoRA processes start
reading the input matrix x from the shared memory and per-
form the computation xAB. They then write xAB back to
the shared memory and notify the LLM inference process to
incorporate the adaptation results (Eq. 1). Micro-benchmark
evaluations (§7.3) demonstrate that the use of shared memory
reduces data transfer overhead to less than 1 ms (Fig. 12-
Right), substantially outperforming the message passing IPC
employed by existing LLM frameworks [31].

Profiling-guided LoRA parallelization. Given that the
CPU has lower computing power and limited parallelization
capability compared to the GPU, performing LoRA adapta-
tion using a single CPU is not scalable. Therefore, we propose
a profiling-guided parallelization scheme to accelerate LoRA
adaptation using multiple CPU cores. As discussed in §2.1,
the adaptation computation is xAB, where x ∈ RB×L×H is
the input matrix for B requests with L tokens, totaling B×L
tokens. We first profile the performance achieved by a sin-
gle core under varying workloads (Fig. 17-Left) and set the
maximum number of tokens for a single CPU core to han-
dle for computation. For example, if one core can handle c
tokens, we allocate ⌈L

c ⌉ cores for computing the adaptation
results of each request with weight matrix W. Each core is
dedicated to an isolated CPU process to avoid interference.
Specifically, the CPU process reads a slice of x from the
shared memory region, performs the computation, writes the
results back to the shared memory, and notifies the base LLM
process accordingly. Compared to PyTorch’s native multi-
threading module [14], this approach achieves 1.4× speedup
when using 16 CPUs for the same workload (Fig. 17-Right).

Putting it altogether, our design, as demonstrated in §7.2,
can accelerate the request serving by 1.7× on average.

5 Rank-Aware Scheduling

In a multi-tenant LoRA serving system, user requests can
trigger the use of heterogeneous LoRA adapters with varying
ranks. As discussed in §2.3, the rank heterogeneity directly af-
fects the performance of multi-tenant LoRA serving systems.
Therefore, the scheduling strategy for handling these requests
is crucial for enhancing system efficiency (C2): a sub-optimal
strategy can drive the adapter heterogeneity in a server to a
non-ideal setting that slows down token generation for both
new and ongoing requests. An effective scheduler needs to
be aware of the heterogeneity-performance model to make
rank-aware request scheduling decisions and meet SLOs.

Performance modeling. TOPPINGS employs performance
models to guide the scheduler in making informed decisions,
ensuring that SLOs are met by mapping LoRA rank hetero-
geneity to serving performance. However, performance mod-
eling is challenging (C2). Under continuous batching, when

0 1000 2000
Maxi (rank(i)) × BatchSize

32.5
35.0
37.5

La
te

nc
y

(m
s) Fitted line

Profiled data

0 1000 2000
Sumi (rank(i))

35
40

Figure 11: Performance models for BGMV (Left) and MBGMV
(Right) kernels. Both linear regression models achieve a high
coefficient of determination (R2) of 0.96.

new requests are routed to a server, the server’s running batch
size increases, and the batch’s rank heterogeneity changes as
well, making the number of possible LoRA rank combinations
in a batch grow exponentially.

To address the challenge, TOPPINGS builds performance
models based on the characterizations of the LoRA compu-
tation kernels, e.g., BGMV and MBGMV. We profile the kernels
using Nvidia Nsight Compute [13] and observe that their per-
formance is bounded by the GPU memory bandwidth, which
is dominated by transferring adapter weights into L2 cache.
Based on the insights, we develop generic performance mod-
els to predict the latency of a prefill or decoding iteration for
a specific batch of heterogeneous adapters. These models are
created through lightweight serving performance profiling,
involving varying batch sizes and heterogeneous adapters on a
specific GPU. We present the performance models tailored for
both BGMV [6] and MBGMV [42]. For the padding-based BGMV
kernel, where lower-ranked LoRAs require padding to match
the highest rank, we observe that the serving performance of
decoding latency is almost linear to the product of batch size
and the maximum rank encountered in the batch (see Fig.11-
Left). On the other hand, MBGMV [42] modifies the BGMV ker-
nel to eliminate padding, improving performance with highly
heterogeneous LoRA ranks but introducing additional perfor-
mance overhead for computing homogeneous ranks. Through
profiling, we find that under MBGMV, the serving performance
scales linearly with the sum of LoRA ranks in a batch of het-
erogeneous adapters (Fig. 11-Right). Denoting the adapter
rank of request i as rank(i), we present performance models
for these two kernels on a batch of requests S as two linear
functions with parameters α and β, inspired by [29]:

PERFBGMV(S) = αB · |S | ·Maxi∈S rank(i)+βB
PERFMBGMV(S) = αM ·Sumi∈S rank(i)+βM

(2)

As shown in Fig. 11, our linear performance models ac-
curately fit the profiled data. Both models achieve a high
coefficient of determination (R2) of 0.96, suggesting the mod-
els can predict performance almost perfectly: R2=1 indicates
a perfect fit.

The parameters α and β are specific to the hardware and
LLM models. When the model or hardware changes, re-
profiling is required to adjust these parameters. To construct
the performance models in Fig. 11, we collect the data by
profiling the serving of 7,618 requests with batch sizes of 4,
8, 16, and 32, and LoRA ranks of 8, 16, 32, and 64, which
can complete in minutes. Besides, the model inference incurs

a negligible overhead in the order of 0.001ms.

Scheduling requests across inference servers. Using the
established performance models, we develop a rank-aware
scheduling algorithm (Algo. 1) for heterogeneous LoRA re-
quests. Upon receiving a new request, the scheduler gathers
information about ongoing requests from all available LLM
inference servers. The scheduler identifies potential candidate
servers by matching the base LLM, adapter, and GPU memory
availability. If multiple candidates are found, the scheduler
calculates a total cost score for each candidate server based
on the performance model. This cost score measures the im-
pact of the new requests on the performance of the server’s
ongoing requests. If serving the new request would cause a
violation of the SLO, the cost score is assigned a large penalty.
The scheduler then selects the server with the minimum cost
score to handle the new request.

Algorithm 1: Rank-aware Scheduling Policy
Input: Performance models for Prefill and Decoding: PrePer f (·),

DecPer f (·); average response length: avg_resp_len;
1 while True do
2 Request i arrives;
3 candidates← available LLM inference servers
4 for instance in candidates do
5 running_batch, queue = instance.GetStats()
6 cost = CalcCost(i, running_batch, queue)
7 requests = len(running_batch) + len(queue)
8 instance.total_cost = cost * requests
9 best = min(candidates, key=lambda x: x.total_cost)

10 best.serve(i)
11 Function CalcCost(req, running_batch, queue):
12 exists = running_batch + queue
13 # calculate additional prefilling time
14 ∆pre f ill = PrePer f (queue + req) - PrePer f (queue)
15 # calculate additional decoding time
16 ∆decode = DecPer f (exists + req) - DecPer f (exists)
17 cost_score = (∆pre f ill / avg_resp_len) + ∆decode
18 if DecPer f (exists + req) > SLO then
19 penalty_score = float(’inf’)
20 cost_score += penalty_score
21 return cost_score

6 Implementation

LLM inference server. We implemented TOPPINGS’s LLM
Inference Server on top of LightLLM [31], an LLM serv-
ing framework based on PyTorch [37] and Triton [48]. We
extended its Llama2 inference module to incorporate our
LoRA adapters. This allows for easy integration with dif-
ferent LLMs and other popular LLM inference frameworks
such as vLLM [26]. We implemented GPU LoRA adapters
by adapting the BGMV kernels [6]. Regarding CPU LoRA, we
implemented the custom CUDA kernel (§4.2) as a PyTorch
Extension using PyBind11. Each CPU LoRA adapter runs
as an isolated process, binding to one CPU core using the
numactl command. To enable efficient batch inference, we

utilize the request queue in LightLLM, which facilitates the
continuous batching mechanism [26, 56].

We employ tensor parallel techniques [45] to support base
LLMs that require multiple GPU devices. Tensor parallelism
involves partitioning a weight matrix into multiple chunks,
and each GPU device holds only one chunk to perform a
portion of the computation in parallel [28]. To enable tensor
parallelism for LoRA computation, TOPPINGS partitions the
LoRA adapter weights (B in Eq.1) using the same strategy as
that of the base LLMs. It performs the computation and incor-
porates the adaptation results into the inference intermediates
in place, causing no extra communication overhead.

Scheduler & global LoRA registry. We implemented the
scheduler with Algo. 1 using Python Flask. For the global
LoRA registry, we utilized SQLite.

7 Evaluation

We evaluate TOPPINGS regarding the efficiency of an LLM
inference server (§4) and the scheduler performance across
multiple servers (§5). Our evaluation highlights include:
• TOPPINGS achieves efficient multi-tenant LoRA serving on

Llama2-7B/70B, outperforming state-of-the-art baselines,
e.g., S-LoRA [42] and dLoRA [54] (§7.2).

• TOPPINGS’s optimizations in CPU LoRA execution are
effectively illustrated by various micro-benchmarks (§7.3).

• TOPPINGS’s scheduler achieves high SLO attainment and
improves the performance as a cloud service (§7.4).

7.1 Experimental Setup

Model and server configs. We adopt Llama2 [50] with 7B
and 70B parameters where LoRA adapters are applied to
WQ, WK , and WV in LLM’s attention layers following the
standard settings* [12, 22, 42]. We serve Llama2-7B with a
single NVIDIA A100 GPU and Llama2-70B with four A100
GPUs using tensor parallelism, following [6, 32, 54].

Metrics. We use following metrics, which are considered
essential in user-facing LLM serving [1, 11, 38, 42].
• Time-to-first-token (TTFT) measures how quickly users

start getting the model’s output after entering their prompts.
It reflects the time required to process the prompt and then
generate the first output token. Low waiting times for a
response are essential in real-time interactions.

• Time-per-token (TPT) measures the time on average to gen-
erate an output token for each user. This metric corresponds
with the perceived "speed" of the model. We calculate TPT
by accounting for all tokens, including those from both the
prefill and decoding phases.

*Following the setting in [6, 42], we use dummy weights (not zeros) for
LoRA models, which do not affect system performance.

• E2E Latency measures the end-to-end time it takes for the
model to generate the full response for a request.

Baselines. We consider the following baselines.
• CACHED represents an ideal but impractical method where

all required LoRA adapters are pre-cached in unlimited
GPU memory. It has no adapter loading overhead, thus
achieving performance upper bound.

• S-LORA [42] represents a state-of-the-art multi-tenant
LoRA serving framework, which is also built on top of
LightLLM [31]. It loads LoRA adapters on demand and
uses an adapted CUDA kernel for GPU LoRA computation.

• dLORA [54] is another LoRA serving system based on
vLLM [26]. It pre-caches all LoRA adapters into GPU
memory and dynamically merges/unmerges LoRAs with
the base model during inference. It uses PyTorch’s general
matrix multiply (GEMM) kernel for LoRA computation.

Note that CACHED and TOPPINGS are built on top of
LightLLM [31], the same as S-LORA [42]. We equip
CACHED and TOPPINGS with the BGMV kernel [6] to perform
GPU LoRA computation for a fair comparison. S-LORA and
dLORA use their own kernels.

Workloads. We use both scaled production and synthetic
workloads in our evaluation.
• Scaled production workload. We use the MAF trace [40]

to generate a scaled production workload, which is widely
used to emulate model serving workloads [30, 54, 59]. The
trace contains invocation traffic of different functions, and
we regard each function as one adapter. We randomly group
adapters. Each inference server hosts a group of adapters
and receives the aggregated request traffic from all the
adapters it hosts. Within a group, adapters have varying
probabilities of being invoked shown in Fig. 12-Left, pro-
portional to their invocation frequency in the original trace.

• Synthetic workload. The aggregate request traffic to an
LLM server follows Poisson processes with varying in-
tensities, widely used in approximating simulated invoca-
tions [6,59]. Similar to [6,42], each request targets a distinct
adapter and hence undergoes the adapter loading phase. Fol-
lowing [42], we place 200 adapters in an inference server.

Datasets. We refer two datasets to set each request’s prompt
and output length. The first is LMSYS-CHAT-1M [61], which
contains input and output texts of one million real-world
conversations. The second is QMSum [46, 62], which has
prompts with lengths ranging from 2k to 30k tokens. QMSum
comprises transcripts from real-world meetings, focusing on
query-based summarization with long detailed answer [62].

7.2 LLM Inference Server Performance
In this section, we evaluate the performance of a single LLM
inference server, which is subject to adapter loading and com-
puting. For a fair comparison, we employ homogeneous LoRA

0 25 50
LoRA Adapter ID

0
5%

10%

Pr
ob

ab
ilit

y 128
256
512

500520 1 3 5
Number of Client Processes

0.0

2.5

5.0

L
a
te

n
c
y
 (

m
s
)

1.0
1.6

2.4

0.6 0.9 1.0

Skt(Other)
Skt(Data)

ShM(Other)
ShM(Data)

Figure 12: Left: LoRA invocation probability. X-axis: adapter
ID sorted by invocation probability. Right: CPU LoRA com-
putation time. Each process receives data of 16 tokens. Skt:
Domain socket for inter-process communication (IPC). ShM:
Shared memory for IPC. Data: Time for transfering data to
other process via IPC. Other: Time for all other operations.

128 256 512
0.00

0.05

0.10

L
a
te

n
c
y
 (

s
)

TTFT (s)
Cached S-LoRA dLoRA Toppings

128 256 512
Number of adapters in a server

0.00

0.02

0.04

0.06
TPT (s)

128 256 512
0

1

2
E2E latency (s)

Figure 13: Performance with varying number of adapters
under the scaled MAF workloads. dLORA causes GPU OOM
when there are 512 adapters in the server.

ranks in this section, eliminating the potential performance
differences that result from the way different LoRA computa-
tion kernels handle heterogeneous ranks [6, 42].

Scaled production workloads. We first evaluate TOPPINGS
on the scaled production workload. Fig. 12-Left illustrates
the skewed distribution of adapter popularity. We evaluate
each baseline with an increasing number of LoRAs served
in an inference server. With more LoRA adapters, the server
will receive higher request loads, and each new request is
more likely to invoke a new LoRA adapter that needs to be
loaded onto GPU on demand (Fig. 12-Left). Therefore, a
larger number of LoRAs manifests higher cumulative load-
ing overhead. The average aggregate RPS for 128/256/512
adapters is 1.5/3.6/7.7, scaled from the original trace. We
set the LoRA rank = 64 in this setting.

We measure serving performance using the metrics defined
in §7.1. See Fig. 13. When 128 LoRA adapters are in a server,
the impact of cumulative adapter loading overhead is negligi-
ble because the request traffic is low, and most new requests
do not require adapter loading. Compared to CACHED, S-
LORA increases TTFT by 43%, TPT by 7%, and E2E latency
by 5% on average, mainly due to the one-off adapter load-
ing overhead introduced by new requests. dLORA achieves
better TTFT as it pre-caches all LoRA adapters into GPU
and dynamically merges LoRAs with the base LLM to accel-
erate prefill computation [54]. However, its frequent LoRA
(un)merging operations impact the decoding, increasing the
TPT by 29% and E2E latency by 29% compared to CACHED.
TOPPINGS outperforms by only increasing TTFT by 9%.

However, as the number of LoRA adapters increases to 512,
adapter loading incurs prohibitively high cumulative overhead,
which can hinder S-LORA from scaling to efficiently serve

Setup Model Size Datasets No. of LoRAs Rank RPS
S1 7B LMSYS 200 32 9
S2 7B LMSYS 200 64 6
S3 7B LMSYS 200 64 9
S4 7B QMSum 50 256 3
S5 70B LMSYS 200 32 3
S6 70B LMSYS 200 64 3

Table 2: Evaluation setups with the synthetic workload.

S1 S2 S3
0.0

0.1

L
a
te

n
c
y
 (

s
)

TTFT (s)
Cached S-LoRA dLoRA Toppings

S1 S2 S3
0.0

0.1

TPT (s)

S1 S2 S3
0

2

E2E latency (s)

Figure 14: Serving performance. Setup: S1, S2, S3 in Tab. 2.

a large number of adapters. Compared to the CACHED, S-
LORA increases TPT by 43%, and E2E latency by 43% on
average. Nevertheless, TOPPINGS can rival CACHED, accel-
erating S-LORA by 1.25×, 1.29×, 1.28× in terms of TTFT,
TPT and E2E latency, respectively.

dLORA falls short in serving numerous LoRA adapters
in a server. When 256 adapters are in a server, dLORA in-
curs significant computation overhead, increasing TPT/E2E
latency by 86%/90%, due to its LoRA computation operator.
Worse, deploying 512 adapters in a server can cause GPU
OOM and the server cannot spin up (Fig. 13).

Synthetic workloads. We evaluate each baseline with vari-
ous setups using the synthetic workloads, as shown in Tab. 2.

1) Setup S1, S2, and S3. We explore different LoRA ranks
and request traffic in these three settings. As discussed in §2.3,
two factors affect TOPPINGS’s advantages (§2). The first is
LoRA rank, which determines the size of a LoRA adapter:
smaller rank leads to shorter loading latency. The second
is the workload traffic, which determines the frequency of
adapter loading (decoding interruption).

As shown in Fig. 14, TOPPINGS achieves the most perfor-
mance advantage in S3, which has the largest LoRA rank and
highest RPS. TOPPINGS rivals the performance of CACHED
by introducing tolerable overheads, slightly increasing the
TTFT by 6%, TPT by 6%, and the E2E latency by 7%. Com-
pared to the CACHED baseline, S-LORA introduces high
overhead due to the cumulative loading interruption, increas-
ing TTFT by 82%, TPT by 80%, and E2E latency by 81% on
average. dLORA incurs no adapter loading overhead as it pre-
loads all adapters but falls short in calculating LoRA adaption
(Eq. 1), degrading the computation performance. Besides,
dLORA decides online whether to merge/unmerge the LoRA
adapters with the base model to provide service [54], further
increasing prefill latency when RPS is high. Compared to the
CACHED baseline, dLORA increases TTFT by 29%, TPT by
58%, and E2E latency by 57% on average. We further eval-
uate TOPPINGS’s performance under conditions of reduced
CPU availability, where each CPU LoRA computes 4× more

0 25 50 75
Latency (ms)

Toppings

dLoRA

S-LoRA

Cached

26
43

49

28
75

38
LoRA Load Prefill

0 20 40
Latency (ms)

25

42

24

26
Decode

Figure 15: Prefill and decoding latency at LLM server.

S4 S5 S6
0.0

0.2

0.4

L
a
te

n
c
y
 (

s
)

TTFT (s)
Cached S-LoRA dLoRA Toppings

S4 S5 S6
0.0

0.2

0.4
TPT (s)

S4 S5 S6
0

10

E2E latency (s)

Figure 16: Serving performance. Setup: S4, S5, S6 in Tab. 2.
dLORA causes GPU OOM in S6.

tokens. Despite the constrained CPU resources, TOPPINGS
maintains consistent performance advantages over the base-
line systems thanks to the pipeline loading design (§4.1).
Compared to the CACHED baseline, TOPPINGS increases
the TTFT by 17%, TPT by 11%, and E2E latency by 10%.
The pipelined loading design allows TOPPINGS to promptly
switch to GPU for LoRA computation, effectively mitigating
the impact of reduced CPU availability.

S1 and S2 represents less challenging settings, with smaller
LoRA ranks or lower request traffic. As shown in Fig. 14,
S-LORA/dLORA incurs smaller overhead than that in S3
while TOPPINGS rival the performance of CACHED.

Fig. 15 explains TOPPINGS’s advantage from the LLM
inference server’s side. The latencies of decoding iterations
achieved by CACHED, S-LORA, and TOPPINGS are similar,
while S-LORA have a long prefill iteration due to the adapter
loading overhead. TOPPINGS leverages the CPU-assisted de-
sign (§4) to avoid the loading overhead. dLORA incurs no
loading overhead as it pre-cache all adapters but slows down
LoRA computing, leading to the long decoding latency.

Resource Utilization. Throughout the request serving in S3,
the average GPU utilization of S-LORA/dLORA/TOPPINGS
is 46%/81%/56%. dLORA’s GPU utilization is much higher
due to its LoRA (un)merging overhead and computation
whereas S-LORA and TOPPINGS use high-performance ker-
nels adapted from BGMV [6]. The average CPU utilization of
S-LORA/dLORA/TOPPINGS is 4%/4%/46%, respectively,
with each request consuming an average of 27ms for CPU-
assisted LoRA computation. TOPPINGS exploits the under-
utilized CPUs [23] to accelerate adapter serving, which is
overlooked by S-LORA and dLORA.

2) Setup S4. We stress test each baseline using the long
prompts from the QMSum dataset [46, 62] that have lengths
ranging from 2k to 30k tokens. We adopt Lloco’s work-
flow [46] that serves these prompts with LoRA adapters.
Given a lengthy prompt, Lloco first processes the prompt into
token embeddings using the AutoCompressor [8, 46]. Subse-
quently, Lloco sends a request with the embeddings to query

the LLM and a designated LoRA adapter. As larger ranks
contribute to higher response quality for long prompts [7],
we use adapters with rank = 256. As shown in Fig. 16, TOP-
PINGS maintains superior with minimal overhead compared to
CACHED. dLORA’s slow LoRA computation is more salient
with the long prompts in this setting.

3) Setup S5,S6. In these two settings, we evaluate each
baseline with Llama2-70B using tensor parallelism [32]. We
re-implement S-LORA by adapting CACHED since existing
works [6, 42] have not released code in multi-GPU settings.
We also emulate dLORA by importing its LoRA computation
into CACHED to avoid the performance differences resulted
from different backends (vLLM [26] v.s. lightLLM [31]),
which are evident in the multi-GPU settings [10, 49, 64].
See Fig. 16. In S5, S-LORA/dLORA/TOPPINGS increases
TTFT by 65%/18%/24%, TPT by 65%/59%/30%, and E2E
latency by 61%/61%/33%. compared to CACHED. In S6,
dLORA fails due to GPU OOM and TOPPINGS achieves con-
sistent benefits, accelerating TTFT by 1.6×, TPT by 1.5×,
and E2E latency by 1.4×, compared to S-LORA.

7.3 Microbenchmark Evaluations
We further evaluate the effectiveness of the CPU LoRA opti-
mizations (§4) at the microbenchmark level.

Pipelined adapter loading. Pipelined adapter loading al-
lows TOPPINGS to promptly prefill prompts on GPU instead
of waiting for the adapter to be fully loaded (§4.1). To show
its effectiveness, we measure the prefill performance w/ and
w/o pipelined adapter loading, where the pipelined adapter
loading accelerates the prefill computation by 1.2× and 1.1×
when using adapter with rank=128 and rank=64.

Sync-free CPU LoRA invocation. To analyze the perfor-
mance of our optimized CPU LoRA invocation kernel (§4.2),
we compare the prefill latency using PyTorch’s native im-
plementation and our optimized kernels. While prefilling 64
tokens, TOPPINGS’s kernel gains a 10% speedup, reducing
the latency from 67ms to 61ms. While prefilling 256 tokens,
TOPPINGS’s kernel gains a 15% speedup, reducing the latency
from 145ms to 126ms.

Shared memory data transfer. We compare the latency of
computing CPU LoRA with different IPC methods: shared
memory and UNIX domain socket. We measure the time
it takes to perform LoRA computation and the data round
trip cost. Fig. 12-Right shows that as the number of receiver
processes increases, the domain socket approach suffers from
linear time increase in data transmission, whereas the shared
memory approach obtains near-constant performance.

Multi-CPU computation. We first profile the LoRA com-
putation performance in a prefill phase with a single CPU.
We profile it with different workloads (number of tokens to
process). We run the profiling on a Llama2-7B model with
a A100 card using Intel Platinum 8369B CPU. As shown in

4 16 64 256
Number of Tokens

0

5

L
a
te

n
c
y

 (
m

s
)

0.2 0.4 1.0

4.0

4 8 16
Parallelism Degree

0

2 1.7
1.3 1.31.3 1.0 0.9

Native Toppings

Figure 17: Left: CPU computation time of xAB in the prefill
phase. Right: CPU computation for 256 tokens with different
parallelism. Native: PyTorch native multi-threading [14].

30 40 50 60 70
Request rate (req/s)

0.0
0.2
0.4
0.6
0.8
1.0

SL
O

At
ta

in
m

en
t Random

FirstFit
dLoRA
Toppings

Figure 18: Scheduler performance under varying RPS.

Fig. 17-Left, the CPU has limited parallelism and does not
scale to fit high workloads. We observe similar results using
AMD EPYC 7R32 CPU. Fig. 17-Right illustrates the perfor-
mance of prefilling a prompt of 256 tokens with TOPPINGS’s
multi-CPU design (§4.2) or the native multi-core utilization
of PyTorch multi-threading module [14]. TOPPINGS’s design
achieves up to 1.4× speedup.

7.4 Cluster Scale Performance
Following [59], we run cluster scale experiments in two set-
tings: an 8-instance real-world testbed and a large-scale simu-
lation. We use four different LoRA ranks in this section.

Baselines. Upon the arrival of new requests, we consider the
following scheduling baselines for comparison:
• dLORA [54] enables reactive request migration to balance

the workloads among servers.
• FIRSTFIT scheduler picks a server following the first-fit

bin-packing strategy, which is also adopted by Punica [6].
• RANDOM scheduler randomly picks an inference server.

Performance model. The performance model can predict
performance almost perfectly with a high R2 of 0.96 (§5).
Besides, the model takes 0.005ms for one inference.

Testbed evaluation. We set up a cluster testbed consisting of
8 Llama2-7B models to evaluate each scheduler under varying
Poisson request traffic. TOPPINGS’s LLM inference server is
used as the LoRA serving backend. The SLO is set regarding
TPT, as it reflects the perceived "speed" of the inference ser-
vice. The SLO is set to be 1.5× higher than that achieved by
LLM inference without LoRA. See Fig. 18. TOPPINGS’s rank-
aware scheduler outperforms other baselines by achieving the
highest SLO attainment across all settings. When the request
rate is low (RPS=30), the RANDOM and dLORA perform well
as they tend to scatter the requests across servers, mitigating
the impacts of rank heterogeneity. In contrast, the FIRSTFIT
degrades as it tends to consolidate requests to heterogeneous
LoRAs on a few servers, exacerbating rank heterogeneity. As
the request rate increases, the performance of rank-agnostic

Method

0

1

S
L
O

0.18
0.01

0.7

0.99

0.03 0.04 0.05 0.06 0.07
Time Per Token

0

1

C
D

F

Random FirstFit dLoRA Toppings

Figure 19: Scheduler performance across 60 instances.

schedulers, e.g., dLORA, plummets, while TOPPINGS main-
tains consistent advantages, improving SLO attainment by
21% and 26% when the RPS is 40 and 50, respectively.

Large-scale simulation. To ensure the fidelity of the simula-
tor, we reuse the code from the LightLLM [31] and maintain
the same serving logic. We obtain the prefill and decoding
latency for the simulator by extensive profiling. We include
all 40,000 functions from the MAF trace [40], with an aggre-
gated RPS≈340, and use 60 server instances. The SLO is set
regarding TPT, which is 1.5× higher than that of LLM infer-
ence without LoRA. Fig. 19 compares the SLO attainment of
each scheduler and the CDF of requests’ TPT. TOPPINGS’s
rank-aware scheduler achieves the highest SLO attainment
and speeds up the average TPT by 22/23/57% compared to
dLORA/RANDOM/FIRSTFIT. We see similar results in the
simulation if replacing the BGMV in TOPPINGS with MBGMV.

8 Related Work and Discussion

LLM inference. Optimizing LLM inference is the target of re-
cent studies [2,16–19,21,25,30,38,47,57]. Orca [56] proposed
iteration-level continuous batching to improve the through-
put of LLM serving. Further, vLLM [26] addressed the issue
of the GPU memory fragmentation resulting from LLM’s
KV Cache, improving serving throughput by high GPU effi-
ciency. Sarathi-Serve executes chunked-prefills, which com-
bines prefill and decoding computation to maximize serving
throughput [1]. DeepSpeed-Ulysses enables efficient LLM
training and inference for long prompts using sequence par-
allelism [25]. FlexGen [44] supported LLMs with limited
GPU memory, maximizing serving throughput by efficiently
processing tensors. TOPPINGS is compatible with these op-
timizations, has already supported continuous batching and
optimized GPU memory management mechanism [31].

Multi-tenant LoRA serving. In addition to the works dis-
cussed in §2.4, PetS [63] proposed a unified framework for
serving various adapters in discriminative language models.
However, it lacks iterative decoding and is orthogonal to TOP-
PINGS. Recent works [43] have also explored the fairness
issues in multi-tenant LLM serving, where some users may
receive more resources than others. The primary goal of TOP-
PINGS’s rank-aware scheduling algorithm is to address perfor-
mance variations caused by heterogeneous LoRA ranks, while
not explicitly tackling fairness concerns. A straightforward ap-
proach to ensuring fairness is to limit the number of requests
a user can make within a specified time frame, a strategy

also adopted by OpenAI [36]. It is worth noting that fairness
in LLM serving is not a challenge unique to LoRA serving.
For instance, the Virtual Token Counter (VTC) scheduling
algorithm [43] guarantees fairness not only for general LLM
serving but also for adapter-based serving. Importantly, TOP-
PINGS does not introduce additional unfairness to the system
and is fully compatible with fairness strategies like VTC.

Multi-model inference serving. A series of systems opti-
mize multi-model inference serving, including Clipper [9],
MArk [58], Nexus [41], INFaaS [39], Clockwork [20], Shep-
herd [59], and AlpaServe [28]. They optimize batching,
caching, and model placement of serving multiple models.
However, they do not specially support generative LLMs and
heterogeneous LoRA adapters, leading to optimization gaps.

Discussion. TOPPINGS’s design is versatile, supporting vari-
ous LLM series and not restricted to a specific framework, as
most LLMs share a backbone of Transformer blocks and uti-
lize the attention mechanism [52]. The CPU-assisted design
is compatible with existing GPU servers, which are typically
equipped with abundant CPUs but have low CPU utiliza-
tion [23, 53]. For example, the AWS g5.48xlarge instance
has 192 vCPU cores. Besides a recent analysis of production
traces from GPU clusters reveals significant underutilization
of CPU resources [23]. This observation suggests that spare
CPU cycles are readily available to support a CPU-assisted de-
sign without impacting overall cluster performance. For fault
tolerance, our current implementation isolates CPU processes,
with each bound to a specific CPU. Additionally, running
redundant CPU processes enhances fault tolerance.

9 Conclusion

This paper presents TOPPINGS, an efficient multi-tenant
LoRA serving system. In a nutshell, TOPPINGS multiplexes
base model to serve many LoRA adapters in a batch, coordi-
nates LoRA computation on CPU and GPU to avoid cold-start,
and employs a rank-aware scheduler to meet SLOs. Compared
to existing systems, TOPPINGS significantly improves serving
efficiency by reducing the request serving latency by up to
47% and achieves an SLO attainment of 99%.

Acknowledgement

We thank our shepherd, Liting Hu, and the anonymous review-
ers for their valuable feedbacks that help improve the quality
of this work. We also thank Xiaozhe Yao for his feedback
and assistance in the early stage of this work. This work
was supported in part by Huawei Cloud Research Grant,
RGC CRF Grant (Ref. #C6015-23G), RGC GRF Grants
(Ref. #16210822 and #16217124), and NSFC/RGC Collab-
orative Research Scheme (Ref. #CRS_HKUST601/24 and
#CRS_PolyU501/23).

References

[1] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree
Mohan, Nipun Kwatra, Bhargav Gulavani, Alexey
Tumanov, and Ramachandran Ramjee. Taming
Throughput-Latency tradeoff in LLM inference with
Sarathi-Serve. In 18th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 24),
2024.

[2] Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, and Yuxiong He. Deepspeed-inference: En-
abling efficient inference of transformer models at un-
precedented scale. In SC22: International Conference
for High Performance Computing, Networking, Storage
and Analysis, 2022.

[3] AnyScale. Announcing anyscale private endpoints and
anyscale endpoints fine-tuning. https://bit.ly/40eobib,
2024.

[4] Microsoft Azure. Customize a model with azure openai
service. https://bit.ly/3WbehwU, 2024.

[5] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin.
PipeSwitch: Fast pipelined context switching for deep
learning applications. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), 2020.

[6] Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis
Ceze, and Arvind Krishnamurthy. Punica: Multi-tenant
lora serving. In Proceedings of Machine Learning and
Systems 2024 (MLSys 2024), 2024.

[7] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. LongLoRA: Effi-
cient fine-tuning of long-context large language models.
In The Twelfth International Conference on Learning
Representations, 2024.

[8] Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Danqi Chen. Adapting language models to compress
contexts. In The 2023 Conference on Empirical Methods
in Natural Language Processing (EMNLP 23), 2023.

[9] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper:
A {Low-Latency} online prediction serving system. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 613–627, 2017.

[10] Cydia2018. Performance comparison between lightllm
and vllm. https://github.com/ModelTC/lightllm/issues/
116.

[11] Databricks. Llm inference performance engineer-
ing: Best practices. https://www.databricks.com/blog/
llm-inference-performance-engineering-best-practices,
2023.

[12] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. Qlora: Efficient finetuning of quan-
tized llms. In Advances in Neural Information Process-
ing Systems (NeurIPS 23), 2023.

[13] Nvidia Developer. Nvidia nsight compute. https:
//developer.nvidia.com/nsight-compute, 2024.

[14] PyTorch Docs. Cpu threading and torchscript in-
ference. https://pytorch.org/docs/stable/notes/cpu_
threading_torchscript_inference.html, 2023.

[15] Jianbo Dong, Zheng Cao, Tao Zhang, Jianxi Ye,
Shaochuang Wang, Fei Feng, Li Zhao, Xiaoyong Liu,
Liuyihan Song, Liwei Peng, Yiqun Guo, Xiaowei Jiang,
Lingbo Tang, Yin Du, Yingya Zhang, Pan Pan, and Yuan
Xie. Eflops: Algorithm and system co-design for a high
performance distributed training platform. In 2020 IEEE
International Symposium on High Performance Com-
puter Architecture (HPCA), 2020.

[16] Jiangfei Duan, Runyu Lu, Haojie Duanmu, Xiuhong
Li, Xingcheng Zhang, Dahua Lin, Ion Stoica, and Hao
Zhang. Muxserve: Flexible spatial-temporal multiplex-
ing for multiple llm serving. In ICML, 2024.

[17] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian
Brabete, Dmitrii Ustiugov, Yuvraj Patel, and Luo Mai.
Serverlessllm: Locality-enhanced serverless inference
for large language models. In 18th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 24), 2024.

[18] Yichao Fu, Siqi Zhu, Runlong Su, Aurick Qiao, Ion Sto-
ica, and Hao Zhang. Efficient LLM scheduling by learn-
ing to rank. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

[19] Waris Gill, Mohamed Elidrisi, Pallavi Kalapatapu, Am-
mar Ahmed, Ali Anwar, and Muhammad Ali Gulzar.
Meancache: User-centric semantic cache for large lan-
guage model based web services. In 2025 IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS 25), 2025.

[20] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving DNNs like clockwork: Performance
predictability from the bottom up. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), 2020.

https://bit.ly/40eobib
https://bit.ly/3WbehwU
https://github.com/ModelTC/lightllm/issues/116
https://github.com/ModelTC/lightllm/issues/116
https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://pytorch.org/docs/stable/notes/cpu_threading_torchscript_inference.html
https://pytorch.org/docs/stable/notes/cpu_threading_torchscript_inference.html

[21] Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng
Chen, Jiang Xu, Shuang Chen, Hao Feng, Chenxi Wang,
Sa Wang, Yungang Bao, et al. Inference without interfer-
ence: Disaggregate llm inference for mixed downstream
workloads. arXiv preprint arXiv:2401.11181, 2024.

[22] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. LoRA: Low-rank adaptation of large language
models. In International Conference on Learning Rep-
resentations (ICLR 22), 2022.

[23] Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang,
Meng Zhang, Qiaoling Chen, Peng Sun, Dahua Lin, Xi-
aolin Wang, Yingwei Luo, Yonggang Wen, and Tianwei
Zhang. Characterization of large language model de-
velopment in the datacenter. In 21st USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 24), 2024.

[24] Huggingface. Text generation inference. https://github.
com/huggingface/text-generation-inference.

[25] Sam Ade Jacobs, Masahiro Tanaka, Chengming
Zhang, Minjia Zhang, Reza Yazdani Aminadabi, Shuai-
wen Leon Song, Samyam Rajbhandari, and Yuxiong He.
System optimizations for enabling training of extreme
long sequence transformer models. In Proceedings of
the 43rd ACM Symposium on Principles of Distributed
Computing, PODC ’24, 2024.

[26] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonza-
lez, Hao Zhang, and Ion Stoica. Efficient memory man-
agement for large language model serving with page-
dattention. In Proceedings of the ACM SIGOPS 29th
Symposium on Operating Systems Principles (SOSP 23),
2023.

[27] Suyi Li, Lingyun Yang, Xiaoxiao Jiang, Hanfeng Lu,
Zhipeng Di, Weiyi Lu, Jiawei Chen, Kan Liu, Yinghao
Yu, Tao Lan, Guodong Yang, Lin Qu, Liping Zhang,
and Wei Wang. Katz: Efficient workflow serving for
diffusion models with many adapters. In Proc. USENIX
ATC, 2025.

[28] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng Chen,
Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Al-
paServe: Statistical multiplexing with model parallelism
for deep learning serving. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 23), 2023.

[29] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Sameh Elnikety, Somali Chaterji, and Saurabh
Bagchi. ORION and the three rights: Sizing, bundling,

and prewarming for serverless DAGs. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), 2022.

[30] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi,
Dahua Lin, Bin Cui, and Zhihao Jia. Spotserve: Serv-
ing generative large language models on preemptible
instances. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 24), 2024.

[31] ModelTC. Light llm. https://github.com/ModelTC/
lightllm.

[32] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on gpu
clusters using megatron-lm. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’21, 2021.

[33] OpenAI. Custom instructions for chatgpt. https://openai.
com/blog/custom-instructions-for-chatgpt, 2023.

[34] OpenAI. Gpt-3.5 turbo fine-tuning and api updates.
https://bit.ly/4j9QVS2, 2023.

[35] OpenAI. Openai documentation: Fine-tuning. https:
//platform.openai.com/docs/guides/fine-tuning, 2024.

[36] OpenAI. What are the best practices
for managing my rate limits in the
api? https://help.openai.com/en/articles/
6891753-what-are-the-best-practices-for-managing-my-rate-limits-in-the-api,
2025.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: an imperative style, high-performance
deep learning library. In Proceedings of the 33rd Inter-
national Conference on Neural Information Processing
Systems (NeurIPS 19), 2019.

[38] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka
Shah, Inigo Goiri, Saeed Maleki, and Ricardo Bianchini.
Splitwise: Efficient Generative LLM Inference Using
Phase Splitting . In 2024 ACM/IEEE 51st Annual Inter-
national Symposium on Computer Architecture (ISCA
24), 2024.

https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://openai.com/blog/custom-instructions-for-chatgpt
https://openai.com/blog/custom-instructions-for-chatgpt
https://bit.ly/4j9QVS2
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://help.openai.com/en/articles/6891753-what-are-the-best-practices-for-managing-my-rate-limits-in-the-api
https://help.openai.com/en/articles/6891753-what-are-the-best-practices-for-managing-my-rate-limits-in-the-api

[39] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and
Christos Kozyrakis. INFaaS: Automated model-less
inference serving. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), 2021.

[40] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), 2020.

[41] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A gpu cluster engine for
accelerating dnn-based video analysis. In Proceedings
of the 27th ACM Symposium on Operating Systems Prin-
ciples, pages 322–337, 2019.

[42] Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper,
Nicholas Lee, Shuo Yang, Christopher Chou, Banghua
Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez,
and Ion Stoica. S-LoRA: Serving thousands of concur-
rent lora adapters. In Proceedings of Machine Learning
and Systems 2024 (MLSys 2024), 2024.

[43] Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu,
Zhuohan Li, Danyang Zhuo, Joseph E. Gonzalez, and
Ion Stoica. Fairness in serving large language models.
In Proc. OSDI, 2024.

[44] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christopher
Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput
generative inference of large language models with a
single gpu. In International Conference on Machine
Learning (ICML 23), 2023.

[45] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism, 2020.

[46] Sijun Tan, Xiuyu Li, Shishir G Patil, Ziyang Wu, Tian-
jun Zhang, Kurt Keutzer, Joseph E. Gonzalez, and
Raluca Ada Popa. LLoCO: Learning long contexts
offline. In Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing, 2024.

[47] Yifan Tan, Cheng Tan, Zeyu Mi, and Haibo Chen.
Pipellm: Fast and confidential large language model
services with speculative pipelined encryption. arXiv
preprint arXiv:2411.03357, 2024.

[48] Philippe Tillet, Hsiang-Tsung Kung, and David Cox.
Triton: an intermediate language and compiler for tiled

neural network computations. In Proceedings of the 3rd
ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, 2019.

[49] tonylin52. lightllm vs vllm. https://github.com/
ModelTC/lightllm/issues/79.

[50] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models,
2023.

[51] Undi95. Undi95/llama2-13b-no-robots-alpaca-lora.
https://huggingface.co/Undi95/Llama2-13B-no_
robots-alpaca-lora, 2024.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Proceedings of the 31st International Conference on
Neural Information Processing Systems (NeurIPS 17),
2017.

[53] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. MLaaS in the wild: Workload analysis
and scheduling in Large-Scale heterogeneous GPU clus-
ters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), 2022.

[54] Bingyang Wu, Ruidong Zhu, Zili Zhang, Peng Sun, Xu-
anzhe Liu, and Xin Jin. dLoRA: Dynamically orches-
trating requests and adapters for LoRA LLM serving. In
18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), 2024.

[55] YeungNLP. Yeungnlp/longqlora-llama2-7b-
8k-lora. https://huggingface.co/YeungNLP/
LongQLoRA-Llama2-7b-8k-lora, 2024.

[56] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for Transformer-Based generative mod-
els. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), 2022.

[57] Zhongkai Yu, Shengwen Liang, Tianyun Ma, Yunke Cai,
Ziyuan Nan, Di Huang, Xinkai Song, Yifan Hao, Jie
Zhang, Tian Zhi, Yongwei Zhao, Zidong Du, Xing Hu,
Qi Guo, and Tianshi Chen. Cambricon-llm: A chiplet-
based hybrid architecture for on-device inference of 70b
llm. In 2024 57th IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2024.

[58] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. {MArk}: Exploiting cloud services for {Cost-
Effective},{SLO-Aware} machine learning inference

https://github.com/ModelTC/lightllm/issues/79
https://github.com/ModelTC/lightllm/issues/79
https://huggingface.co/Undi95/Llama2-13B-no_robots-alpaca-lora
https://huggingface.co/Undi95/Llama2-13B-no_robots-alpaca-lora
https://huggingface.co/YeungNLP/LongQLoRA-Llama2-7b-8k-lora
https://huggingface.co/YeungNLP/LongQLoRA-Llama2-7b-8k-lora

serving. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 1049–1062, 2019.

[59] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. SHEPHERD: Serving DNNs in the wild. In
20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), 2023.

[60] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt:
Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

[61] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle
Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zhuohan Li, Zi Lin, Eric Xing, Joseph E. Gonzalez, Ion
Stoica, and Hao Zhang. LMSYS-chat-1m: A large-scale
real-world LLM conversation dataset. In The Twelfth
International Conference on Learning Representations
(ICLR 24), 2024.

[62] Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli Ce-
likyilmaz, Yang Liu, Xipeng Qiu, and Dragomir Radev.
QMSum: A New Benchmark for Query-based Multi-
domain Meeting Summarization. In North American
Association for Computational Linguistics (NAACL 21),
2021.

[63] Zhe Zhou, Xuechao Wei, Jiejing Zhang, and Guangyu
Sun. PetS: A unified framework for Parameter-Efficient
transformers serving. In 2022 USENIX Annual Techni-
cal Conference (USENIX ATC 22), 2022.

[64] zzb610. Comparison between pageattention and toke-
nattention. https://github.com/ModelTC/lightllm/issues/
379.

https://github.com/ModelTC/lightllm/issues/379
https://github.com/ModelTC/lightllm/issues/379

	Introduction
	Background and Motivation
	LLM Inference
	Multi-Tenant LoRA Serving
	Challenges
	Concurrent Work and Their Inefficiency

	Toppings Overview
	CPU-Assisted LoRA Serving
	LoRA Computation on GPU and CPU
	Efficient GPU-CPU LoRA Coordination

	Rank-Aware Scheduling
	Implementation
	Evaluation
	Experimental Setup
	LLM Inference Server Performance
	Microbenchmark Evaluations
	Cluster Scale Performance

	Related Work and Discussion
	Conclusion

