
Torpor: GPU-Enabled Serverless Computing for Low-Latency,
Resource-Efficient Inference

Minchen Yu†‡ Ao Wang§ Dong Chen‡ Haoxuan Yu‡ Xiaonan Luo‡ Zhuohao Li‡

Wei Wang‡ Ruichuan Chen∗ Dapeng Nie§ Haoran Yang§ Yu Ding§

†CUHK-Shenzhen ‡HKUST §Alibaba Group ∗Nokia Bell Labs

Abstract
Serverless computing offers a compelling cloud model

for online inference services. However, existing serverless
platforms lack efficient support for GPUs, hindering their
ability to deliver high-performance inference. In this paper,
we present Torpor, a serverless platform for GPU-efficient,
low-latency inference. To enable efficient sharing of a node’s
GPUs among numerous inference functions, Torpor main-
tains models in main memory and dynamically swaps them
onto GPUs upon request arrivals (i.e., late binding with model
swapping). Torpor uses various techniques, including asyn-
chronous API redirection, GPU runtime sharing, pipelined
model execution, and efficient GPU memory management, to
minimize latency overhead caused by model swapping. Addi-
tionally, we design an interference-aware request scheduling
algorithm that utilizes high-speed GPU interconnects to meet
latency service-level objectives (SLOs) for individual infer-
ence functions. We have implemented Torpor and evaluated
its performance in a production environment. Utilizing late
binding and model swapping, Torpor can concurrently serve
hundreds of inference functions on a worker node with 4
GPUs, while achieving latency performance comparable to
native execution, where each model is cached exclusively on
a GPU. Pilot deployment in a leading commercial serverless
cloud shows that Torpor reduces the GPU provisioning cost
by 70% and 65% for users and the platform, respectively.

1 Introduction

The remarkable advances in machine learning (ML) and its
widespread adoption in various domains have fueled a surging
demand for cloud-based ML inference services [24,32,49,65,
66]. Severless computing offers a compelling cloud model for
inference serving [20,58,61]. In a serverless cloud, users pub-
lish ML models as inference functions, and delegate resource
provisioning and scaling responsibilities to the cloud platform.
Serverless computing is also economically appealing as users
only pay for the resources consumed by their functions (i.e.,
pay-per-use billing), eliminating resource idling costs.

However, today’s serverless computing platforms, such as
AWS Lambda [6] and Alibaba Function Compute [1], lack
efficient support for GPUs. They typically run an ML model
in a container (or a microVM) and early bind it to a GPU be-
fore starting to serve requests. To avoid considerable startup
overhead of on-demand GPU function provisioning (e.g., tens
of seconds as shown in Table 1), an inference function is main-
tained as a long-lived, provisioned instance on a designated
GPU to handle future requests [4,7]. This approach essentially
follows the “serverful” inference serving practice [47, 49, 65],
requiring users to pay for the occupied GPUs even during
function idling. Furthermore, our analysis in a production
cloud demonstrates that inference functions exhibit varying
request rates, with 85% functions being invoked no more than
once per minute (Fig. 2). Early binding these functions to
GPUs results in low utilization and imbalanced load across
GPUs, making it inefficient for cloud providers.

We believe that an efficient serverless inference platform
should provide four desirable properties. First, it should en-
able pay-per-GPU-use billing for users, with charges incurred
only when the functions are invoked and running on GPUs.
Second, the platform should achieve optimal GPU utiliza-
tion through efficient GPU sharing for concurrent inference
functions, minimizing resource provisioning costs for cloud
providers. Third, the platform should be aware of the user-
specified latency SLOs and strive to meet them for all infer-
ence requests, if feasible. Lastly, the platform should achieve
the aforementioned three properties without requiring de-
tailed knowledge about inference models due to intellectual
property and business-critical confidentiality reasons. We no-
tice that there have been several relevant systems developed
in recent years [23,32,34,36,46,47,49,58,63], none of which,
however, provide all of these properties for serverless infer-
ence. They often suffer from cost inefficiency, SLO violations,
or necessitate model-specific knowledge (see §2.2 and §9).

In this paper, we present Torpor, a GPU-efficient serverless
inference platform that achieves all four desirable properties
and is readily-deployable onto real-world serverless platforms
without intrusive changes. Torpor follows a late binding de-

sign principle, whereby idle inference models are maintained
in host memory and dynamically swapped to GPUs upon
request arrivals. Compared to GPU memory, host memory
is less expensive and has a much larger capacity, making it
an ideal storage for holding numerous idle functions. This
approach naturally supports pay-per-GPU-use billing, as idle
functions no longer occupy GPU resources. Furthermore, by
dynamically swapping models from host to GPUs, it enables
fine-grained GPU sharing among concurrent inference func-
tions, substantially improving GPU utilization and load bal-
ancing across GPUs. Model swapping can also be efficiently
performed through pipelined loading, yielding significantly
lower latency compared to function cold starts. All these are
achieved without detailed knowledge about inference models
– a must-have in a commercial environment for intellectual
property and confidentiality protection. These techniques,
combined with intelligent request scheduling, enable the plat-
form to optimize the SLO attainment for users.

Specifically, to realize late binding while being readily-
deployable on real-world serverless platforms, Torpor lever-
ages a GPU pooling architecture. In this design, each worker
node manages a pool of local GPUs and allows its infer-
ence functions to access any of these GPUs freely through
CUDA API redirection. This enables seamless model swap-
ping within a GPU pool and is transparent to users. However,
this approach also presents three key challenges.

First, GPU pooling and model swapping incur high com-
munication overhead compared to native execution (i.e., exe-
cuting a model directly on a GPU). To address this challenge,
Torpor proposes asynchronous API redirection to avoid fre-
quent synchronizations between the inference functions and
the GPU pool, eliminating the high communication overheads
for model inference. Torpor further utilizes pipeline execu-
tion to overlap the host-to-GPU model swapping and the infer-
ence execution, thereby reducing end-to-end latency. It also
utilizes high-speed NVLink for fast model swapping between
GPUs whenever feasible and beneficial. Combined with low-
latency API redirection, Torpor can efficiently execute mod-
els on any available GPUs. Torpor is intentionally designed
to be model-agnostic to meet the confidentiality requirements
while being generally applicable to various models, including
even large generative models where runtime states (e.g., KV
cache) can be managed as part of the model.

The second challenge is that GPU pooling and model swap-
ping necessitate an efficient GPU memory management sys-
tem. Torpor designs such a system that automatically tracks
the addresses of models as they are swapped across multi-
ple GPUs and adjusts each memory access of CUDA APIs
accordingly during inference execution. It also efficiently
organizes and shares memory blocks to avoid high mem-
ory allocation overheads, improving the overall performance
of model swapping. Additionally, Torpor offers two GPU
runtime management modes—runtime sharing and runtime
isolation—to meet various needs for resource efficiency and

cross-model isolation.
The third challenge is that the platform should meet the

latency SLOs for inference functions while maintaining low
GPU costs. Torpor proposes three policies to achieve this
objective. First, Torpor designs a request scheduling algo-
rithm that minimizes model swapping overheads, resulting in
reduced end-to-end inference latency. It categorizes models
into two groups, heavy or light, based on whether these mod-
els incur high overhead during swapping via PCIe. Torpor
then prioritizes NVLink over PCIe for transferring heavy
models across GPUs, effectively reducing concurrent PCIe
traffic. Second, Torpor globally manages GPU memory in
the pool and leverages model heaviness to guide eviction.
Together with request scheduling, this approach significantly
minimizes model swapping overhead. Third, Torpor pro-
poses an SLO-aware request queuing policy that prioritizes
requests to functions that have a higher likelihood of meeting
SLOs, effectively improving the SLO attainment.

We have implemented and evaluated Torpor through a pi-
lot deployment in Alibaba Cloud 1, one of the world’s largest
commercial serverless platforms. Evaluation results show that
Torpor achieves low-latency model inference, comparable
with native executions. Torpor can share a single GPU across
hundreds of inference functions and load-balance GPUs with
model swapping, resulting in over 10× cost reduction com-
pared with current GPU offering in Alibaba Cloud. With its
efficient SLO-aware scheduling and queuing policies, Torpor
can serve 480 functions on a 4-GPU worker node while
achieving low tail latency and satisfying millisecond-scale
SLOs for all functions. Cluster experiments further demon-
strate that Torpor scales well with the number of inference
functions at low resource cost and meets per-function la-
tency SLOs for thousands of functions. Torpor has been
beta-released in a pilot production cluster in Alibaba Cloud,
saving 70% of user costs on average and 65% of GPU provi-
sioning costs for Alibaba Cloud.

2 Background and Motivation

In this section, we first give an overview of serverless infer-
ence. We then describe the inefficiency of existing solutions
to enabling GPUs in serverless platforms, and highlight four
key requirements in this regard.

2.1 Serverless Inference
As a leading serverless platform with a global presence, our
Alibaba Cloud has observed a growing adoption among en-
terprise customers who opt to deploy their inference services
using serverless functions, known as serverless inference. In
comparison to existing inference services based on a “server-
ful” cloud model, such as AWS SageMaker [5], serverless

1We have open-sourced Torpor’s single-node prototype at https://
github.com/FCSLab/torpor.

https://github.com/FCSLab/torpor
https://github.com/FCSLab/torpor

Tue Wed Thu
0

15

30
Ra

te
 (r

/m
)

Figure 1: A two-day request trace of a typical GPU inference
function in Alibaba Cloud.

inference significantly alleviates the burden of server man-
agement for cloud users. Specifically, the serverful approach
requires users to manually configure various system-level pa-
rameters (e.g., VM types, GPUs, CPU cores, etc.) and manage
resource provisioning (e.g., scaling the number of VMs up
or down according to demand changes). In contrast, server-
less inference enables users to simply publish models with
inference code as functions, and then cloud providers automat-
ically handle resource provisioning, autoscaling, scheduling,
and fault tolerance. Furthermore, compared with the server-
ful approach, serverless inference also offers substantial cost
savings as users do not pay for idle resources under the pay-
per-use pricing model [20, 58, 61, 65]. In Alibaba Cloud, the
requests to a function typically exhibit dynamic, bursty arrival
patterns as shown in Fig. 1, consistent with previous research
findings [24, 25, 32, 33, 41, 42, 47, 49, 67]. By leveraging the
high elasticity of a serverless platform, inference functions
can quickly scale in response to the changing workload, while
users are billed based on the actual function runtime at a fine
granularity, such as 1 ms [6, 8].

2.2 GPU Support in Serverless Platforms
Despite the benefits of the serverless inference model, existing
serverless platforms, including Alibaba Cloud and other lead-
ing platforms, currently lack efficient support for GPUs, which
impedes their ability to achieve high-performance serverless
inference. Alibaba Cloud users also have expressed a com-
pelling need to execute their models in GPU-enabled func-
tions.
Existing solutions and their inefficiency. A number of re-
cent systems have been proposed to support GPUs in server-
less platforms [1, 27, 29, 58]. They, however, still follow the
approach of existing serverful model serving systems (e.g.,
Nexus [49] and INFaaS [47]), and deploy inference models as
long-running containers where each container, when created,
is bound to a specific GPU (i.e., early binding). The deployed
model remains in the memory of a designated GPU to handle
future requests, and the occupied GPU resources can only be
reclaimed after the model serving terminates.

However, the early-binding approach deviates from the
serverless paradigm and is costly for both cloud users and
providers. First, binding inference functions to GPUs occu-
pies resources for extended duration, even when idling. Thus,
users are obligated to pay for the allocated GPUs regardless
of actual usage [3], leading to high expenses that undermine

Request rate (log-scale) Request rate (r/m)
1 r/h 1 r/m 1 r/s 1 2 4 8 16 32 64

0

0.6

0.97
0.85

0
0.1

0.6

1

CD
F

Lo
ad

ResNet-152
Bert-qa

Figure 2: CDF of average function request rates from a one-
week production trace (left) and the GPU load under various
per-function request rates when running multiple functions
on a V100 GPU to saturate its 32 GB memory (right).

Table 1: Model startup times (s) under Torpor (runtime isola-
tion mode in §4.5) and cold-starts. Torpor’s startup time is
broken down into model loading and runtime resumption.

Model Torpor Cold-start Mem. footprint
Model Runtime

ResNet-152 [17] 0.03 0.26 8 1.6 GB
Bert-qa [26] 0.14 0.19 11 2.4 GB

Stable Diffusion [18] 0.24 1.5 25 5.1 GB
Llama3-8B [11] 1.6 1.4 48 13 GB
Qwen-14B [16] 2.1 1.5 57 20.1 GB

Llama2-13B [10] 2.5 1.9 61 24.5 GB

the cost-saving benefits of serverless inference. Second, this
approach results in severe GPU underutilization, consider-
ing the low average request rates of most inference functions
and the cross-GPU load imbalancing. Fig. 2 (left) depicts the
distribution of the average request rates of Alibaba Cloud
functions in a one-week trace, revealing that 85% (97%) of
functions were invoked only once per minute (second) on
average2. These findings align with the observations from
other production traces [8,48]. Fig. 2 (right) further illustrates
that consolidating multiple models to fill GPU memory can
still lead to low GPU load. Meanwhile, packing models into
a GPU can cause temporary overloading due to the bursty
request patterns (Fig. 1), thus inevitably leading to hotspots
and load imbalancing in a multi-GPU setting. The impact of
load imbalancing will be shown in Fig. 9 in §7.2.

To reduce costs, current systems need to frequently reclaim
GPU resources when functions are inactive, avoiding charges
for unused GPUs and allowing other functions to utilize idle
resources. Unfortunately, this approach leads to frequent func-
tion cold starts, leading to significant overhead for model in-
ference. Table 1 shows model startup times under cold starts,
which need tens of seconds for GPU container setup, ML
framework startup, GPU runtime creation, and model initial-
ization3. Therefore, the cold-start overhead far exceeds the

2For confidentiality reasons, we depict the request rates of both CPU and
GPU functions, which exhibit similar patterns (see Fig. 1).

3We exclude the delay of fetching a remote container image or a model
file for cold starts, which can take extra seconds to minutes to complete [54].
A detailed discussion of Torpor’s performance is provided in §8.

Table 2: A comparison of Torpor and existing solutions that
offer GPU support on serverless platforms.

Solution GPU
pay-per-use

GPU
efficient

SLO
compliant

Model
agnostic

Alibaba Cloud [1] × × × X
Molecule [27] × × × X

DGSF [29] × × × X
INFless [58] × × ∗ ×
Torpor X X X X

typical SLO requirement of model inference.
Requirements of serverless inference. Table 2 summa-
rizes key requirements of serverless inference and compares
Torpor with other existing solutions. Serverless users should
be billed only when their functions are invoked and running
on GPUs to achieve substantial cost savings (pay-per-GPU-
use)4. Serverless platforms like Alibaba Cloud should serve
as many inference functions as possible using a minimum
number of GPUs, thereby attaining high GPU utilization
(GPU efficient). The platform should allow users to spec-
ify their latency SLOs and strive to meet the latency SLOs
for all functions (SLO compliant). For confidentiality rea-
sons, the serverless platform should avoid inspecting detailed
model structure, which can be of high business value (Model
agnostic).

Compared with Torpor, none of existing solutions can
meet all desired requirements. Alibaba Cloud and Alibaba
Function Compute [1] are leading commercial serverless plat-
forms with GPU supports; Molecule [27] introduces a server-
less platform that supports GPUs and other hardware devices;
DGSF [29] enables serverless functions to access GPUs in
a remote cluster. These systems employ the early-binding
approach as previously discussed, failing to enable pay-per-
GPU-use billing and achieve high GPU efficiency. Moreover,
they are oblivious to the semantics of model inference and un-
able to meet latency SLOs. INFless [58] presents a serverless
inference system that early-binds functions to GPUs. While
INFless proposes function scheduling and keep-alive schemes
aimed at low-latency inference, it still leads to function cold
starts and SLO violations (details in §7.3). Furthermore, IN-
Fless requires model knowledge for operator-level profiling.
We leave more discussions on related work to §9.

3 Key Insight and Challenges

Key insight. As described in §2.2, the current early-binding
approach of retaining inference models in GPU memory leads
to high idling costs and underutilized resources. Therefore,
an efficient serverless inference platform should enable late
binding, where GPUs are managed as a resource pool and idle

4In our experiences, enterprise customers are willing to pay a nominal
fee to retain idle functions in host memory for substantially improved per-
formance (§8), similar to the function keep-alive charge meant to avoid cold
starts [3, 7, 37].

inference models reside in host memory, dynamically swap-
ping into any available GPUs upon request. This approach
should also be easily deployable on real-world serverless
platforms without requiring intrusive changes. Late binding
offers several key advantages in meeting the requirements in
§2.2. First, keeping models in host memory eliminates GPU
memory usage during idle periods, enabling pay-per-GPU-use
billing and cost savings for cloud users. Second, host mem-
ory is significantly larger than GPU memory (e.g., a few TB
vs. tens of GB), allowing for consolidation of multiple low-
frequency functions onto a single GPU with improved GPU
utilization. Late binding also facilitates load-balancing across
multiple GPUs in a pool. Third, model swapping provides
an efficient method to resume function execution compared
to cold starts in the early-binding approach, thereby facilitat-
ing SLO compliance. Finally, late binding can be performed
transparently to users within the GPU pool, which holds a
holistic view of memory usage without requiring detailed
model-specific knowledge.
Challenges. Implementing GPU pooling and late binding
in the serverless platform presents three challenges. C1: Ef-
ficient GPU pooling and model swapping. GPU pooling re-
quires inference functions to synchronize with a remote GPU
pool [28, 31], which introduces additional communication
overhead compared to local executions and presents chal-
lenges in achieving low-latency inference. C2: GPU memory
management. To enable seamless late binding, the platform
should automatically monitor and manage memory usage
without detailed model knowledge. This requires a unified
and efficient GPU memory management system across the
GPU pool. C3: SLO compliance and resource efficiency.
The platform should provide efficient request scheduling and
model placement algorithms that effectively utilize the late
binding mechanism to meet latency SLOs and enhance re-
source efficiency.

In the following sections, we present Torpor, a GPU-
enabled serverless platform that addresses the aforementioned
challenges and, importantly, is readily-deployable onto real-
world serverless platforms without intrusive changes.

4 Torpor System Design

4.1 Architecture overview
Fig. 3 provides an overview of the architecture of Torpor,
which comprises two main components: the cluster man-
ager and worker nodes. The cluster manager handles cluster-
level tasks, including request routing, node allocation, and
resource scaling. It dynamically schedules function instances
and routes inference requests to maintain load balancing
across worker nodes and ensure fault tolerance (§ 4.5). At each
worker node, Torpor employs GPU pooling, where a GPU
server manages all local GPUs as a pool and allows functions
to dynamically access any available GPUs. Within the GPU

Worker nodes

Cluster manager

Request router Node manager

Intra-node
router

GPU server

Functions

GPU pool

Controller

Model repo

GPU executors

…

…

1

2

3

4

GPU client

ML framework

GPU client

ML framework

G0 G1 G2 G3

E0 E1 E2 E3

Figure 3: Architecture overview of Torpor. A request arriving
at a Torpor cluster is first routed to a worker node hosting its
target function 1©. The router in the worker node synchronizes
with the GPU server to query the executor for this request
2©, and then routes it to the function instance with the target
executor ID 3©. The function instance next processes the
request and uses a GPU client to automatically redirect CUDA
API calls to this executor 4©, and finally returns the result to
the user after request completion.

server, a model repository manages models in host memory;
GPU executors handle CUDA execution, perform necessary
model swapping, and manage GPU memory on the associated
GPUs; the controller maintains a global view of GPU memory
and executor status, and decides how to schedule requests to
executors. Additionally, each worker node runs an intra-node
router to signal the GPU server about request arrivals and
route requests to local inference functions. Once the target
function receives a request, it interacts with the scheduled
executor through a GPU client by remoting CUDA API calls.
All components within the worker node—the GPU server,
intra-node router, and functions—are deployed as containers.

Key to Torpor is to develop an efficient GPU server that
enables low-latency model inference and addresses the chal-
lenges discussed in §3. Specifically, we will elaborate upon
Torpor’s designs to address the following questions: 1) how
Torpor achieves low-latency GPU pooling (§4.2) and model
swapping (§4.3); 2) how Torpor tracks the memory foot-
print of functions and manages GPU memory (§4.4); 3) how
Torpor ensures isolation and handles failures (§4.5).

4.2 GPU Remoting

Asynchronous API redirection. Existing GPU remoting so-
lutions [28, 45] introduce high communication overhead due
to synchronizations for individual API calls during model in-
ference (details in §7.1). Leveraging the computing pattern of
model inference, Torpor proposes asynchronous API redirec-
tion to reduce synchronizations. Specifically, we observe that
the intermediate steps in an inference execution are typically
performed asynchronously on the GPU, where intermediate
data is generated and consumed in GPU memory without re-

Pinned memory pool

Pageable memory

…

…

Host

GPU

Models:

GPU 0 GPU 1

Figure 4: An example of model swapping. Models can be
swapped from host to GPU through PCIe (green arrows), or
across GPUs through NVLink (red arrow).

quiring data transfer to the host until the execution completes.
Consequently, a function can redirect intermediate CUDA
calls to the GPU executor asynchronously without waiting for
their results, and only perform synchronizations for the final
output. This approach preserves the execution order of CUDA
APIs, ensuring the correctness of the inference results.

Following this insight, Torpor categorizes CUDA APIs
into two groups based on their semantics: 1) synchronous,
blocking APIs that require the host to await their completion
before proceeding, such as cudaMalloc; and 2) asynchronous,
non-blocking APIs that do not alter the host’s runtime state,
such as cudaLaunchKernel, which allows for asynchronous
API redirection. Most APIs issued during inference fall into
the asynchronous category, presenting opportunities to miti-
gate the synchronization overhead. Torpor can further batch
consecutive CUDA API calls to enhance asynchronous API
redirection (see APIs and batching details in our technical
report [62]).

4.3 Model Swapping
As serverless platforms are constrained from examining the
detailed model structures, it poses challenges to achieve seam-
less and efficient model swapping. Torpor overcomes the
problem by leveraging two insights: 1) tracking general mem-
ory footprint of model inferences is feasible within a GPU
pool, and 2) the memory access pattern of a model—the ad-
dresses and access order of model parameters—generally re-
mains consistent across requests. Therefore, Torpor only
tracks the first function execution (i.e., cold start), and applies
the pattern to future request executions (see memory tracking
in §4.4). Torpor performs model swapping on demand at
the request level, and enhances performance through pinned
memory pool and pipeline execution.
Model swapping and pipeline execution. Fig. 4 illustrates
the model swapping in Torpor, where it utilizes pinned mem-
ory to enhance the host-to-GPU model loading and supports
fast, cross-GPU model swapping via high-speed NVLink.
Torpor’s swapping can be generally applied to various types
of models, including those that require maintaining runtime
states (e.g., KV cache in LLMs) by treating these states as part
of the model itself. Torpor further employs pipeline execu-
tion to enhance swapping performance, which is particularly
effective for models computed in one forward pass, allow-
ing the transmission of subsequent layers to overlap with the

computation of previous layers.
Key to pipeline execution is to judiciously group model pa-

rameters for swapping. Grouping too few parameters triggers
a large number of transmissions and high synchronization
overhead; conversely, grouping too many parameters impairs
pipeline efficiency. Pipeline strategies in previous systems
like PipeSwitch [22] and DeepPlan [36] do not suit serverless
inference as they assume model structure is provided and
require extensive model profiling. Torpor employs a model-
agnostic approach to determine the group size for model
pipelining. We observe that the transmission performance
experiences an "elbow point" concerning group sizes: increas-
ing the group size improves overall transmission throughput,
but the improvement becomes marginal after a certain point.
We therefore select this elbow point as the group size, which
can achieve good swapping performance without substantially
compromising pipeline efficiency. This group size depends
only on hardware configurations such as PCIe, and can be
easily determined by profiling various-sized data (e.g, about 2
MB in our testbed). This approach requires no detailed model
knowledge and can be directly applied to various models.
Model eviction. We observe that model unloading from
GPUs to host can result in considerable overhead and can
interfere with concurrent inference executions. Therefore,
Torpor always maintains a copy of the model in the host, and
only invalidates its GPU memory region during eviction.

4.4 Memory Management

Torpor presents two key requirements for GPU memory man-
agement, as compared with other systems [12, 23, 44]. First,
late binding requires a pool of GPUs to share the same logical
memory space. This is because the inference functions do
not recognize backend GPUs, and consistently access models
using identical memory addresses even across different GPUs.
Second, model swapping triggers frequently GPU memory
(de)allocation, which leads to substantial overhead when us-
ing native methods like cudaMalloc (see Fig. 13). We there-
fore design a GPU memory management system that can
effectively hide memory address differences between various
GPUs and provide low-latency memory (de)allocations.
Memory address management. We observe ML frame-
works like PyTorch typically organize data into blocks, each
containing multiple parameters. Torpor leverages such mem-
ory layout to perform memory mapping at the block level. In
particular, Torpor monitors memory blocks for each function
and maintains a mapping to their actual physical addresses af-
ter model swapping. Since the internal data layout within each
block remains unchanged (e.g., parameter offsets), Torpor
can easily obtain the physical address of a parameter using its
associated block address and offset. This approach eliminates
the need for extensive metadata maintenance for individual
data pointers, enabling the efficient address translation with
low management overhead.

Memory block allocation. To mitigate the high overhead
of native GPU memory allocation, Torpor reserves all GPU
memory at bootstrap and internally manages memory blocks.
This provides a shim layer to service memory requests from
functions, without needing the native method. Key to this ap-
proach is to avoid memory fragmentation, which can decrease
available GPU memory and harm overall efficiency. Torpor
effectively addresses this issue by extending the Buddy mem-
ory allocation scheme [40] and leveraging unique character-
istics of inference. It consolidates memory blocks from the
same models to minimize fragmentation and enables sharing
of common-sized blocks across different models (see details
in our technical report [62]).

4.5 Isolation and Fault Handling

Resource isolation and GPU runtime management.
Torpor provides container-level isolation for CPU and mem-
ory resources5, similar to existing serverless platforms [1, 52,
60]. For GPUs, Torpor executes only one function on a GPU
at a time and isolates GPU memory regions across functions.
This is achieved through Torpor’s GPU server, which has full
control over CUDA API execution and GPU memory access.
Torpor offers two isolation modes for GPU runtime: 1)

runtime sharing, which runs a single runtime on a GPU for
multiple models, for instance, in a more trusted environment,
and 2) runtime isolation, which maintains a dedicated run-
time for each model and suits better for a more untrusted
environment. By default, Torpor employs runtime sharing to
improve resource efficiency. When stricter isolation is neces-
sary, Torpor can switch to runtime isolation mode. Indeed,
in our pilot deployment (§8), Torpor runs in the runtime iso-
lation mode. The overhead incurred by runtime isolation is
generally acceptable, e.g., hundreds of milliseconds to 1.5
seconds as shown in Table 1, which is still over one order of
magnitude latency improvement compared with cold starts.
Fault handling. Torpor sustains various system component
failures. In case of function failures, Torpor restarts them to
resume the execution. For executor failures or GPU runtime
errors, Torpor migrates the affected models to other working
GPUs (executors) via swapping, and then restarts the failed
ones. When runtime isolation is employed, Torpor can ensure
that buggy function executions do not affect others, achieving
stronger fault isolation. The GPU server also persists runtime
states (e.g., models and metadata) in local storage to allow
fast recovery from an entire failure of the GPU server.

At the cluster level, Torpor persists metadata of individ-
ual nodes in a database, which enables the cluster manager to
retain these states and recover from failures, aligning with cur-
rent practices in Alibaba Cloud. It also keeps periodic health
checks with the router on each worker node, and handles node

5Torpor makes no assumption on function sandboxes and can also sup-
port microVMs [19, 53].

Table 3: Latency (ms) of model pipelining execution when
concurrently swapping other models through PCIe. The diag-
onal values indicate the latencies without concurrent models.

Model DenseNet-169 ResNet-152 Bert-qa

DenseNet-169 27 27 (+0%) 27 (+0%)
ResNet-152 31 (+7%) 29 43 (+48%)

Bert-qa 166 (+11%) 240 (+61%) 149

failures by launching a new node and migrating all relevant
functions.

5 Torpor Policy Design

We present how Torpor meets the latency SLOs and delivers
resource efficiency (i.e., Challenge C3 in §3). We start with
the design overview, followed by individual policies.

5.1 Design Overview

Objective. The objective of Torpor’s policy design is to
meet latency SLOs for inference functions while minimiz-
ing the resource cost. We define a function to comply with
latency SLOs if its tail request latency is not longer than a
user-specified deadline, and meter the resource cost by the
number of worker nodes. Key to achieving this goal is to max-
imize the number of SLO-compliant functions at each worker,
such that Torpor can efficiently exploit per-worker GPU re-
sources to host as many functions as possible, which in turn
reduces the total number of workers required.
Challenges. Previous systems have proposed various
schemes to meet latency SLOs [32, 58, 65, 67]; however, their
policies do not apply to Torpor for two reasons. First, pre-
vious systems like INFless [58] and Shepherd [67] assume
sufficient GPU memory and employ early binding, so they
schedule model serving instances to GPUs and then batch
and route requests to them. In contrast, Torpor focuses on
late-binding the often lower-frequency or varying-demand
functions to a pool of memory-constrained GPUs, requiring a
joint design of model management (i.e., model swapping and
eviction) and request scheduling. Second, previous systems
assume a stable model inference latency [32, 47, 58, 65, 67]
which, however, does not hold in our setting — model swap-
ping can cause unpredictable performance due to PCIe band-
width contention [21, 38]. For instance, as show in Table 3,
concurrently swapping two models through PCIe increases
individual model inference latency compared with running
them alone, especially for large models (e.g., Bert-qa).

We propose three policies to address the aforementioned
challenges. First, considering that packing many functions
together can cause short-term overloading and request queue-
ing, Torpor introduces a request prioritization policy to max-
imize the number of SLO-compliant functions (§5.2). Second,
Torpor designs a request scheduling and model swapping

GPU 0 GPU 1

GPU 2 GPU 3

NVLink 1x

NVLink 2x
Host

PCIe

Figure 5: Topology of a 4-GPU worker node in Alibaba
Cloud.

policy to reduce bandwidth contention across concurrent mod-
els, thereby improving overall inference performance (§5.3).
Lastly, by leveraging the characteristics of model swapping,
Torpor proposes an effective model eviction policy to reduce
bandwidth footprint in model swapping; combined with the
request scheduling policy, Torpor minimizes the interference
among concurrent model executions (§5.4).

5.2 Request Queueing
To maximize the number of SLO-compliant functions,
Torpor needs to monitor the SLO compliance of individual
functions to determine their request executions. Intuitively,
Torpor prioritizes functions with a higher probability to com-
ply with SLOs. However, realizing this approach requires
answering two questions: 1) how to quantify the likelihood
of SLO compliance for a function, and 2) how to determine
function execution order for improved SLO compliance.
Torpor proposes a metric, required request count (RRC),

to measure the “degree of needed effort” to meet SLOs. RRC
represents the expected request number that a function needs
to successfully serve in order to satisfy SLOs. Let n be the
current number of requests to a function, and m be the number
of requests served within deadlines out of n. The RRC of this
function is defined as pn−m

1−p , where p is the tail percentile spec-
ified in SLOs such as 98%. This is derived from the equation:
m+RRC
n+RRC = p. Smaller RRC values indicate a higher likelihood
of SLO attainment. Hence Torpor divides functions into high-
and low-priority groups based on their RRCs, and prioritizes
their requests accordingly. We develop an effective strategy
to determine the boundary (i.e., RRC threshold) between the
two groups that can dynamically adjust function prioritiza-
tion based on the current load at a worker, thereby improving
the overall SLO compliance (see details in our technical re-
port [62]).

5.3 Scheduling and Model Swapping
While model execution latency is often stable, model swap-
ping can incur unpredictable overhead due to PCIe bandwidth
contention [21, 38]. Fig. 5 shows the topology of a worker
node in Alibaba Cloud, where each pair of GPUs shares a
PCIe switch and GPUs are inter-connected via NVLinks with
various bandwidths6. The performance slowdown caused by

6Despite the presence of other GPU interconnects (e.g., NVSwitch in
DGX A100), inter-GPU PCIe bandwidth sharing continues to necessitate
interference mitigation.

Algorithm 1 Interference-Aware Request Scheduling
1: function SCHEDULE(req r)
2: A← set of available GPUs . A 6=∅, otherwise queueing r
3: M← set of GPUs hosting the target model
4: if M 6=∅ then
5: G←M∩A
6: if G 6=∅ then
7: g← any GPU in G
8: Execute r on g . No swapping
9: else

10: (g,m)← GPU pair with fastest NVLink, g ∈ A,m ∈M
11: Execute r on g; Swap model from m . GPU-to-GPU
12: else
13: g← a GPU whose neighbor is not loading models, g ∈ A
14: if g not found then
15: g← a GPU whose neighbor is loading a light model, g ∈ A
16: if g not found then
17: g← any GPU in A
18: Execute r on g; Swap model from host . Host-to-GPU

bandwidth contention can vary among models as shown in
Table 3, where larger models require more intensive data trans-
mission and exhibit more pronounced performance degrada-
tion. Hence we propose interfere-aware scheduling to mini-
mize PCIe contention, thereby reducing request latencies.
Interference-aware scheduling. Torpor exploits the direct
NVLink connections between GPUs to reduce PCIe con-
tention whenever possible. It prioritizes GPU-to-GPU over
host-to-GPU model swapping to enable faster model trans-
mission and avoid interference with concurrent PCIe traf-
fic. When concurrent host-to-GPU swapping is unavoidable,
Torpor avoids loading bandwidth-intensive models (e.g.,
Bert-qa in Table 3) simultaneously to minimize the impact of
PCIe contention. Therefore, models are categorized as heavy
or light based on their bandwidth requirements (see Table 4).

Algorithm 1 shows Torpor’s scheduling and swapping
mechanisms. Torpor first checks whether the target model
is loaded on an available GPU, and if so, directly executes
it without swapping (line 8). If the model is hosted by busy
GPUs, Torpor then schedules the request to perform GPU-to-
GPU swapping, as the source and target GPUs should have a
fast NVLink connection (line 11). Otherwise, Torpor resorts
to the host-to-GPU swapping and prioritizes target GPUs
whose neighbors are idle or running light models to reduce
PCIe contention (line 18). Altogether, Torpor minimizes the
interference and overhead of model swapping for each request,
thus providing low inference latency.

5.4 Model Eviction Policy

Model eviction plays a critical role in reducing bandwidth
contention and enhancing the overall inference performance,
in conjunction with Torpor’s request scheduling policy. Un-
like traditional cache eviction strategies which primarily aim
to minimize the miss rates, Torpor’s model eviction policy
considers the performance implications of model swapping

for different models to facilitate future model loading.
We notice that swapping light models leads to negligible

overhead for end-to-end performance compared with heavy
ones (Table 3 and Table 4). Therefore, we tend to evict models
that have little or no impact on performance when swapping.
We employ two mechanisms following this insight. First,
Torpor manages memory of all GPUs as a pool to globally
optimize model placement, which ensures that each model can
have up to one replica among GPUs when GPU memory is
full. This allows for more efficient model caching and reduces
host-to-GPU data transmission. Second, Torpor prioritizes
light models in eviction, as swapping them leads to negligible
or no PCIe bandwidth contention. When only heavy models
remain, Torpor adopts Least-Recently-Used (LRU) policy to
determine their eviction order.

6 Implementation

We have implemented Torpor for Alibaba Cloud, one of the
world’s leading commercial serverless platforms. Torpor’s
GPU server and GPU client were implemented in 4k and 1.5k
lines of C++ code, respectively. Intra-node router and cluster
manager were implemented atop the relevant components in
Alibaba Cloud. Torpor’s late-binding mechanism imposes
no intrusive changes to standard cluster management logic,
enabling the reuse of Alibaba Cloud’s existing manager with
minimal changes. In fact, Torpor has been successfully de-
ployed in a real-world production environment of Alibaba
Cloud (§8). We provide a container image as a function tem-
plate based on PyTorch, where the original CUDA libraries
(e.g., libcudart.so) are replaced by our GPU clients to en-
able GPU remoting. This requires no modification to the
PyTorch framework.

7 Evaluation

In this section, we evaluate Torpor with the runtime shar-
ing mode using production traces from Alibaba Cloud. We
intergrate Torpor with runtime isolation mode into Alibaba
Cloud’s real-world production environment and report the
results in §8.
Settings. We deploy Torpor at Alibaba Cloud following the
realistic production specification of its serverless platform.
Torpor runs in a cluster with up to 6 workers. Each worker
node has 48 vCPU cores, 384 GB memory, and 4 NVIDIA
V100 GPUs each with 32 GB memory. We use 8 popular ML
models for evaluation, as shown in Table 4, and distribute
them across inference functions in a round-robin manner. All
functions are warmed up before running the test workloads.
We compare Torpor against Native execution—the default
approach in Alibaba Cloud—and INFless [58], a state-of-the-
art serverless inference system.
Metrics. We focus on the ratio of functions meeting SLOs and

Table 4: Various models and their latencies (ms) with GPU
remoting and model swapping. Underlined are heavy models
where swapping via PCIe slows down the inference (see §5.3).

Model Native GPU remoting Swap-PCIe Swap-NVLink

DenseNet-169 30 25 27 26
DenseNet-201 36 28 30 30
Inception-v3 19 14 17 16
EfficientNet 17 12 13 13
ResNet-50 11 9 13 11

ResNet-101 20 14 22 16
ResNet-152 25 17 25 20

Bert-qa 42 43 144 45

ResNet-152 Bert-qa
0

50

100

150

La
te

nc
y

(m
s)

17

43
29

43

138

68

Torpor
Torpor w/o batch
GVirtuS

Figure 6: Inference latency
with Torpor and other GPU
remoting techniques.

0

200
276

180 153 144
Bert-qa

Baseline+Pinned
+Pipeline+Group

0

50
59

38 32 25

ResNet-152

La
te

nc
y

(m
s)

Figure 7: Performance break-
down of Torpor’s model
swapping via PCIe.

the GPU load in the evaluation. A function complies SLOs if
its tail request latency is within a deadline. By default, we use
98th tail latency, and set deadlines for CV models and Bert-qa
to 80 ms and 200 ms, respectively. The GPU load is measured
by the proportion of time during which the GPU is processing
inference requests.

7.1 Overhead of Torpor’s Late Binding
Table 4 compares the performance of 8 popular models under
Native execution and Torpor with its GPU remoting (§4.2)
and model swapping (§4.3). For GPU remoting, Torpor
adopts efficient, asynchronous API redirection, leading to
comparable performance to Native, or even better for CV
models. This is because serving these models requires con-
figuring many cuDNN descriptors where the relevant CUDA
APIs are executed on the CPU side and do not require GPU
resources; thus, redirecting these APIs effectively distributes
CPU-side workloads across functions and the GPU server,
enabling functions to access more CPUs and perform parallel
computation. Note that, CPU resources are not the bottle-
neck in this scenario. According to our measurements, the
CPU utilization of Torpor (native execution) for ResNet-152
and Bert-qa remains at 27.4% (8.8%) and 17.2% (9.2%), re-
spectively. For model swapping, Torpor supports efficient
pipeline execution through PCIe, and leveraing NVLink fur-
ther improves performance.
Performance of Torpor’s GPU remoting. To show the ad-
vantage of Torpor’s GPU remoting, we compare it with GVir-
tuS [9, 31], a leading solution among publicly available GPU

80 60 40 10
0

3

6

9

12

Th
ro

ug
hp

ut
 (T

or
po

r
Na

tiv
e)

80 60 40 10
0

20

40

60

80

P
98

 la
te

nc
y

(m
s) Torpor

Native

Per-function request rate (from 80 to 10 r/m)

Figure 8: Performance of executing multiple ResNet-152
functions on a single GPU with Torpor’s late binding
(Torpor) and Native execution. We show the throughput of
Torpor normalized to Native (left) and the tail latencies under
varying per-function request rates (right).

remoting techniques. GVirtuS adopts a synchronous approach
to API redirection. We also evaluate a variant of Torpor that
disables call batching in asynchronous API redirection, i.e,
“Torpor w/o batch”. Fig. 6 shows the inference performance
under various approaches. Torpor significantly outperforms
GVirtuS and reduces latencies by 88% and 37% for ResNet-
152 and Bert-qa, respectively. ResNet-152 triggers a large
number of API calls during each inference, leading to high
synchronization overhead for GVirtuS. Asynchronous API
redirection (Torpor w/o batch) dramatically reduces the la-
tency by 79%; with API call batching, Torpor further reduces
the latency by 41%. Compared with ResNet-152, Bert-qa re-
quires less communication in GPU remoting; therefore, the
improvement from asynchronous API redirection is less but
still quite significant.
Performance breakdown of model swapping. To illustrate
how each of Torpor’s model swapping designs contributes
to performance improvement, we break down the inference
performance of ResNet-152 and Bert-qa, as shown in Fig. 7.
Specifically, “Baseline” directly performs model swapping
and then executes inference; “Pinned” uses a pinned memory
pool for improved swapping performance; “Pipeline” overlaps
model swapping and execution at the granularity of individual
model parameters; “Group” groups parameters for efficient
pipeline execution. We note that enabling pinned memory
reduces overall latencies by around 35%; parameter-level
pipeline execution further reduces the latency by 15%. By
grouping model parameters, Torpor achieves up to 22% per-
formance improvement over “Pipeline”, especially for ResNet-
152 that consists of many small-sized parameters.

7.2 Benefits of Torpor’s Late Binding
GPU efficiency for low-frequency functions. With late
binding, Torpor substantially reduces per-function memory
footprint, thereby enabling the consolidation of many low-
frequency functions for improved GPU efficiency. We stress-
test its performance by executing multiple ResNet-152 func-
tions on a single GPU, varying request rates between 80

0 1 2 3
0.00

0.25

0.50

0.75

1.00

N
or

m
. l

oa
d

Torpor
Native

0 1 2 3
0

50

100

150

200

P
98

 la
te

nc
y

(m
s)

35

120

35

360

36

450

36

17s

Torpor
Native

GPU sorted by load

Figure 9: The normalized per-GPU load and the tail request
latency with Torpor’s late binding (Torpor) and Native.

and 10 requests per minute (r/m)—a typical range of low-
frequency functions in production traces (Fig. 2). In this setup,
we execute sufficient concurrent functions on a GPU node to
saturate GPU memory and ensure a high overall load. Fig. 8
compares normalized throughput and latency under Torpor
and Native executions. Native’s throughput declines as the
per-function request rate decreases, due to its limited capacity
to host many functions. In contrast, Torpor leverages host
memory to accommodate many more functions, maintaining
high throughput with efficient, request-level GPU sharing. For
example, Torpor achieves over 10× higher throughput than
Native at 10 r/m. Furthermore, even when model swapping is
required, Torpor still keeps the tail latency below 50 ms.
Cross-GPU load balancing for high-frequency functions.
We run 40 high-frequency ResNet-152 functions on a 4-GPU
worker, where the average request rate is around 200 r/m.
Fig. 9 shows the normalized per-GPU load and the tail re-
quest latency with Torpor and Native. Unlike Native, where
GPUs hosting high-frequency functions can easily become
overloaded due to bursts of requests, Torpor enables on-
demand model migration for efficient load balancing. There-
fore, Torpor achieves much less load variance across GPUs
compared with Native, as shown in Fig. 9 (left). Moreover,
Fig. 9 (right) shows the tail latency of requests executed on
each GPU, where Native leads to extremely long tail latency
(e.g., multi-seconds) due to high queueing delays. In contrast,
Torpor consistantly delivers fast model inference, achieving
a tail latency of around 35 ms on all GPUs.

7.3 Torpor at A Node
We next evaluate the performance of Torpor at a node. We
use real-world workloads sampled from production traces
(Fig. 2), where function request rates range from 5 to 30 r/m.
Performance comparison. We compare Torpor with two
baselines, Native execution and INFless [58] — a state-of-the-
art serverless inference system. INFless introduces a function
keep-alive policy to set the lifespan of individual functions
based on historical traces, denoted as INFless-KA. For a fair
comparison, we implement the keep-alive policy of INFless
(INFless-KA) in the Native system. Fig. 10 (left) shows the ra-
tio of functions meeting SLOs in Torpor, Native, and INFless-

40 80 120 160
Number of function

0

25

50

75

100

S
LO

-c
om

pl
ia

nt
 F

un
c.

(%
)

Torpor
Native
INFless-KA

Torpor Native
INFless-KA

0

80

160

Fu
nc

tio
n

co
un

t

160 160

72 72

112

7

Actual
SLO-comp.

Figure 10: Performance comparison in terms of SLO compli-
ance between Torpor, Native, and INFless-KA.

320 400 480 560
Number of functions

0

25

50

75

100

S
LO

-c
om

pl
ia

nt
 F

un
c.

(%
)

Torpor
Torpor-FIFO
Torpor-Block
Torpor-LRU
Torpor-Random

Figure 11: Ratio of SLO-compliant functions with the full
Torpor and various different policies.

KA. Fig. 10 (right) shows the numbers of functions being
actually executed and being SLO-compliant, when hosting
160 functions. With fast model swapping, Torpor executes
all 160 functions and also meets SLOs for all functions. In
contrast, due to limited GPU memory, Native can only exe-
cute 72 out of 160 functions. INFless-KA can reclaim GPU
memory via cleaning up idle functions, thereby enabling the
execution of more functions (i.e., 112 functions) than Native;
however, INFless-KA inevitably incurs function cold starts
and results in only 7 functions being SLO-compliant.
Benefits of Torpor’s policies. To understand the benefits of
Torpor’s policy designs, we compare the full Torpor with
four baselines. 1) Torpor-FIFO uses a FIFO policy in re-
quest queueing rather than our SLO-aware policy (§5.2). 2)
Torpor-Random disables our interference-aware scheduling
and model swapping (§5.3), and randomly schedules a request
to an idle GPU if the target model is not loaded, and then trig-
gers model swapping. 3) Torpor-LRU adopts a LRU policy
in model eviction rather than prioritizing models according
to swapping overheads (§5.4). 4) Torpor-Block disables
our block management policy (§4.4), and caches the released
memory blocks in a single pool; when a new block is required,
it directly returns a cached one in the pool if the requested
size can be satisfied, otherwise it frees multiple blocks until
the required memory space is available.

Fig. 11 shows the ratio of SLO-compliant functions. In par-
ticular, Torpor-FIFO is oblivious to SLOs and unable to prop-
erly prioritize functions, leading to serious SLO violations
when the number of functions is large. Torpor-Block cannot
reuse various-sized blocks and forces frequent memory allo-

DenseNet
(Light)

Bert
(Heavy)

0

100

200

P
90

/P
98

 la
te

nc
y

(m
s)

53

158

59

210
Torpor
Torpor-LRU

Figure 12: 90th (bars) and
98th (whiskers) tail latencies
in Torpor and Torpor-LRU.

0 2 4

Latency (Memory allocation
Inference)

0.90

0.95

1.00

C
D

F

Torpor
Torpor-Block

Figure 13: Latency CDF
of memory allocation in
Torpor and Torpor-Block.

cation via CUDA APIs, which incurs long delay in block al-
location and harms overall performance. Torpor-LRU evicts
heavy models often, leading to PCIe bandwidth contention
during future model swapping. Torpor-Random leads to the
worst performance due to its inefficient scheduling and model
swapping policy, which does not exploit NVLink across GPUs
and is oblivious to model heaviness. Compared with these
baselines, Torpor successfully supports over 80% functions
even with 560 functions, maximizing the number of SLO-
compliant functions.
Efficiency of model heaviness. We evaluate the efficiency
of model heaviness with Torpor and Torpor-LRU, using
DenseNet-201 and Bert-qa as light and heavy models, re-
spectively. Fig. 12 shows tail latencies of DenseNet-201 and
Bert-qa in a mixed workload, where Bert-qa instances account
for 60% of overall memory footprint. Torpor-LRU is agnos-
tic to model heaviness and can evict heavy models frequently,
leading to high tail latencies for Bert-qa that fail to meet its
SLOs (200 ms). In contrast, Torpor effectively reduces tail
latencies of Bert-qa without compromissing performance for
DenseNet-201, achieving SLOs for both models.
Efficiency of memory allocation. Fig. 13 shows the distribu-
tion of the latencies of per-request memory allocation normal-
ized to inference time, under Torpor and Torpor-Block. Due
to efficient memory allocation and sharing (§4.4), Torpor
incurs only negligible overhead. In contrast, Torpor-Block
leads to high allocation overhead (e.g., over 4× than the actual
inference time), harming the end-to-end performance.

7.4 Torpor in A Cluster
We next evaluate Torpor in a cluster deployment with 6 GPU
worker nodes. As running Torpor in a Alibaba Cloud cluster
incurs additional system overhead, we set the SLOs for CV
models and Bert-qa to 150 ms and 250 ms, respectively.
Baselines. We exclude INFless-KA from our cluster deploy-
ment due to its poor performance (see Fig. 10). We use three
baselines: 1) Native uses native GPU containers bound to
specific GPUs, which is the current practice in Alibaba Cloud.
2) NonSwap allows GPU remoting similar to Torpor, but
disables model swapping, reducing memory footprint com-
pared with Native. 3) SimpleSwap enables model swapping

200 400 600 800 1000 1200
Number of functions

0

25

50

75

100

S
LO

-c
om

pl
ia

nt
 F

un
c.

(%
)

Torpor
SimpleSwap
NonSwap
Native

(a) Ratio of SLO-compliant functions under Torpor and base-
lines.

0 1 4 7
Norm. latency

Torpor

SimpleSwap

NonSwap

0.0 0.1 0.2 0.3 0.4
Per-worker load variance

(b) Distribution of per-request latencies normalized to deadlines
(left) and the per-worker variance of GPU load normalized to
the maximum (right), when running 1k functions. Boxes (left)
depict the 1/128, 1/64, . . . , 1/2, . . . , 63/64, 127/128 quantiles.

Figure 14: Cluster evaluation of Torpor.

compared with NonSwap. This approach only supports sim-
ple strategies as discussed in §7.3, including FIFO request
queueing, random scheduling, and LRU model eviction.
Cluster evaluation. Fig. 14 compares Torpor with these
three baselines. We first show the ratio of SLO-compliant
functions under various number of functions. As shown in
Fig. 14a, only Torpor can consistently meet per-function
latency SLOs even with a large number of functions (e.g.,
over 1000). Native quickly saturates all GPU memory and
only supports up to 500 functions, thus low GPU utilization.
Compared with Native, NonSwap relaxes the constraint of
GPU memory and enables more functions; however, it still
fixes the binding between functions and GPUs, and causes
GPUs overloaded by requests and leads to long tail latency.
Moreover, while SimpleSwap outperforms NonSwap with
model swapping, it still suffers from severe SLO violations
with a large number of functions (e.g., 1k).

Fig. 14b compares the behaviors of Torpor, SimpleSwap,
and NonSwap under 1k functions. We show the distribution
of per-request latencies normalized to corresponding dead-
lines (left). In Torpor, almost every request can be served
within its deadline, leading to a normalized latency less than 1.
However, SimpleSwap and NonSwap suffer from long tail la-
tency — over 4× and 7× of the respective deadlines. We also
compare the per-worker GPU load of the three systems. For
each worker node, we normalize the loads of its four GPUs
to the maximum, and calculate the variance. Lower variance
indicates better load balancing. Fig. 14b (right) plots the per-
worker load variances of three solutions, each with 6 workers
in total. Compared with NonSwap, Torpor and SimpleSwap

Table 5: Overview of Torpor’s pilot production.

Metric Value Metric Value
of users > 150 Users’ cost savings 70% on avg.
of GPUs > 350 GPU savings 65%
of daily requests up to 465k

can effectively balance GPU load across workers with model
swapping, thus achieving much less load variance.

8 Torpor in Pilot Production

Torpor has been deployed in a pilot production cluster in
Alibaba Cloud for beta testing. In this section, we present the
testing results and our observations.
Overview of the pilot production. In the deployment, we
employ a cost-efficient billing scheme in which users are
charged only 10% of the GPU cost when their functions
are inactive and retained in the host memory. This billing
scheme aligns with Torpor’s late binding mechanism and
has attracted a variety of real-world inference workloads to
Alibaba Cloud, including image processing, text generation,
and image generation. Table 5 provides an overview of our
pilot production system and the achieved savings. Currently,
Torpor serves over 150 users in a cluster with more than 350
GPUs, handling up to 465k requests everyday. The system
achieves an average cost savings of 70% for users compared
to the previous approach of Alibaba Cloud that kept functions
long-running on GPUs and billed users for the entire GPU
time. Moreover, Torpor enables Alibaba Cloud to consoli-
date various functions for improved GPU utilization, resulting
in a 65% reduction in the total number of required GPUs and
cost savings for Alibaba Cloud.
Startup latency. Table 1 shows the performance of Torpor
in the pilot production across various models, ranging from
CNNs such as ResNet to LLMs like Llama. In the production
environment, Torpor prioritizes user isolation and manages
a dedicated GPU runtime for each function. Hence we also
provide a detailed breakdown of the time required for model
loading and runtime resumption in Table 1. Compared to
cold starts in Alibaba Cloud, Torpor reduces model startup
latencies by over an order of magnitude, e.g., cutting Llama2-
13B’s startup time to 4.4 seconds—a delay that is acceptable
considering that generating all output tokens for a query can
take tens of seconds [30, 68].
Case study. We next present a case study of a realistic GPU
function in our pilot production, which involves text gener-
ation from input images. This function is invoked several
thousands times per day and follows a request arrival pattern
similar to Fig. 1. Without Torpor, this function would need to
be kept long-running on a GPU for low inference latency, re-
sulting in high GPU costs. Fig. 15 depict latency distribution
and user cost of this function. For confidentiality reasons, we
normalize the latency of model (and runtime) loading to the

0.0 0.5 1.0 1.5 2.0
Norm. latency

0.00

0.25

0.50

0.75

1.00

C
D

F

Loading
End-to-end

w/o Torpor w/ Torpor
0.0

0.5

1.0

N
or

m
. u

se
r c

os
t

0.16

Figure 15: Latency distribution and user cost of a realistic
GPU function in Alibaba Cloud.

mean of end-to-end times, and the cost to that of long-running
GPU functions (i.e., w/o Torpor). The loading duration is
consistent, as shown in Fig. 15 (left), which accounts for only
∼30% of the overall latency. Fig. 15 (right) illustrates the user
cost, where Torpor reduces the total cost by 84% compared
to the previous approach in Alibaba Cloud. Based on this
real-world use case, Torpor achieves significant cost savings
without compromising end-to-end performance, proving to
be an effective solution for serverless inference.
Discussion. We have identified three challenges that require
further investigation based on our experiences with the pro-
duction cluster. (1) Extremely infrequent functions: We have
observed that some functions are invoked extremely infre-
quently (e.g., a few requests per hour). However, these func-
tions still result in substantial user costs due to their host mem-
ory usage. To address this, we plan to explore the utilization
of cheaper storage for low-demand functions and investigate
a multi-tier storage architecture that dynamically adapts to
request patterns for improved resource and cost efficiency. (2)
Very large models: While Torpor’s late–binding design is
versatile and has been applied to large models (Table 1), it
currently does not support model-parallel execution across
multiple GPUs. To accommodate very large models spanning
multiple GPUs or nodes, it is crucial to enable efficient model
partitioning and parallelization that integrates with Torpor’s
model-swapping mechanism. Therefore, we intend to extend
Torpor to leverage various interconnects, including PCIe and
NVLink (Fig. 5), for enhanced model parallel and pipeline
execution. (3) Highly bursty workloads: While Torpor is pri-
marily designed for efficient resource sharing among many
low-frequency functions (Fig. 2), some functions may experi-
ence highly bursty workloads with short periods of extensive
request arrivals. To handle such spikes, Torpor can proac-
tively maintain host-memory-cached model replicas across
multiple nodes, mitigating cold starts at the cost of increased
memory usage. We plan to explore high-speed inter-node
networks (e.g., RDMA) for efficient model loading between
nodes, which can reduce memory footprint while maintaining
low-latency model startup.

9 Related Work

Serverless Inference. In addition to the serverless platforms
discussed in §2.2, there are several recent works on serverless

inference. StreamBox [56] and Dilu [43] support spatial GPU
sharing for concurrent model execution; FaaSTube [55] im-
proves data sharing within inference workflows. These works
are orthogonal to Torpor and can be integrated for enhanced
performance. ServerlessLLM [30] and Medusa [64] propose
cold-start optimizations specialized for large language mod-
els, which is complementary to Torpor and can be used to
accelerate those specific models.

Host-to-GPU data swapping. Many other systems have
leveraged host-to-GPU data swapping in general deep learn-
ing and GPU workloads [23, 32, 34, 39, 46, 50, 57, 63]. For ex-
ample, vDNN [46], Salus [63] and SwapAdvisor [34] leverage
host memory for deep learning jobs with large GPU memory
footprints; Batch-aware [39] and HUVM [23] optimize GPU
memory access for general-purpose workloads; POS [35] sup-
ports efficient GPU checkpointing and restoring. Compared
with Torpor, these systems are not specifically designed for
model inference and do not account for its SLO attainment.
Inference systems such as PipeSwitch [22] and DeepPlan [36]
improve host-to-GPU model loading for fast switching. Un-
like Torpor, these systems require detailed model-specific
knowledge and do not target meeting model-level SLOs in a
shared, multi-tenant serverless environment.

GPU remoting. GPU remoting techniques have been em-
ployed in different layers for GPU virtualization [28, 31, 45,
59]. Existing solutions like GVirtuS [31] and rCUDA [28] pri-
marily focus on general-purpose workloads. Torpor applies
GPU remoting in serverless inference, leveraging its charac-
teristics for asynchronous, low-latency API redirection.

Spatio-temporal GPU sharing. Existing techniques have
investigated the spatial and temporal GPU sharing to improve
overall utilization [2, 13–15, 24, 33, 51, 56]. These techniques
are orthogonal to Torpor and can be directly applied, which
allow partitioning a physical GPU into multiple virtual in-
stances to late-bind more functions.

10 Conclusion

This paper introduces Torpor, a serverless platform for SLO-
aware and GPU-efficient model inference. Torpor employs a
late binding approach, managing inference functions in host
memory and dynamically swapping them to a pool of GPUs
upon request arrivals. This approach enables pay-per-GPU-
use billing and maximizes resource utilization. Additionally,
Torpor proposes request scheduling and model management
policies to meet latency SLOs for inference functions while
minimizing resource costs. Torpor has been beta released in
a large commercial serverless platform, successfully serving
up to 465k requests per day and achieving 70% and 65% GPU
cost savings for users and the platform, respectively.

Acknowledgments

We thank the anonymous reviewers and our shepherd, So-
mali Chaterji, for their insightful comments that helped im-
prove this work. We also thank Bohui Wu and Zhexiang
Zhang for their help in experiments. This work was supported
in part by the Alibaba Innovative Research (AIR) Grant,
RGC CRF Grant (Ref. #C6015-23G), RGC GRF Grants
(Ref. #16217124 and #16210822), NSFC/RGC CRS Grant
(Ref. #CRS_HKUST601/24), and CUHK-Shenzhen Research
Grant (UDF01003466).

References

[1] Alibaba Cloud Function Compute. https://www.
alibabacloud.com/product/function-compute.

[2] Aliyun cGPU. https://www.alibabacloud.
com/help/en/container-service-for-
kubernetes/latest/cgpu-overview.

[3] Aliyun Function Compute Billing Scheme. https:
//www.alibabacloud.com/help/en/function-
compute/latest/billing-billing.

[4] Aliyun Function Compute Instance Types and
Modes. https://www.alibabacloud.com/help/
en/function-compute/latest/instance-types-
and-instance-modes.

[5] Amazon SageMaker. https://aws.amazon.com/
sagemaker/.

[6] AWS Lambda. https://aws.amazon.com/lambda/.

[7] AWS Lambda Provisioned Concurrency.
https://docs.aws.amazon.com/lambda/latest/
dg/provisioned-concurrency.html.

[8] Azure Functions. https://azure.microsoft.com/
en-us/services/functions/.

[9] GVirtuS. https://github.com/gvirtus/GVirtuS.

[10] Llama2. https://www.llama.com/llama2.

[11] Llama3. https://www.llama.com/models/llama-
3.

[12] Memory Management on Modern GPU Architec-
tures. https://developer.download.nvidia.com/
video/gputechconf/gtc/2019/presentation/
s9727-memory-management-on-modern-gpu-
architectures.pdf.

[13] Nvidia Multi-Instance GPU. https://www.nvidia.
com/en-us/technologies/multi-instance-gpu/.

https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/help/en/container-service-for-kubernetes/latest/cgpu-overview
https://www.alibabacloud.com/help/en/container-service-for-kubernetes/latest/cgpu-overview
https://www.alibabacloud.com/help/en/container-service-for-kubernetes/latest/cgpu-overview
https://www.alibabacloud.com/help/en/function-compute/latest/billing-billing
https://www.alibabacloud.com/help/en/function-compute/latest/billing-billing
https://www.alibabacloud.com/help/en/function-compute/latest/billing-billing
https://www.alibabacloud.com/help/en/function-compute/latest/instance-types-and-instance-modes
https://www.alibabacloud.com/help/en/function-compute/latest/instance-types-and-instance-modes
https://www.alibabacloud.com/help/en/function-compute/latest/instance-types-and-instance-modes
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://github.com/gvirtus/GVirtuS
https://www.llama.com/llama2
https://www.llama.com/models/llama-3
https://www.llama.com/models/llama-3
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9727-memory-management-on-modern-gpu-architectures.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9727-memory-management-on-modern-gpu-architectures.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9727-memory-management-on-modern-gpu-architectures.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9727-memory-management-on-modern-gpu-architectures.pdf
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/

[14] Nvidia Multi-Process Service. https://docs.nvidia.
com/deploy/mps/.

[15] Nvidia Virtual GPU. https://www.nvidia.com/en-
us/data-center/virtual-solutions/.

[16] Qwen. https://github.com/QwenLM/Qwen.

[17] ResNet in PyTorch. https://pytorch.org/vision/
stable/models/resnet.html.

[18] Stable Diffusion. https://huggingface.co/
stable-diffusion-v1-5/stable-diffusion-v1-
5.

[19] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtualiza-
tion for serverless applications. In Proc. USENIX NSDI,
2020.

[20] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia
Smirni. BATCH: Machine learning inference serving
on serverless platforms with adaptive batching. In Proc.
ACM/IEEE Supercomputing, 2020.

[21] Marcelo Amaral, Jordà Polo, David Carrera, Seetharami
Seelam, and Malgorzata Steinder. Topology-aware gpu
scheduling for learning workloads in cloud environ-
ments. In Proc. ACM SC, 2017.

[22] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin.
PipeSwitch: Fast pipelined context switching for deep
learning applications. In Proc. USENIX OSDI, 2020.

[23] Sangjin Choi, Taeksoo Kim, Jinwoo Jeong, Myeongjae
Jeon, Youngjin Kwon, Rachata Ausavarungnirun, and
Jeongseob Ahn. Memory harvesting in multi-GPU sys-
tems with hierarchical unified virtual memory. In Proc.
USENIX ATC, 2022.

[24] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse
Park, Youngjin Kwon, and Jaehyuk Huh. Serving hetero-
geneous machine learning models on multi-GPU servers
with spatio-temporal sharing. In Proc. USENIX ATC,
2022.

[25] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper: A
low-latency online prediction serving system. In Proc.
USENIX NSDI, 2017.

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[27] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia,
Binyu Zang, and Haibo Chen. Serverless computing
on heterogeneous computers. In Proc. ACM ASPLOS,
2022.

[28] José Duato, Antonio J. Peña, Federico Silla, Rafael
Mayo, and Enrique S. Quintana-Ortí. rcuda: Reducing
the number of gpu-based accelerators in high perfor-
mance clusters. In Proc. IEEE HPCS, 2010.

[29] Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng
Jia, Emmett Witchel, and Christopher J. Rossbach. Dgsf:
Disaggregated gpus for serverless functions. In Proc.
IEEE IPDPS, 2022.

[30] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian
Brabete, Dmitrii Ustiugov, Yuvraj Patel, and Luo Mai.
ServerlessLLM: Locality-enhanced serverless inference
for large language models. In Proc. USENIX OSDI,
2024.

[31] Giulio Giunta, Raffaele Montella, Giuseppe Agrillo, and
Giuseppe Coviello. A gpgpu transparent virtualization
component for high performance computing clouds. In
Proc. Euro-Par, 2010.

[32] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving DNNs like clockwork: Performance
predictability from the bottom up. In Proc. USENIX
OSDI, 2020.

[33] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale preemption for concurrent
GPU-accelerated DNN inferences. In Proc. USENIX
OSDI, 2022.

[34] Chien-Chin Huang, Gu Jin, and Jinyang Li. SwapAd-
visor: Pushing deep learning beyond the GPU memory
limit via smart swapping. In Proc. ACM ASPLOS, 2020.

[35] Zhuobin Huang, Xingda Wei, Yingyi Hao, Rong Chen,
Mingcong Han, Jinyu Gu, and Haibo Chen. PARAL-
LELGPUOS: A concurrent OS-level GPU checkpoint
and restore system using validated speculation. arXiv
preprint arXiv:2405.12079, 2024.

[36] Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn. Fast
and efficient model serving using multi-gpus with direct-
host-access. In Proc. ACM EuroSys, 2023.

[37] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient
and scalable serverless computing for latency-sensitive,
interactive microservices. In Proc. ACM ASPLOS, 2021.

[38] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed dnn training in heterogeneous
gpu/cpu clusters. In Proc. USENIX OSDI, 2020.

https://docs.nvidia.com/deploy/mps/
https://docs.nvidia.com/deploy/mps/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://github.com/QwenLM/Qwen
https://pytorch.org/vision/stable/models/resnet.html
https://pytorch.org/vision/stable/models/resnet.html
https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5

[39] Hyojong Kim, Jaewoong Sim, Prasun Gera, Ramyad
Hadidi, and Hyesoon Kim. Batch-aware unified memory
management in GPUs for irregular workloads. In Proc.
ACM ASPLOS, 2020.

[40] Kenneth C. Knowlton. A fast storage allocator. Com-
mun. ACM, 8(10):623–624, 1965.

[41] Jack Kosaian, K. V. Rashmi, and Shivaram Venkatara-
man. Parity models: erasure-coded resilience for predic-
tion serving systems. In Proc. ACM SOSP, 2019.

[42] Yunseong Lee, Alberto Scolari, Byung-Gon Chun,
Marco Domenico Santambrogio, Markus Weimer, and
Matteo Interlandi. PRETZEL: Opening the black box of
machine learning prediction serving systems. In Proc.
USENIX OSDI, 2018.

[43] Cunchi Lv, Xiao Shi, Zhengyu Lei, Jinyue Huang, Went-
ing Tan, Xiaohui Zheng, and Xiaofang Zhao. Dilu: En-
abling GPU resourcing-on-demand for serverless DL
serving via introspective elasticity. In Proc. ACM ASP-
LOS, 2025.

[44] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang
Ma, Qian Xiong, Fan Yang, and Xuehai Qian. Capuchin:
Tensor-based GPU memory management for deep learn-
ing. In Proc. ACM ASPLOS, 2020.

[45] C. Reaño, A. J. Peña, F. Silla, J. Duato, R. Mayo, and
E. S. Quintana-Ortí. Cu2rcu: Towards the complete
rcuda remote gpu virtualization and sharing solution. In
Proc. IEEE HiPC, 2012.

[46] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Ar-
slan Zulfiqar, and Stephen W. Keckler. vDNN: Virtual-
ized deep neural networks for scalable, memory-efficient
neural network design. In Proc. ACM/IEEE MICRO,
2016.

[47] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. INFaaS: Automated model-less
inference serving. In Proc. USENIX ATC, 2021.

[48] Mohammad Shahrad, Rodrigo Fonseca, Iñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In Proc. USENIX ATC, 2020.

[49] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: a GPU cluster engine for
accelerating DNN-based video analysis. In Proc. ACM
SOSP, 2019.

[50] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang Xie, Beidi
Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. High-
throughput generative inference of large language mod-
els with a single gpu. arXiv preprint arXiv:2303.06865,
2023.

[51] Foteini Strati, Xianzhe Ma, and Ana Klimovic. Orion:
Interference-aware, fine-grained gpu sharing for ml ap-
plications. In Proc. ACM EuroSys, 2024.

[52] Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tian-
long Wu, and Haoran Yang. Owl: Performance-aware
scheduling for resource-efficient function-as-a-service
cloud. In Proc. ACM SoCC, 2022.

[53] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias,
Edouard Bugnion, and Boris Grot. Benchmarking, anal-
ysis, and optimization of serverless function snapshots.
In Proc. ACM ASPLOS, 2021.

[54] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang,
Haoran Yang, Huiba Li, Rui Du, and Yue Cheng. FaaS-
Net: Scalable and fast provisioning of custom serverless
container runtimes at alibaba cloud function compute.
In Proc. USENIX ATC, 2021.

[55] Hao Wu, Junxiao Deng, Minchen Yu, Yue Yu, Yaochen
Liu, Hao Fan, Song Wu, and Wei Wang. Faastube: Opti-
mizing gpu-oriented data transfer for serverless comput-
ing. arXiv preprint arXiv:2411.01830, 2024.

[56] Hao Wu, Yue Yu, Junxiao Deng, Shadi Ibrahim, Song
Wu, Hao Fan, Ziyue Cheng, and Hai Jin. StreamBox:
A lightweight GPU SandBox for serverless inference
workflow. In Proc. USENIX ATC, 2024.

[57] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. AntMan: Dynamic scaling on GPU clus-
ters for deep learning. In Proc. USENIX OSDI, 2020.

[58] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang,
Jie Li, Mingyang Zhao, Xingzhen Chen, and Keqiu Li.
INFless: a native serverless system for low-latency, high-
throughput inference. In Proc. ACM ASPLOS, 2022.

[59] Hangchen Yu, Arthur Michener Peters, Amogh Aksh-
intala, and Christopher J. Rossbach. AvA: Accelerated
virtualization of accelerators. In Proc. ACM ASPLOS,
2020.

[60] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan
Chen. Following the data, not the function: Rethinking
function orchestration in serverless computing. In Proc.
USENIX NSDI, 2023.

[61] Minchen Yu, Zhifeng Jiang, Hok Chun Ng, Wei Wang,
Ruichuan Chen, and Bo Li. Gillis: Serving large neural
networks in serverless functions with automatic model
partitioning. In Proc. IEEE ICDCS, 2021.

[62] Minchen Yu, Ao Wang, Dong Chen, Haoxuan Yu, Xi-
aonan Luo, Zhuohao Li, Wei Wang, Ruichuan Chen,
Dapeng Nie, Haoran Yang, and Yu Ding. Torpor: Gpu-
enabled serverless computing for low-latency, resource-
efficient inference. arXiv preprint arXiv:2306.03622,
2025.

[63] Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-
grained GPU sharing primitives for deep learning appli-
cations. In Proc. MLSys, 2020.

[64] Shaoxun Zeng, Minhui Xie, Shiwei Gao, Youmin Chen,
and Youyou Lu. Medusa: Accelerating serverless LLM
inference with materialization. In Proc. ACM ASPLOS,
2025.

[65] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. MArk: Exploiting cloud services for cost-effective,

SLO-aware machine learning inference serving. In Proc.
USENIX ATC, 2019.

[66] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jin-
grong Chen, and Ion Stoica. Caerus: NIMBLE task
scheduling for serverless analytics. In Proc. USENIX
NSDI, 2021.

[67] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. SHEPHERD: Serving DNNs in the wild. In
Proc. USENIX NSDI, 2023.

[68] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu,
Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang. Dist-
Serve: Disaggregating prefill and decoding for goodput-
optimized large language model serving. In 18th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), 2024.

	Introduction
	Background and Motivation
	Serverless Inference
	GPU Support in Serverless Platforms

	Key Insight and Challenges
	Torpor System Design
	Architecture overview
	GPU Remoting
	Model Swapping
	Memory Management
	Isolation and Fault Handling

	Torpor Policy Design
	Design Overview
	Request Queueing
	Scheduling and Model Swapping
	Model Eviction Policy

	Implementation
	Evaluation
	Overhead of Torpor's Late Binding
	Benefits of Torpor's Late Binding
	Torpor at A Node
	Torpor in A Cluster

	Torpor in Pilot Production
	Related Work
	Conclusion

