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Abstract—Performance and service isolation come as two top
objectives for coflow scheduling. However, the common wisdom is
that these two objectives are often conflicting with each other and
cannot be achieved simultaneously. Existing coflow scheduling
frameworks either focus only on minimizing the average coflow
completion time (CCT) (e.g., Varys), or providing optimal isola-
tion between contending coflows by means of fair network sharing
(e.g., HUG). In this paper, we make an attempt to achieve the best
of both worlds through a novel coflow scheduler, Utopia, to attain
near-optimal performance with provable isolation guarantee. This
is particularly challenging given the correlation of bandwidth
demands across multiple links from coflows. We show that Utopia
is capable of reducing the average CCT dramatically, while
still guaranteeing that no coflow will ever be delayed beyond
a constant time than its CCT in a fair scheme. Both trace-driven
simulation and EC2 deployment confirm that Utopia outperforms
the fair sharing policy by 1.8× in terms of average CCT, while
producing no completion time delay for a single coflow. Even
compared with performance-optimal Varys, Utopia speeds up
average coflow completion by 9%.

I. INTRODUCTION

Communication in data-parallel applications widely follows
the bulk-synchronous parallel (BSP) model [1]–[3], in which
a collection of parallel flows, termed coflow [4], transfer
intermediate data between a group of machines. Not until
all parallel flows have completed will a coflow complete. In
a shared cloud, diverse coexisting coflows from many users
and applications contend for the limited network bandwidth.
Consequently, today’s network scheduler needs to schedule
contending coflows to attain optimal performance towards fast
completion while providing service isolation between coflows
by means of fair network sharing.

However, simultaneously achieving optimal performance and
service isolation is challenging. Many network schedulers settle
for minimizing the average coflow completion time (CCT) as
the primary objective, e.g., [5]–[8], among which Varys [5]
is arguably of the best performance. Varys generalizes the
Shortest-Job-First (SJF) heuristic to the context of coflow
scheduling. The algorithm preferentially prioritizes “small”
coflows over “large” ones, hence minimizing the average CCT.
However, Varys and its refinements [6]–[8] are incapable
of providing service isolation: because “large” coflows are
less favored than “small” ones, the former end up with less
bandwidth and are likely slowed down by the latter [9].

On the other hand, many solutions turn to fair network
sharing to provide optimal isolation between coflows, e.g.,
[9]–[12]. These schedulers allocate each coflow a fair share of

the cloud network bandwidth, isolating the completion of each
coflow with predictable CCT. However, fair schedulers do not
explicitly optimize performance and fall short of minimizing
average CCT [9]. In fact, performance (i.e., minimizing average
CCT) and fairness (i.e., service isolation) have long been
considered as conflicting objectives that cannot be achieved
simultaneously, which motivates the recent work [13] to
navigate the two-way tradeoff space.

In this paper, we challenge the status quo with a bold
question: is it possible to provide isolation guarantee between
contending coflows while still minimizing the average CCT to
ensure near-optimal performance? We provide an affirmative
answer to this question. Our key insight is to preferentially serve
coflows following their completion order in a fair scheduling
scheme, i.e., DRF [10] or HUG [9]. Intuitively, this simple
approach is capable of achieving the best of both worlds in two
aspects. First, because coflows are served at the same progress
in a fair scheme [9], “small” coflows likely complete earlier than
“large” ones. Therefore, tracking the coflow completion order in
a fair scheme largely imitates Varys, in which “small” coflows
are prioritized over “large” ones to minimize the average CCT.
Second, service isolation can only be observed by users when
their coflows complete. By tracking the completion order in
a fair scheme, the scheduler likely completes a coflow earlier
than it would have had in a fair scheme, hence providing an
equivalent long-term isolation between users and applications.

However, directly implementing this promising insight using
existing approaches (e.g., [5]) results in priority inversion. A
coflow has correlated bandwidth demand across multiple links.
In case that one link is preempted by another coflow with
a higher priority, the entire coflow gets delayed even if it
can still transfer on other links. Existing approaches [5] then
suspend the transmission of that coflow on all links, and offer
the revoked bandwidth to others with lower priorities. The
coflow hence yields bandwidth to low-priority contenders. As
we shall show in Sec. III-B, priority inversion unnecessarily
delays coflow completion.

We address this challenge through a novel algorithm called
Utopia. Utopia sequentially aggregates coflows into a super-
coflow, where the kth super-coflow is the cumulative aggrega-
tion of the first k coflows to complete in a fair scheme. Utopia
sequentially allocates bandwidth to each super-coflow towards
the maximum progress. Utopia provides provable isolation
guarantee: compared to a fair scheme, each coflow completes
with no more than a constant delay in the offline scenario.
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Fig. 1: An m × m non-blocking datacenter fabric with
ingress/egress ports connecting to m machines.

We evaluated Utopia against performance-optimal Varys
[5] and isolation-optimal HUG [9] through both trace-driven
simulations and EC2 deployment on a 60-machine cluster.
Evaluation results show that compared with HUG, Utopia
reduces the average CCT by 1.8×, without delaying a single
coflow. More impressively, even compared with performance-
optimal Varys, Utopia slightly outperforms by 9%. To our
knowledge, Utopia is the first coflow scheduler that simultane-
ously optimizes performance while providing provable isolation
guarantee close to fair sharing.

II. MODEL AND OBJECTIVE

In this section, we describe our model for datacenter
fabric and coflow scheduling. We clarify two objectives, i.e.,
minimizing the average CCT (performance) and optimizing
isolation guarantee (fairness), followed by a brief review of
prior works.

A. Model

Datacenter Fabric. Given that full-bisection bandwidth net-
work is now available in production datacenters (DCs) [14],
we model the DC fabric as a non-blocking switch [4], [5],
[9], where the edges are the only place of congestions. As
shown in Fig. 1, we assume an m×m DC fabric connecting
m machines. Each machine i has a full-duplex link shown as
an uplink connecting ingress port i and a downlink connecting
egress port m+ i. Without loss of generality, we assume that
all links are of equal capacity normalized to one.

Coflow. The coflow abstraction captures the communication
requirement between two computation stages in the BSP (bulk-
synchronous parallel) model. A coflow consists of a collection
of parallel flows across a group of machines. Not until all
constituent flows have completed will a coflow complete.

In many applications such as MapReduce and machine learn-
ing, the amount of data transferred in the communication stage
can be known a priori [5], [9], [15], e.g., shuffle between map
and reduce. Specifically, we characterize coflow-k by a demand
vector dk = 〈d1k, . . . , d2mk 〉, where dik denotes the amount of
data transferred on link-i. Among all links of coflow-k, we
identify the most heavily loaded link bi as the bottleneck link,
i.e., bk = arg maxi d

i
k, and let d̄k = maxi d

i
k be the bottleneck

demand. To better characterize the demand correlation across
links, we define correlation vector ck = 〈c1k, . . . , c2mk 〉, where
cik is the total amount of data transferred on link-i normalized
by the bottleneck demand, i.e., cik = dik/d̄k. Meaning, for every

bit coflow-k transfers on the bottleneck link, at least cik bits
should be transferred on link-i.

Given demand and correlation vectors (i.e., dk and ck),
the network scheduler determines, for each coflow-k, the
bandwidth allocation ak = 〈a1k, . . . , a2mk 〉, where aik is the
share of bandwidth on link-i. Once the allocation has been
given, the coflow transmission progress is bottlenecked on the
slowest link. Formally, we measure the progress of a coflow as
the minimum demand-normalized allocation across links, i.e.,

Pk = min
i:cik>0

aik/c
i
k. (1)

Intuitively, a coflow progress captures the attainable transmis-
sion rate on the slowest link, which critically affects the CCT.

B. Objectives

The general consensus [4] is that the network scheduler
should minimize average CCT for optimal performance while
providing isolation between coflows in a shared network.

Minimizing Average CCT. For data-intensive applications [4],
[16], communication is frequently a bottleneck. Consequently,
a network scheduler should finish as many coflows as possible,
each in its fastest possible way. We therefore settle for
minimizing the average CCT as the first and foremost objective
for coflow scheduling.

Isolation Guarantee (Fairness): In multi-tenant environments
such as public cloud, coexisting coflows from different users
and applications contend for communication bandwidth in
a shared network. To ensure performance isolation between
users and applications, a network scheduler should provide a
minimum progress guarantee. Following Chowdhury et al. [9],
given an allocation, we measure isolation guarantee as the
minimum progress across coflows, i.e., mink Pk. A direct
approach to optimize isolation guarantee is to seek an allocation
that maximizes the minimum progress, i.e.,

maximize min
k
Pk. (2)

C. Performance-optimal vs. Isolation-optimal

Despite the rich literature on coflow scheduling, a large body
of work settle on one goal—either performance or isolation—as
the primary objective, while treating the other as a secondary
concern, often without an explicit focus. Among these works,
Varys [5] and HUG [9] are the two representative schedulers
that respectively optimizes performance and isolation.

Performance-optimal Varys. In a nutshell, Varys [5] mini-
mizes average CCT through the smallest-effective-bottleneck-
first (SEBF) heuristic. In our model, the effective bottleneck
of a coflow is equivalent to its bottleneck demand d̄k, and the
SEBF heuristic greedily schedules coflows in an ascending
order of their bottleneck demand. While optimal in performance,
Varys provides no isolation guarantee, as large coflows would
give way bandwidth to small contenders. In fact, Chowdhury
et al. [9] showed that Varys delays the maximum shuffle
completion time by 77% in production MapReduce traces.



Isolation-optimal HUG. As opposed to Varys, HUG [9] targets
to provide optimal isolation guarantee by means of fair sharing.
Specifically, HUG employs a two-stage allocation algorithm.
In the first stage, it seeks a Dominant Resource Fairness (DRF)
[10] allocation to optimize isolation guarantee. To this end, it
equally increases the progress of each coflow to the maximum
level, i.e.,

P ∗ =
1

maxi

∑
k c

i
k

. (3)

In the second stage, it allocates spare bandwidth to speed
up coflow completion on a best-effort basis. Compared with
Varys, HUG results in longer average CCT and delays shuffle
completion time by 45% on average in production traces [9].

Coflex as a Middle Ground. The recently proposed Coflex
[13] comes as a middle ground between Varys and HUG.
In particular, Coflex navigates the tradeoff space between
performance and isolation through a tunable fairness knob
α in the range of 0 and 1. Coflex allocates bandwidth in two
stages. In the first stage, it equally increases the progress of
each coflow to an α fraction of the optimum, providing isolation
guarantee αP ∗. In the second stage, it turns to minimizing
the average CCT by allocating the spare bandwidth using the
SEBF heuristic similar to Varys.

To our knowledge, Coflex is the only work that explicitly
considers the two objectives. However, the choice of fairness
knob critically depends on the underlying workload and cannot
be easily determined in real-world systems. In fact, even if
the knob has been carefully tuned for a particular workload,
Coflex still cannot achieve the best of both worlds.

D. Achieving the Best of Both Worlds in a Long Run

We argue that the tradeoff between performance and isolation
is not a fundamental limit for coflow scheduling, but a
consequence of an artificial restriction that optimal isolation
guarantee must be provided by means of instantaneous fair
allocation. That is, at all time instant, the progress of each
coflow must be maintained at the maximum level P ∗.

However, from an application’s perspective, the effect of
isolation guarantee can only be observed in the long run when
the coflow completes. Intuitively, if we use fair scheduling
(e.g., DRF [10] or HUG [9]) as a baseline algorithm, from an
application’s view, as long as its coflow completes no later
than it would have had in the baseline scheme, its isolation
is guaranteed in the long run. This motivates us to turn to
long-term isolation guarantee as follows.

Definition 1 (Long-term isolation guarantee): For coflow-
k, let Fk be its CCT with scheduler S, and let FF

k be the CCT
in a fair scheme that enforces instantaneous fair allocation
with the optimal isolation guarantee P ∗. We say scheduler S
provides long-term isolation guarantee if it completes each
coflow-k within a constant delay D beyond FF

k , i.e.,

Fk ≤ FF
k +D. (4)

We shall show in the next section that long-term isolation
guarantee is not necessarily in conflict with optimal perfor-
mance. Our objective in this paper is to achieve the best of
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Fig. 2: Illustration of the inefficiency of fair scheduling. Two
coflows contend on two 1-Gbps links: coflow-A with demand
vector dA = 〈200, 100〉 and coflow-B with dB = 〈300, 200〉.
(a) Bandwidth share over time using DRF. (b) Bandwidth share
over time where coflow-A is prioritized over coflow-B.

both worlds in a long run—minimizing the average CCT while
providing long-term isolation guarantee, i.e.,

minimize
∑
k

Fk,

s.t. Fk ≤ FF
k +D, for all coflow-k.

(5)

III. KEY INSIGHT AND CHALLENGES

In this section, we present our key insight of achieving both
optimal performance and isolation guarantee in the long run.
We also discuss the challenges to implement this insight.

A. Key Insight

We begin our discussion by analyzing why providing
isolation by means of fair sharing poisons the performance.

Inefficiency of Fair Sharing. Fair schedulers, notably HUG
[9] and DRF [10], seek to enforce the same progress P ∗ across
all coflows. However, blindly enforcing an equal progress
irrespective of coflow demand results in a long average CCT.
Intuitively, those small coflows that could have completed faster
if receiving more bandwidth than fair share are now forced to
stay at the same progress with others.

To illustrate this point, we refer to a simple example in Fig. 2,
where two coflows contend on two 1-Gbps links. Coflow-A
transfers 200 Mb on link-1 and 100 Mb on link-2, and has
demand dA = 〈200, 100〉; coflow-B has dB = 〈300, 200〉. Be-
cause coflow-A transfers less amount of data on the bottleneck
link than coflow-B, the former is considered smaller than the
latter. As shown in Fig. 2a, with DRF allocation, both coflows
equally share the bottleneck link-1 with the same progress of
0.5 Gbps.1 However, this is inefficient and unnecessary as we
are only concerned with the coflow completion time. In fact,
if we give up on fair sharing but instead prioritize the small
coflow over the large one, we could speed up the former by
2× without delaying the latter, as illustrated in Fig. 2b.

Key Insight. We learn from the simple example above that
maintaining instantaneous fairness (i.e., equal progress) at all

1Link-2 is not fully utilized as DRF enforces the same completion time
across all flows within a coflow.



time is too restrictive and not necessary to retain long-term
isolation guarantee; instead, it can stall coflow completion.
In fact, long-term isolation guarantee imposes a rather loose
requirement that each coflow should not be delayed long beyond
its completion under fair scheduling. Therefore, to minimize
the average CCT, we should prioritize as many small coflows
as possible, while scheduling the other large coflows only when
needed, i.e., close to their completion in a fair scheme.

Following this observation, our key insight is to preferentially
schedule coflows in ascending order of their completion time
under fair scheduling, i.e., DRF [10] or HUG [9]. We argue
that this simple approach can potentially achieve the best of
both worlds in two aspects.

• Near-optimal performance: First, by serving coflows
following their completion order in fair scheduling, we
expect that the resultant scheduling scheme resembles the
performance-optimal SEBF (smallest-effective-bottleneck-
first) heuristic in Varys [5]. Because fair scheduling
enforces an equal progress across all coflows, those with
small bottleneck demand (i.e., effective bottleneck) likely
complete early in it. These coflows are therefore scheduled
at higher priority than the others with larger bottleneck
demand, which aligns with the behaviors of SEBF.

• Long-term isolation guarantee: Second, because coflows
are prioritized based on their completion order in fair
scheduling, a coflow can only be delayed by its predeces-
sors who complete earlier in the fair scheme, but not its
successors. We therefore expect the coflow to achieve a
shorter CCT than it would have had in the fair scheme,
hence providing long-term isolation guarantee.

B. Challenges

However, directly implementing the insight above is challeng-
ing. It is well known that greedily offering available bandwidth
to coflows following their priorities is usually not optimal
[5], [8], mainly because coflows have correlated bandwidth
demands across multiple links. To address this problem, a com-
mon approach [5], [16] is to use the Minimum-Allocation-for-
Desired-Duration (MADD) algorithm to sequentially allocate
bandwidth for each coflow, from the highest priority to the
lowest. However, we show that this approach suffers from
priority inversion that harms isolation guarantee.

Minimum-Allocation-for-Desired-Duration. In a nutshell,
the MADD algorithm [5], [16] allocates a coflow the least
amount of bandwidth to attain the maximum possible progress.
Specifically, suppose that there remains Ri amount of spare
bandwidth on link-i, which is used to serve coflow-k with
demand correlation vector ck = 〈c1k, . . . , c2mk 〉. By Eq. (1), the
maximum attainable progress of the coflow is

P̄k = min
i:cik>0

Ri/c
i
k,

To achieve this maximum progress, the amount of bandwidth
allocated on link-i is at least P̄kc

i
k. MADD produces exactly

the minimum allocation P̄kck.
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Fig. 3: MADD results in priority inversion. Three coflows
contend on three 1-Gbps links, each having demand dA =
〈100, 0, 0〉, dB = 〈50, 150, 0〉, and dC = 〈0, 180, 180〉.
Coflows are scheduled with priority A > B > C. (a) With
MADD, coflow-B is preempted by low-priority coflow-C. (b)
Optimal schedule.

Given the scheduling order of coflows, existing approaches
use MADD algorithm to sequentially allocate bandwidth for
each coflow, one after another. Bandwidth left unallocated by
MADD, if any, is backfilled to coflows in the end. Intuitively,
MADD speeds up a coflow using the least amount of bandwidth,
so as to save as much spare bandwidth as possible for the next
coflow. MADD has been successfully applied to implement
the SEBF heuristic in Varys [5].

Priority Inversion. However, using MADD to track the
completion order under fair scheduling is problematic: a coflow
can be preempted by another with lower priority on the
bottleneck link, causing unnecessary delay. We consider a
toy example where three coflows contend on three 1-Gbps
links. coflow-A transfers 100 Mb on link-1 and has demand
dA = 〈100, 0, 0〉; coflow-B has demand dB = 〈50, 150, 0〉;
coflow-C has demand dC = 〈0, 180, 180〉. Given that coflow-A
has the lowest bottleneck demand of 100 Mb, it completes the
earliest under fair scheduling, followed by B and C. Following
our insight described in the previous subsection, we should
schedule the three coflows with priority A > B > C.

Fig. 3a depicts the allocation scheme produced by MADD.
Because coflow-A is of the highest priority, it monopolizes
the entire link-1. The other two idle links are then offered
to coflow-B. However, without link-1, coflow-B cannot gain
any progress as it has demand on it. Consequently, MADD
allocates no bandwidth to coflow-B but offers links 2 and 3
to coflow-C. Coflow-B hence gets preempted by low-priority
coflow-C on its bottleneck link-2, which delays its completion
as opposed to the optimal scheme depicted in Fig. 3b.

We attribute the root cause of priority inversion to MADD
using attainable progress to justify bandwidth allocation, which
has led to a misbelief that transferring on a link without making
progress only wastes the bandwidth allocation, and should be
ruled out in the first place. This is a mistake. We refer back
to the previous example in Fig. 3b and focus on coflow-B.
While getting blocked on link-1, coflow-B should still transfer
on link-2. Even though this gains no progress for coflow-B,
it reduces the backlog on the bottleneck link, which in turn
speeds up the coflow completion.



IV. UTOPIA

In this section, we present a new network scheduler, which
we call Utopia, in that it achieves the best of both worlds for
coflow scheduling. We start to focus on offline scheduling with
a novel algorithm that sequentially aggregates coflows into
super-coflows. We show that this algorithm provides long-term
isolation guarantee. We then generalize the offline solution to
an efficient online scheduler for dynamic coflow arrivals.

A. Offline Scheduling

We consider an offline problem of scheduling N coflows
C1, . . . , CN that arrived at time 0. Without loss of generality, let
coflows be indexed based on their completion order assuming
fair scheduler DRF,2 where coflow C1 has the least amount of
bottleneck demand and completes first, followed by C2, and
so on. A coflow that completes earlier in DRF is assigned a
higher priority than its DRF successor. We therefore obtain a
prioritized scheduling scheme C = (C1, . . . , CN ).

Super-coflow. Given scheduling scheme C, we aggregate
coflows into super-coflows S = (S1, . . . , SN ), where Sk is
a sequential aggregation of the first k coflows C1, . . . , Ck.
Specifically, let Dk = 〈D1

k, . . . , D
2m
k 〉 be the demand vector of

Sk, where Di
k is the amount of data the super-coflow transfers

on link-i. We have Dk =
∑k

l=1 dl. In other words, the demand
of a super-coflow is simply the cumulative demands of all its
coflows. Super-coflow S1 trivially reduces to coflow C1 as a
special case.

Unlike prior works which focus on individual coflows [4],
[5], [7], [9], [13], we seek to speed up the completion of
super-coflows, each in its fastest possible way. In particular, our
algorithm sequentially allocates bandwidth to each super-coflow
atop the previous allocation, with an objective of achieving
the maximum progress. Such a sequential allocation for super-
coflows S aligns with scheduling scheme C. Recall that within
super-coflow Sk, coflow Ck is scheduled at the lowest priority
and is likely the last one to complete. Therefore, speeding up
the entire super-coflow also speeds up Ck.

Compared with prior works, allocating bandwidth at the
granularity of super-coflows provides two benefits:

1) It enables the scheduler to have a global view of
the cumulative demands, based on which bandwidth
allocation can be well planned. For example, with the
knowledge of the bottleneck link of super-coflow Sk, the
scheduler can better justify the bandwidth allocation for
coflow Ck. If the coflow has demands on the bottleneck
link of Sk, its completion is likely bounded by the
cumulative demands on that link. Therefore, allocating
it more bandwidth on the other links will not reduce
its CCT, and is not justified. Such a justification is not
possible if we only focus on individual coflows.

2) It avoids priority inversion as much as possible. In fact,
an allocation to coflow Ck is justified as long as it
helps to speed up the entire super-coflow Sk, even if

2DRF and HUG share the same coflow completion order, as they enforce
an equal progress across all coflows.

the allocation translates into no progress for Ck. This
in stark contrast to Varys [5], where a coflow easily
yields bandwidth to low-priority contenders if it gains
no progress from the allocation (cf. Fig. 3).

Bandwidth Allocation. Given scheduling scheme S =
(S1, . . . , SN ), our algorithm allocates bandwidth in rounds.
In round k, it allocates super-coflow Sk the least amount of
bandwidth to complete it in minimum possible time, without
overriding the allocations for S1, . . . , Sk−1 settled in previous
rounds. Taking the difference between allocations for Sk and
Sk−1, we obtain the bandwidth allocation for coflow Ck.
Formally, let f ijk be a flow in Ck transferring data from uplink-i
(ingress port) to downlink-j (egress port) in the fabric. We next
explain how our algorithm computes the amount of bandwidth
rijk allocated for each flow f ijk ∈ Ck in round k.

We start to compute the minimum attainable CCT of super-
coflow Sk if it was running alone in the fabric, which is simply
the bottleneck demand assuming unit link capacity, i.e.,

D̄k = maxiD
i
k.

Let Dij
k be the amount of data transferred from uplink-i to

downlink-j in Sk. To achieve the minimum CCT, we need to
allocate at least Dij

k /D̄k bandwidth for traffics between the two
links. Note that among these traffics, those belonging to coflows
C1, . . . , Ck−1 have already been allocated bandwidth in the
previous rounds along with super-coflows S1, . . . , Sk−1, i.e.,
flow f ijl received rijl share of bandwidth, where l < k. Because
these flows have higher priorities than f ijk , their allocations∑

l<k r
ij
l must be guaranteed. Therefore, out of the planned

allocation Dij
k /D̄k, we can allocate flow f ijk at most

(Dij
k /D̄k −

∑
l<k r

ij
l )+, (6)

where (x)+ = max{0, x} is a ramp function that takes the
positive part of x. Also note that the amount of bandwidth
allocated to flow f ijk is bounded by the available bandwidth
of the two access links. We finally have

rijk = min{(Dij
k /D̄k −

∑
l<k r

ij
l )+, Ri, Rj}, (7)

where Ri and Rj are the amount of remaining bandwidth on
link-i and link-j, respectively. We refer to allocBandwidth(C)
in Algorithm 1 as a summary of the entire process.

Retaining Work Conservation. To achieve work-conserving
allocations, the final stage of our algorithm is to distribute
unused bandwidth, if any, to coflows. We adopt the same back-
filling strategy as in Varys [5]: for each uplink-i, we allocate its
remaining bandwidth Ri to active flows, in proportion to their
current allocation (rijk ) ratio, subject to the capacity constraints
in the corresponding downlink-j. We summarize our offline
solution as UtopiaOffline(C) in Algorithm 1.

Example. To better illustrate the algorithmic behaviors of
Utopia, we refer back to the previous example in Fig. 3b,
where three coflows are scheduled in ascending order of their
bottleneck demands, following scheme C = (A,B,C). Utopia
allocates the entire link-1 to coflow-A in recognition of its top



Algorithm 1 Utopia
1: procedure ALLOCBANDWIDTH(Coflows C)
2: Initialize remaining b/w Ri ← 1 on all link-i
3: for k = 1 to |C| do
4: Aggregate demands into super-coflow Dk =

∑k
l=1 dl

5: D̄k ← maxi D
i
k

6: for all flow f ij
k ∈ Ck do

7: rijk ← min{(Dij
k /D̄k −

∑
l<k r

ij
l )+, Ri, Rj}

8: Ri ← Ri − rijk . Update remaining b/w on link-i
9: Rj ← Rj − rijk . Update remaining b/w on link-j

10: procedure UTOPIAOFFLINE(Coflows C)
11: Sort C in ascending order of completion time under DRF
12: allocBandwidth(C)
13: Distribute unused bandwidth to all C ∈ C
14: procedure UTOPIAONLINE(Coflow C, Bool isArrival)
15: if isArrival then
16: C← C ∪ {C} . Coflow C arrives
17: else
18: C← C \ {C} . Coflow C completes
19: Update the remaining demands for all C ∈ C
20: UtopiaOffline(C)

priority. In the second round, it aggregates A and B into a
super-coflow S2 with demand D2 = 〈150, 150, 0〉. If running
alone, super-coflow S2 would have fully taken both link-1
and link-2. Excluding link-1 which has already been given to
coflow-A, we allocate the entire link-2 to coflow-B. In the final
round, we aggregate all three coflows into S3 with demand
D3 = 〈150, 330, 180〉. If running alone, the super-coflow takes
330 ms to complete, with minimum allocation 〈 5

11 , 1,
6
11 〉 on

three links. Excluding link-1 and link-2 from consideration as
they have already been allocated and cannot be revoked, we
shall allocate 6

11 of link-3 to coflow-C. The unused share 5
11

is distributed to coflow-C in the final stage. In the end, Utopia
settles on the optimal allocation depicted in Fig. 3b.

B. Long-term Isolation Guarantee

Utopia provides long-term isolation guarantee (given by Def-
inition 1) for offline scheduling: each coflow is guaranteed to
complete within a small constant bound beyond its completion
in DRF. Formally, we have the following theorem.

Theorem 1 (Long-term isolation guarantee): Assume that
coflows C arrived at time 0. For coflow Ck ∈ C, let Fk be its
CCT in Algorithm 1, and FF

k its CCT in DRF. We bound the
maximum completion delay beyond DRF as follows:

Fk − FF
k ≤ d̄max, (8)

where d̄max is the maximum bottleneck demand of a coflow.
We make two remarks on Theorem 1:
1) The delay bound d̄max is a small constant in production

datacenters. Recall that we assume a unit link capacity.
The bottleneck demand also measures the minimum
CCT if the coflow were transferring alone in the fabric.
Given the high-speed, full-bisection bandwidth fabric in
production datacenters, transferring a coflow alone can
be very fast.

2) The delay bound is established as a worst case guarantee,
but coflows usually complete faster with much shorter
average CCT. In fact, as we shall show in Sec. V, no
coflow gets delayed in our evaluation.

We next give a proof sketch of Theorem 1. The complete
proof is deferred to our technical report [17] due to space
constraints.

Proof Sketch. To bound the completion delay of coflow Ck, we
turn to super-coflow Sk. We differentiate between the following
two cases.

Case-1: Throughout the transmission of Sk, its bottleneck
link has been fully utilized. In this case, we show that coflow
Ck cannot be delayed, i.e., Fk ≤ FF

k .
Because the bottleneck link of Sk is kept busy, the CCT

of super-coflow Sk is simply the time to finish transferring
its bottleneck demand D̄k at full bandwidth. By that time,
coflow Ck must have completed, i.e., Fk ≤ D̄k. We now turn
to DRF. Recall that Ck is the kth coflow to complete in DRF.
By the time it finishes in DRF, the previous k − 1 coflows
C1, . . . , Ck−1 must have completed, so does super-coflow Sk.
Given that D̄k is the minimum possible CCT of Sk, we have

FF
k ≥ D̄k ≥ Fk. (9)

Case-2: During the transmission of Sk, the bottleneck link
of Sk is not fully utilized at some time. This occurs when
the allocation on the bottleneck link is restricted due to the
lack of available bandwidth on the coupled links (line 7 in
Algorithm 1). Specifically, let Bk be the bottleneck link of
Sk. We say link l is coupled with Bk if there exists a flow
in Sk communicating between l and Bk whose allocation is
less than DlBk

k /D̄k, i.e., its DRF share if Sk is running alone
in the fabric. Let L(Bk) be the set of links coupled with Bk.
When Bk is not fully utilized, link l in L(Bk) must have run
out of bandwidth,3 and is fully used to transfer flows in Sk.

Let tB be the time when bottleneck link Bk starts to transfer
at full bandwidth. The only reason that Bk cannot be saturated
before tB is due to the allocation of the first k− 1 coflows on
its coupled links L(Bk). Such a roadblock will be cleared after
those coflows have completed on all coupled links. Formally,
let tl be the time when coflows C1, . . . , Ck−1 complete on
coupled link l ∈ L(Bk). We have tB ≤ maxl∈L(Bk) tl. We
next focus on the worst case where tB = maxl∈L(Bk) tl but
defer the complete analysis to our technical report [17].

We turn to DRF and show tl ≤ FF
k for all link l ∈ L(Bk).

This is because by the time coflow Ck completes in DRF, all
the previous k−1 coflows must have completed. Therefore, the
CCT of coflow Ck in DRF is at least tl. Putting it altogether,
we have tB ≤ FF

k .
Also note that, by time tB , the first k − 1 coflows have

completed transferring data on bottleneck link Bk. From then
on, bottleneck link Bk is dedicated to transferring coflow Ck

until its completion. We therefore have

Fk ≤ FF
k + d̄k ≤ FF

k + d̄max. (10)
3Otherwise, Utopia would have used the spare bandwidth to transfer flows

between a coupled link and bottleneck Bk .



C. From Offline to Online

Our solution can be easily generalized to online scheduling
with dynamic coflow arrivals. Specifically, we maintain a list of
active coflows sorted in ascending order of their CCTs in DRF.
Upon an arrival (departure) of a coflow, we insert (remove) it
into (from) the list and update the scheduling order. We then
allocate bandwidth based on the new order. The UtopiaOnline
routine in Algorithm 1 summarizes the entire process.

Towards an efficient implementation of Utopia, we need a
fast algorithm to track the coflow completion order under DRF.
This can be done through the virtual time approach widely
used in the fair queueing literature [18], [19]. In particular,
we define virtual time V (t) as a function that increases at the
marginal rate equal to the coflow progress under DRF, i.e.,
d
dtV (t) = P ∗, where P ∗ follows (3). For each coflow Ck, we
associate it with a virtual finish time V F

k upon its arrival, i.e.,

V F
k = V (tAk ) + d̄k, (11)

where tAk is the arrival time of Ck, and d̄k is its bottleneck
demand. The virtual finish time of a coflow, once computed,
requires no update in the future. By maintaining the list of
active coflows in ascending order of virtual finish time, we
can accurately track the coflow completion order in DRF.

V. EVALUATION

We evaluated Utopia through trace-driven simulations and
testbed deployment in a 60-machine Amazon EC2 [20] cluster.
The highlights of our evaluations are:
• Utopia offers long-term fairness with guaranteed isolation

between coflows. It dominates HUG [9] and DRF [10]
in both trace-driven simulations and EC2 deployment,
without delaying any single coflow.

• Utopia minimizes the average CCT and outperforms HUG
and DRF by 1.8× and 1.9×, respectively. In fact, even
compared with performance-optimal Varys, Utopia reduces
the average CCT by 9%, showing no longer CCT in 97%
of coflows.

A. Trace-Driven Simulations

Workload. We used CoflowBenchmark [21] as input of our
simulations. The benchmark consists of a one-hour snapshot
of a production Hive/MapReduce trace collected from a 3000-
machine cluster in Facebook [5]. The benchmark consists of
526 coflows scaled down to a 150-port DC fabric, where all
mappers (reducers) in the same rack are combined into one
rack-level mapper (reducer).

Setup. In our simulations, we modeled the DC fabric as a
150× 150 non-blocking switch with 150 ingress/egress ports
corresponding to the uplinks/downlinks of 150 racks connected
to it. We implemented the scheduling logic of Utopia along
with three baseline algorithms: DRF [10], HUG [9], and Varys
[5]. Our implementations are based on CoflowSim [22], the de
facto simulator for coflow scheduling. We evaluated isolation
guarantee of Utopia against DRF and HUG, while comparing
its performance with Varys.

0 1 2 3 4 5 6 7
Normalized CCT 

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F HUG

DRF

(a) Distribution of normalized CCT

SN LN SW LW All
Coflow Type

0

1

2

3

4

A
v
g
.n
o
rm

a
liz
e
d
 C
C
T

3.07

2.75

3.09

2.62
2.88

3.37

3.03

3.49

2.87

3.19

HUG

DRF

(b) Average normalized CCT

Fig. 4: Utopia dominants DRF and HUG with isolation
guarantee. (a) Distribution of normalized CCT. (b) Average
normalized CCT in coflow bins.
TABLE I: Coflows binned by their lengths (Short or Long)
and widths (Narrow or Wide) in the Coflow-Benchmark [21].

Bin SN LN SW LW
% of Coflows 60% 16% 12% 12%

Isolation Guarantee. We have shown in Theorem 1 that
Utopia provides isolation guarantee for offline scheduling
where coflows arrived at time 0. A natural question is: can this
isolation guarantee be similarly provided in a more practical
online setting where coflows dynamically arrive over time? To
answer this question, we compared Utopia against DRF and
HUG based on a metric called normalized CCT. Normalized
CCT is defined, for each coflow, as the CCT under the compared
scheduler normalized by that under Utopia, i.e.,

Normalized CCT =
Compared CCT

CCT under Utopia
.

Intuitively, if the normalized CCT is greater (smaller) than 1,
the coflow finishes faster (slower) under Utopia.

We measured the normalized CCT for each coflow under
DRF and HUG, as shown in Fig. 4a. Utopia strongly dominates
the two fair schedulers. Across all 526 coflows, the normalized
CCT is consistently greater than 1. Meaning, no single
coflow gets delayed by Utopia. In fact, Utopia speeds up
the completion of over 70% of coflows by more than 2×.
These encouraging results clearly indicate that Utopia provides
long-term isolation guarantee for online scheduling, which
complements our previous analysis in the offline setting.

To better understand the performance impact on different
coflows, we further divide 526 coflows into four bins based
on their shuffle types. Following [5], [7], [9], we consider a
coflow small (long) if its largest flow is less (greater) than 5
MB, and narrow (wide) if it consists of less (more) than 50
flows. Table I summarizes the distribution of binned coflows.

We compare the average normalized CCT of the two fair
schedulers in four coflow bins and plot the results in Fig. 4b.
We observe a general trend that the normalized CCT of a
small coflow (i.e., SN and SW) is usually higher than that
of a large one, meaning that small coflows likely gain more
salient speedup than large ones when switching to Utopia.
We attribute this trend to Utopia emulating the “small-coflow-
first” heuristic (i.e., SEBF) to a large extent by tracking the
completion order under a fair scheduler. Because small coflows
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Fig. 5: Illustration of Utopia’s efficiency of minimizing CCT. (a)
Average CCT under different schemes. (b) Statistical summary
of the minimum, average, and the 95th percentile slowdown.

dominate in population (Table I), speeding up their completion
critically improves the average performance. Overall, a coflow
can expect an average speedup of 2.88× (3.19×) if switching
from HUG (DRF) to Utopia.

Near-optimal Performance. We next show that Utopia also
achieves near-optimal performance. Fig. 5a compares the
average CCT of Utopia as opposed to the three baseline
algorithms. Utopia easily dominates the two fair schedulers,
almost halving the average CCT. More impressively, Utopia
even outperforms Varys with 9% shorter average CCT. In fact,
we found that among 526 coflows, there are 508 coflows having
no longer CCT, meaning that 97% of coflows are better off
using Utopia.

Motivated by the remarkable results above, we are curious to
know how far Utopia is from the optimal. To this end, we turn
to another metric termed completion slowdown. Specifically,
completion slowdown is defined, for each coflow, as the CCT
in the compared scheme normalized by the minimum possible
CCT if the coflow were running alone in the fabric, i.e.,

Slowdown =
Compared CCT

Minimum CCT if running alone
.

We measured the slowdown of each coflow under the four
schedulers. Fig. 5b gives a statistical summary of the minimum,
average, and the 95th percentile slowdown. We see that with
Utopia, coflows are only slowed down by 8% on average as
compared with running alone—a strong evidence that Utopia
has pushed the performance to the limit, without many space
for further improvement.

B. EC2 Deployment

Implementation. We have prototyped Utopia in Python with
a master-slave architecture. The master identifies coflows and
makes scheduling decisions following the logic of Algorithm 1;
a slave runs in a cluster machine as a daemon program and
enforces the specified flow transmission rate using Linux’s
tc and htb qdisc tools. In particular, upon arrival, a coflow
registers to the master with its transmission demands through a
public Utopia API. The master, after receiving the registration,
computes a new allocation for active coflows and notifies the
flow transmission rates to the corresponding slaves for local
enforcement. A slave periodically sends heartbeat messages

TABLE II: Summary of coflow information in experiment.

Commun. Pattern # of Flows Arrival Time
coflow-A all-to-all 360 0 s
coflow-B pairwise one-to-one 60 10 s
coflow-C pairwise one-to-one 60 20 s

to the master to update its status. Once a coflow departure
has been detected, the master quickly responds with a new
allocation. We have developed a dedicated plugin based on
Ansible [23] to automate the deployment and management of
Utopia in a large cluster.

Cluster deployment. We performed experiments in a 60-node
Amazon EC [20] cluster. For each node, we used a c4.xlarge
EC2 instance with 4 cores and 7.5 GB RAM. For simplicity,
we configured 200 Mbps as the bandwidth capacity to each
uplink/downlink.

Micro-benchmark. We micro-benchmarked the behavior of
Utopia against three coflows of different communication pat-
terns contending in a 60-machine cluster. Table II summarizes
the configurations of three coflows. In particular, coflow-A
contains 10 groups of all-to-all shuffle, each performing 6× 6
communications. In total, coflow-A has 360 flows. coflow-B
has 60 flows following a pairwise one-to-one communica-
tion pattern between machine i and machine i + 30, where
1 ≤ i ≤ 30. coflow-C also has 60 flows following the same
communication pattern, where machine j communicates with
machine j + 15, for all 1 ≤ j ≤ 15 and 30 ≤ j ≤ 45. In
total, we have 480 flows in three coflows. For each flow, we
randomly configured its size between 30 MB and 100 MB. In
this setting, coflow-A is considered large, whereas the other
two coflows are considered small. Table II summarizes the
information of the three coflows.

1) Coflow Completion Time: Fig. 6 depicts the CCTs of
three coflows using three schedulers. We see that Utopia
consistently outperforms HUG and Varys, resulting in shorter
CCTs of all three coflows. Compared with HUG, Utopia
significantly speeds up the two “small” coflows (B and C)—a
consequence that Utopia preferentially serves small coflows
that complete early under fair scheduling.

2) Coflow Progress: Fig. 7 depicts the progress of each
coflow under different schedulers over time. As expected, HUG
enforces the same progress at all time, which unnecessarily
delays coflow completion. Both Utopia and Varys prioritize
small coflows: large coflow-A is preempted by the two small
coflows. We note that even following the same scheduling
priority, Utopia outperforms Varys with shorter CCT of coflow-
C. We attribute this advantage to the fact that Utopia does not
use progress to justify bandwidth allocation, but takes a global
view based on super-coflows. In fact, we have observed that
coflow-C starts to transfer on some links upon its arrival, even
without gaining any progress. Such an early start pays off in
the end with faster coflow completion.

VI. RELATED WORK

Many recently proposed coflow schedulers focus on mini-
mizing average CCT. For example, unlike Varys [5] which is
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a centralized scheduler, Baraat [15] employs a decentralized
design based on FIFO. Aalo [6] and CODA [7] come as
non-clairvoyant schedulers that make scheduling decisions
without a priori knowledge about the flow size and/or coflow
identification. Qiu et al. [8] proposed the first approximation
algorithm for clairvoyant coflow scheduling assuming full
knowledge of future coflow arrivals. These schedulers, while
excelling in performance, are incapable of isolating coflows
with predictable performance.

To achieve predictable networking performance, fair network
schedulers, notably FairCloud [11], HUG [9] and its variant
[12], have been proposed to provide optimal isolation guarantee
with high network utilization. These scheduling policies,
however, is inefficient in minimizing the average CCT. Coflex
[13] comes as a middle ground to navigate the tradeoff between
fairness and performance. Instead of seeking instantaneous
fair allocations, Utopia aims to provide long-term isolation
guarantee, which allows it to achieve the best of both worlds.

We note that the idea of giving up instantaneous fairness
for higher efficiency has been explored in an early work [24]
for web server protocols. Similar insight has recently been
applied in the context of job scheduling [25], in which parallel
tasks are assigned to compute slots for fast job completion. All
these works focus on single-resource scheduling. In contrast,
coflows have correlated demands across multiple links, and
a coflow scheduler must deal with multi-resource scheduling
with coupled constraints on ingress/egress ports [8].

VII. CONCLUSION

In this paper, we have proposed a new network scheduler,
Utopia, to minimize the average CCT without compromising
isolation guarantee. Utopia achieves the best of both worlds
by preferentially scheduling coflows in ascending order of
their CCTs under DRF. To avoid priority inversion, Utopia
employs a novel bandwidth allocation algorithm based on
super-coflow, which is the sequential aggregation of the first k

coflows to complete in DRF. We have shown that with Utopia,
each coflow is guaranteed to complete within a small constant
bound beyond its completion under DRF. Both trace-driven
simulations and EC2 deployment have confirmed that Utopia
achieves near-optimal performance with isolation guarantee.
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