
Multi-Resource Round Robin: A Low Complexity
Packet Scheduler with Dominant Resource Fairness

Wei Wang, Baochun Li, Ben Liang
Department of Electrical and Computer Engineering

University of Toronto
{weiwang, bli}@eecg.toronto.edu, liang@comm.utoronto.ca

Abstract—Middleboxes are widely deployed in today’s enter-
prise networks. They perform a wide range of important net-
work functions, including WAN optimizations, intrusion detection
systems, network and application level firewalls, etc. Depending
on the processing requirement of traffic, packet processing for
different traffic flows may consume vastly different amounts
of hardware resources (e.g., CPU and link bandwidth). Multi-
resource fair queueing allows each traffic flow to receive a
fair share of multiple middlebox resources. Previous schemes
for multi-resource fair queueing, however, are expensive to
implement at high speeds. Specifically, the time complexity
to schedule a packet is O(log n), where n is the number of
backlogged flows. In this paper, we design a new multi-resource
fair queueing scheme that schedules packets in a way similar to
Elastic Round Robin. Our scheme requires only O(1) work to
schedule a packet and is simple enough to implement in practice.
We show, both analytically and experimentally, that our queueing
scheme achieves nearly perfect Dominant Resource Fairness.

I. INTRODUCTION

Network appliances or “middleboxes” are ubiquitous in
today’s networks. Recent studies report that the number of
middleboxes deployed in enterprise networks is on par with the
traditional L2/L3 devices [1], [2]. These middleboxes perform
a variety of critical network functions, ranging from basic
operations such as packet forwarding and HTTP caching to
more complex processing such as WAN optimization, intrusion
detection system (IDS) and firewalls.

As the traffic through middleboxes surges [3], it is important
to have a scheduling discipline that provides predictable ser-
vice isolation across flows. Although traditional fair queueing
algorithms allow flows to receive a fair share of the output
bandwidth [4], [5], [6], [7], packet scheduling in a middlebox
is more complicated because flows are competing for multiple
hardware resources (e.g., CPU, memory bandwidth, and link
bandwidth) and may have vastly different resource require-
ments, depending on the network functions they go through.
For example, forwarding a large amount of small packets of a
flow via software routers congests the memory bandwidth [8],
while performing intrusion detection for external traffic is CPU
intensive. Despite the heterogeneous resource requirements of
traffic, flows are expected to receive predictable service isola-
tion. This requires a multi-resource fair queueing scheme that
makes scheduling decisions across all middlebox resources.
The following properties are desired.

Fairness: The middlebox scheduler should provide some
measure of service isolation to allow competing flows to have
a fair share of middlebox resources. In particular, each flow
should receive the service at least at the level when every
resource is equally allocated (assuming flows are equally
weighted). Moreover, this service isolation should not be
compromised by strategic behaviours of other flows.

Low complexity: With the ever growing line rate and
the increasing volume of traffic passing through middleboxes
[3], [9], it is critical to schedule packets at high speeds.
This requires low time complexity when making scheduling
decisions. In particular, it is desirable that this complexity is
a small constant, independent of the number of traffic flows.
Equally importantly, the scheduling algorithm should also be
amenable to practical implementation.

While both fairness and scheduling complexity have been
extensively studied for bandwidth sharing [4], [5], [6], [10],
[11], multi-resource fair queueing remains a largely uncharted
territory. The recent work of Ghodsi et al. [12] suggests
a promising alternative, known as DRFQ, that implements
Dominant Resource Fairness (DRF) [13] in the time domain.
While DRFQ provides nearly perfect service isolation, it is
expensive to implement. Specifically, DRFQ needs to sort
packet timestamps [12] and requires O(log n) time complexity
per packet, where n is the number of backlogged flows. With
a large n, it is hard to implement DRFQ at high speeds. This
problem is aggravated in the recent middlebox innovations,
where software-defined middleboxes deployed as VMs and
processes are now replacing traditional network appliances
with dedicated hardwares [14], [15]. As more software-defined
middleboxes are consolidated onto commodity and cloud
servers [1], [2], a device will see an increasing amount of
flows competing for resources.

In this paper, we design a new packet scheduling algorithm,
called Multi-Resource Round Robin (MR3), that takes O(1)

time to schedule a packet, and achieves similar fairness per-
formance as DRFQ. While round-robin schemes have found
successful applications to fairly share the outgoing bandwidth
of switches and routers [10], [16], [17], directly applying
them to schedule multiple resources may lead to arbitrary
unfairness. We show, analytically, that simply withholding
the scheduling opportunity of a packet until the progress gap
between two resources falls below a small threshold leads to
nearly perfect fairness. We explore the design space of round-978-1-4799-1270-4/13/$31.00 c�2013 IEEE

robin algorithms, and implement this idea in a way similar
to Elastic Round Robin [17], which we show is the most
suitable round-robin variant for the middlebox environment.
Both theoretical analyses and extensive simulation show that
as compared to DRFQ, the price we pay is a slight increase
of packet latency. To our knowledge, MR3 represents the first
multi-resource fair queueing scheme that offers near-perfect
fairness in O(1) time. We believe that our scheme is amenable
to an extremely simple implementation, and may find a variety
of applications in other multi-resource scheduling contexts
such as VM scheduling inside a hypervisor.

II. RELATED WORK

Unlike switches and routers where the output bandwidth
is the only shared resource, middleboxes handle a variety
of hardware resources and require a more complex packet
scheduler. Many recent measurements, such as [8], [12], [18],
report that packet processing in a middlebox may bottleneck
on any of CPU, memory bandwidth, and link bandwidth,
depending on the network functions applied to the traffic flow.
Such a multi-resource setting significantly complicates the
scheduling algorithm. As pointed out in [12], simply applying
traditional fair queueing schemes [4], [5], [6], [10], [19] per
resource (i.e., per-resource fairness) or on the bottleneck re-
source (i.e., bottleneck fairness) fails to offer service isolation:
by strategically claiming some resources that are not needed, a
flow may increase its service share at the price of other flows.

Ghodsi et al. [12] suggest a promising scheduler that
implements Dominant Resource Fairness (DRF) in the time
domain and therefore achieves service isolation across multiple
resources. Their design, known as DRFQ, schedules packets in
a way such that flows receive roughly the same processing time
on their most congested resources. Following this intuition, we
have extended the idealized GPS model [4], [5] to Dominant
Resource GPS (DRGPS) that implements the strict DRF at all
times [20]. By emulating DRGPS, well-known fair queueing
algorithms, such as WFQ [4] and WF2Q [7], can have di-
rect extensions in the multi-resource setting. While all these
algorithms achieve nearly perfect service isolation, they are
timestamp-based schedulers and are expensive to implement.
In particular, packets, upon their arrivals, are stamped some
timestamps. The scheduler then selects a packet with the
earliest timestamp among n active flows, requiring O(log n)
time per packet. With a large n, these algorithms are hard to
implement at high speeds.

The challenge of reducing the scheduling complexity should
come at no surprise to network researchers. When there is
only a single resource to schedule, round-robin schedulers
[10], [16], [17] have been proposed to multiplex the output
bandwidth of switches and routers, in which flows are served
in a round-robin fashion. These algorithms eliminate the sort-
ing bottleneck associated with the timestamp-based schedulers,
and achieve O(1) time complexity per packet. Due to their
extreme simplicity, round-robin schemes have been widely
implemented in high-speed routers such as Cisco GSR [21].

Despite the successful application of round-robin algorithms
in traditional L2/L3 devices, it remains unclear whether their
attractiveness, i.e., the implementation simplicity and low time
complexity, extends to the multi-resource environment, and if
it does, how a round-robin scheduler should be designed and
implemented in middleboxes. We answer these questions in
the following sections.

III. MULTI-RESOURCE ROUND ROBIN

In this section, we revisit round-robin algorithms in the
traditional fair queueing literature and discuss the challenges
of extending them to the multi-resource setting. We first
introduce some basic concepts that will be used throughout
the paper.

A. Preliminaries
Packet Processing Time: Depending on the network func-

tions applied to a flow, processing a packet of the flow may
consume different amounts of middlebox resources. Following
[12], we define the packet processing time as a metric to
measure the resource requirements of a packet. Specifically,
for packet p, its packet processing time on resource r, denoted
⌧r(p), is defined as the time required to process the packet on
resource r, normalized to the middlebox’s processing capacity
of resource r. For example, a packet may require 10 µs to
process using one CPU core. A middlebox with 2 CPU cores
can process 2 such packets in parallel. As a result, the packet
processing time of this packet on CPU is 5 µs.

Dominant Resource Fairness (DRF): The recently pro-
posed Dominant Resource Fairness (DRF) [13] serves as a
promising notion of fairness for multi-resource scheduling.
Informally speaking, with DRF, any two flows receive the
same processing time on their dominant resources in all
backlogged periods. The dominant resource is the one that
requires the most packet processing time. Specifically, let m
be the number of resources concerned. For a packet p, its
dominant resource, denoted d(p), is defined as

d(p) = argmax

1rm
{⌧r(p)} . (1)

For example, consider two flows in Fig. 1a. Flow 1 sends
packets P1, P2, . . ., while flow 2 sends packets Q1, Q2,
Packet P1 requires 1 time unit for CPU processing and 3
time units for link transmission, and has the processing time
h1, 3i. All the other packets require the same processing time
h3, 3i on both CPU and link bandwidth. In this case, the
dominant resource of packet P1 is the link bandwidth, while
the dominant resource of packets Q1, P2, Q2, P3, . . . is CPU
(or bandwidth). We see that the scheduling scheme shown in
Fig. 1a achieves DRF, under which both flows receive the same
processing time on their dominant resources (see Fig. 1b).

It has been shown in [20] that by achieving strict DRF at
all times, the resulting scheduling scheme offers the following
properties.

Predictable Service Isolation: For each flow i, the received
service is at least at the level when every resource is equally
allocated.

P1

Q1P1CPU
Link ...

P2

P2

P3

Q1

Q2

Q2

...

P3

Q3

Time20 6 124 8 10 14

(a) The scheduling discipline.

P1

Q1CPU
Link ...P2

Q2 ...

P3

Q3

Time20 6 124 8 10 14

(b) The processing time received on the dominant resources.

Fig. 1. Illustration of a scheduling discipline that achieves DRF.

Truthfulness: No flow can receive better service (finish
faster) by misreporting the amount of resources it requires.

Work Conservation: No resource that could be utilized to
increase the throughput of a backlogged flow is wasted in idle.

Due to these highly desired scheduling properties, DRF is
adopted as the notion of fairness for multi-resource scheduling.
To measure how well a packet scheduler approximates DRF,
the following Relative Fairness Bound (RFB) is used as a
fairness metric [12], [20]:

Definition 1: For any packet arrivals, let Ti(t1, t2) be the
packet processing time flow i receives on its dominant resource
in the time interval (t1, t2). Ti(t1, t2) is referred to as the
dominant service flow i receives in (t1, t2). Let B(t1, t2) be
the set of flows that are backlogged in (t1, t2). The Relative
Fairness Bound (RFB) is defined as

RFB = sup

t1,t2;i,j2B(t1,t2)
|Ti(t1, t2)� Tj(t1, t2)| . (2)

We require a scheduling scheme to have a small RFB, such
that the difference between the normalized dominant service
received by any two flows i and j, over any backlogged time
period (t1, t2), is bounded by a small constant.

B. Challenges of Round-Robin Extension
As mentioned in Sec. II, among various scheduling schemes,

round-robin algorithm is of particular attractiveness for practi-
cal implementation due to its extreme simplicity and constant
time complexity. To extend it to the multi-resource setting
with DRF, a natural way is to directly apply it on flows’
dominant resources, such that in each round, flows receive
roughly the same dominant services. Such a general extension
can be applied to many well-known round-robin algorithms.
However, a naive extension may lead to arbitrary unfairness.

Take the well-known Deficit Round Robin (DRR) [10] as an
example. When there is a single resource, DRR assigns some
predefined quantum size to each flow. Each flow maintains a
deficit counter, whose value is the current unused transmission
quota. In each round, DRR polls every backlogged flow and
transmits its packets up to an amount of data equal to the sum
of its quantum and deficit counter. The unused transmission
quota will be carried over to the next round as the value of the
flow’s deficit counter. Similar to the single-resource case, one
can apply DRR [10] on flows’ dominant resources as follows.

P1CPU
Link ...

...

Time

P1

P2

Q1

P3

P2 Q2 P3

P4 P5

Q3

P6
Q1 Q2 Q3 Q4 Q5

0

(a) Direct application of DRR to schedule multiple resources.

0 20 40 60 80 100
0

20

40

60

80

100

Time

D
o

m
in

a
n

t
S

e
rv

ic
e

 R
e

ce
iv

e
d

Flow 1 (CPU processing time)
Flow 2 (Transmission time)

(b) The dominant services received by two flows.

Fig. 2. Illustration of a direct DRR extension. Each packet of flow 1 has
processing time h7, 6.9i, while each packet of flow 2 has processing time
h1, 7i.

Initially, the algorithm assigns a predefined quantum size to
each flow, which is also the amount of dominant service the
flow is allowed to receive in one round. Each flow maintains a
deficit counter that measures the current unused portion of the
allocated dominant service. Packets are scheduled in rounds,
and in each round, each backlogged flow schedules as many
packets as it has, as long as the dominant service consumed
does not exceed the sum of its quantum and deficit counter.
The unused portion of this amount is carried over to the next
round as the new value of the deficit counter.

As an example, consider two flows where flow 1 sends P1,
P2, . . . , while flow 2 sends Q1, Q2, Each packet of flow
1 has processing time h7, 6.9i, i.e., it requires 7 time units
for CPU processing and 6.9 time units for link transmission.
Each packet of flow 2 requires processing time h1, 7i. Fig. 2a
illustrates the resulting schedule of the above naive DRR
extension, where the quantum size assigned to both flows is 7.
In round 1, both flows receive a quantum of 7, and can process
1 packet each, which consumes all the quantum awarded on
the dominant resources in this round. Such a process repeats
in the following rounds. As a result, packets of the two flows
are scheduled alternately. Since in each round, the received
quantum is always used up, the deficit counter remains 0 in
the end of each round.

Similar to single-resource DRR, the extension above sched-
ules packets in O(1) time1. However, such an extension fails
to provide fair services in terms of DRF. Instead, it may lead to
arbitrary unfairness with an unbounded RFB. Fig. 2b depicts
the dominant services received by two flows. We see that
flow 1 receives nearly two times the dominant service flow
2 receives. With more packets being scheduled, the service
gap increases, eventually leading to an unbounded RFB.

1The O(1) time complexity is conditioned on the quantum size being at
least the maximum packet processing time.

It is to be emphasized that the problem of arbitrary un-
fairness is not limited to DRR extension only, yet generally
extends to all round-robin variants. For example, one can
extend Surplus Round Robin (SRR) [16] and Elastic Round
Robin (ERR) [17] to the multi-resource setting in a similar way
(more details will be given in Sec. IV). It is easy to verify
that running the example above will give exactly the same
schedule shown in Fig. 2a with an unbounded RFB2. In fact,
due to the heterogeneous resource requirements among flows,
a service round may span different time intervals on different
resources. As a result, the work progress on one resource may
be far ahead of that on the other. For example, in Fig. 2a, when
CPU starts to process packet P6, the transmission of packet P3
remains unfinished. It is such a progress mismatch that leads
to a significant gap between the two flows’ dominant services.

In summary, directly applying round-robin algorithms on
flows’ dominant resources fails to provide fair services. A new
design is therefore required. We preview the basic idea in the
next subsection.

C. Deferring the Scheduling Opportunity
The key reason that direct round-robin extensions fails is

because they cannot track flows’ dominant services in real-
time. Take the DRR extension as an example. In Fig. 2a,
after packet Q1 is completely processed on CPU, flow 2’s
deficit counter is updated to 0, meaning that flow 2 has already
used up the quantum allocated for dominant services (i.e.,
link transmission) in round 1. This allows packet P2 to be
processed but erroneously, as the actual consumption of this
quantum incurs only when packet Q1 is transmitted on the
link, after the transmission of packet P1.

To circumvent this problem, a simple fix is to withhold
the scheduling opportunity of every packet until its previous
packet is completely processed on all resources, which allows
the scheduler to track the dominant services accurately. Fig. 3
depicts the resulting schedule when applying this fix to the
DRR extension shown in Fig. 2a. We see that the difference be-
tween the dominant services received by two flows is bounded
by a small constant. However, such a fairness improvement
is achieved at the expense of significantly lower resource
utilization. Even though multiple packets can be processed in
parallel on different resources, the scheduler serves only one
packet at a time, leading to poor resource utilization and high
packet latency. As a result, this simple fix cannot meet the
demand of high-speed networks.

To strike a balance between fairness and latency, packets
should not be deferred as long as the difference of two
flows’ dominant services is small. This can be achieved by
bounding the progress gap on different resources by a small
amount. In particular, we may serve flows in rounds as follows.
Whenever a packet p of a flow i is ready to be processed
on the first resource (usually CPU) in round k, the scheduler
checks the work progress on the last resource (usually the link

2In either SRR or ERR extension, by scheduling 1 packet, each flow uses
up all the quantum awarded in each round. As a result, packets of the two
flows are scheduled alternately, the same as that in Fig. 2a.

P1CPU
Link ...

Time

P1

P2

Q1

P3

P2 Q2

Q1 Q2

0

Fig. 3. Naive fix of the DRR extension shown in Fig. 2a by withholding the
scheduling opportunity of every packet until its previous packet is completely
processed on all resources.

P1CPU
Link ...

Time

P1

P2

Q1

P3

P2 Q2 P3

P4

Q3

Q1 Q2 Q3 Q4

0

...

(a) Schedule by MR3.

0 20 40 60 80 100
0

10

20

30

40

50

60

Time

D
o

m
in

a
n

t
S

e
rv

ic
e

 R
e

ce
iv

e
d

Flow 1 (CPU processing time)
Flow 2 (Transmission time)

(b) The dominant services received by two flows.

Fig. 4. Illustration of a schedule by MR3.

bandwidth). If flow i has already received services on the last
resource in the previous round k � 1, or it is a new arrival,
then packet p is scheduled immediately. Otherwise, packet p
is withheld until flow i starts to receive service on the last
resource in round k � 1. As an example, Fig. 4a depicts the
resulting schedule with the same input traffic as that in the
previous example of Fig. 2a. In round 1, both packets P1 and
Q1 are scheduled without delay because both flows are new
arrivals. In round 2, packet P2 (resp., Q2) is also scheduled
without delay, because when it is ready to be processed, flow
1 (resp., flow 2) has already started its service on the link
bandwidth in round 1. In round 3, while packet P3 is ready to
be processed right after packet Q2 is completely processed on
CPU, it has to wait until P2 starts to be transmitted, as it has
to wait until flow 1 receives service on the link bandwidth in
round 2. Similar process repeats for all the subsequent packets.

We will show later in Sec. V that such a simple idea leads
to nearly perfect fairness across flows, without incurring high
packet latency. In fact, the schedule in Fig. 4a incurs the same
packet latency as that in Fig. 2a, but is much fairer. As we
see from Fig. 4b, the difference between dominant services
received by two flows is bounded by a small constant.

IV. MR3 DESIGN

While the general idea introduced in the previous section is
simple, implementing it as a concrete round-robin algorithm

is nontrivial. We next explore the algorithm design space and
implement the idea in a way similar to Elastic Round Robin
[17], which we show is the most suitable round-robin variants
for middleboxes. The resulting algorithm is referred to as
Multi-Resource Round Robin (MR3).

A. Design Space of Round-Robin Algorithms
Many round-robin variants have been proposed in the

traditional fair queueing literature. While all these variants
achieve similar performance and are all feasible for the single-
resource scenario, not all of them are suitable to implement
the aforementioned idea in a middlebox. We investigate three
typical variants, i.e., Deficit Round Robin (DRR) [10], Surplus
Round robin (SRR) [16], and Elastic Round Robin (ERR)
[17], and discuss their implementation issues in middleboxes
as follows.

Deficit Round Robin (DRR): We have introduced the
basic idea of DRR in Sec. III-B. As an analogy, one can
view the behavior of each flow as maintaining a banking
account. In each round, a predefined quantum is deposited
into a flow’s account, tracked by the deficit counter. The
balance of the account (i.e., the value of the deficit counter)
represents the dominant service the flow is allowed to receive
in the current round. Scheduling a packet is analogous to
withdrawing the corresponding packet processing time on the
dominant resource from the account. As long as there is
sufficient balance to withdraw from the account, a packet is
allowed to process.

However, DRR is not amenable to implement in middle-
boxes due to the following two reasons. First, to ensure that
a flow has sufficient account balance to schedule a packet,
the processing time required on the dominant resource has
to be known before packet processing. However, it is hard
to know what middlebox resources are needed and how much
processing time is required until the packet is processed. Also,
the O(1) time complexity of DRR is conditioned on the
quantum size that is at least the same as the maximum packet
processing time, which may not be easy to obtain in a real
system. Without satisfying this condition, the time complexity
could be as high as O(N) [17].

Surplus Round Robin (SRR): SRR [16] allows a flow to
consume more processing time on its dominant resource in
one round than it has in its account. As a compensation, the
excessive consumption, tracked by a surplus counter, will be
deducted from the quantum awarded in the future rounds. In
SRR, as long as the account balance (i.e., surplus counter)
is positive, the flow is allowed to schedule packets, and the
corresponding packet processing time is withdrawn from the
account after the packet finishes processing on its dominant
resource. In this case, the packet processing time is only
needed after the packet has been processed.

While SRR does not require knowing packet processing
time beforehand, its O(1) time remains conditioned on the
predefined quantum size that is at least the same as the maxi-
mum packet processing time. Otherwise, the time complexity
could be as high as O(N) [17]. SRR is hence not amenable

...

SeqNum1

f1

Round 1 Round 2 Round 3 Round 4

f2 f3 f1 f4 f2 f3 f4 f2 f3 f4

2 3 4 5 6 7 8 9 10 110

Fig. 5. Illustration of the round-robin service and the sequence number.

to implement in middleboxes for the same reason mentioned
above.

Elastic Round Robin (ERR): Similar to SRR, ERR [17]
does not require knowing the processing time before the
packet is processed. It allows flows to overdraw its permitted
processing time in one round on the dominant resource,
with the excessive consumption deducted from the quantum
received in the next round. The difference is that instead of
depositing a predefined quantum with fixed size, in ERR, the
quantum size in one round is dynamically set as the maximum
excessive consumption incurred in the previous round. This
ensures that each flow will always have a positive balance in
its account at the beginning of each round, and can schedule
at least one packet. In this case, ERR achieves O(1) time
complexity without knowing the maximum packet processing
time a priori, and is the most suitable to implement in
middleboxes at high speeds.

B. MR3 Design

While ERR serves as a promising round-robin variant to
extend for middleboxes, there remain several challenges to
implement the idea presented in Sec. III-C. How can the
scheduler quickly track the work progress gap of two resources
and decide when to withhold a packet? To ensure efficiency,
such a progress comparison must be completed within O(1)

time. Note that simply comparing the numbers of packets that
have been processed on two resources does not give any clue
about the progress gap: due to traffic dynamics, each round
may consist of different amounts of packets.

To circumvent this problem, we associate each flow i a
sequence number SeqNumi, which increases from 0 and is
the scheduling order of the flow. We use a global variable
NextSeqNum to record the next sequence number that will be
assigned to a flow. The value of NextSeqNum is initialized
to 0 and increases by 1 every time a flow is processed. Each
flow i also records its sequence number in the previous round,
tracking by PreviousRoundSeqNumi. For example, consider
Fig. 5. Initially, flows 1, 2 and 3 are backlogged and are
served in sequence in round 1, with sequence numbers 1, 2
and 3, respectively. Later, while flow 2 is being served, flow 4
becomes active. Flow 4 is therefore scheduled right after flow
1 in round 2, with a sequence number 5. After round 2, flow 1
has no packet to serve and becomes inactive. As a result, only
flows 2, 3 and 4 are serviced in round 3, where their sequence
numbers in the previous round are 6, 7 and 5, respectively.

We use sequence numbers to track the work progress on a
resource. Whenever a packet p is scheduled to be processed, it
is stamped a service tag (i.e., p.Tag) whose value is its flow’s

sequence number. By checking the service tag of the packet
that is being processed on a resource, the scheduler knows
exactly the work progress on that resource.

Besides sequence number, the following important variables
are also used in the algorithm.

Active list: The algorithm maintains an ActiveFlowList to
track backlogged flows. Flows are served in a round-robin
fashion. The algorithm always serves the flow at the head of
the list, and after the service, this flow, if remaining active,
will be moved to the tail of the list for service in the next
round. Newly arrived flows is always appended to the tail of
the list, and will be served in the next round. We also use
RoundRobinCounter to track the number of flows that have not
yet been served in the current round. Initially, ActiveFlowList
is empty and RoundRobinCounter is 0.

Excess counter: Each flow i maintains an excess counter
ECi, recording the excessive dominant service flow i incurred
in one round. The algorithm also uses two variables, MaxEC
and PreviousRoundMaxEC, to track the maximum excessive
consumption incurred in the current and the previous round,
respectively. Initially, all these variables are set to 0.

Our algorithm, referred to as MR3, consists of 2 functional
modules, PacketArrival (Module 1), which handles packet
arrival events, and Scheduler (Module 2), which decides which
packet should be processed next.

PacketArrival: This module is invoked upon a packet
arrival. It enqueues the packet to the input queue of the flow to
which the packet belongs. If this flow is previously inactive,
it is then appended to the tail of the active list and will be
serviced in the next round. The sequence number of the flow
is also updated, as shown in Module 1 (line 3 to line 5).

Module 1 MR3 PacketArrival
1: Let i be the flow to which the packet belongs
2: if ActiveFlowList.Contains(i) == FALSE then
3: PreviousRoundSeqNumi = SeqNumi

4: NextSeqNum = NextSeqNum + 1
5: SeqNumi = NextSeqNum
6: ActiveFlowList.AppendToTail(i)
7: end if
8: Enqueue the packet to queue i

Scheduler: This module decides which packet should be
processed next. The scheduler first checks the value of
RoundRobinCounter to see how many flows have not yet been
served in the current round. If the value is 0, then a new round
starts. The scheduler sets RoundRobinCounter to the length of
the active list (line 3), and updates PreviousRoundMaxEC as
the maximum excessive consumption incurred in the round
that has just passed (line 4), while MaxEC is reset to 0 for the
new round (line 5).

The scheduler then serves the flow at the head of the
active list. Let flow i be such a flow. Flow i receives a
quantum equal to the maximum excessive consumption in-
curred in the previous round, and has its account balance
Bi equal to the difference between the quantum and the
excess counter, i.e., Bi = PreviousRoundMaxEC�ECi. Since

Module 2 MR3 Scheduler
1: while TRUE do
2: if RoundRobinCounter == 0 then
3: RoundRobinCounter = ActiveFlowList.Length()
4: PreviousRoundMaxEC = MaxEC
5: MaxEC = 0
6: end if
7: Flow i = ActiveFlowList.RemoveFromHead()
8: Bi = PreviousRoundMaxEC � ECi

9: while Bi � 0 and QueueIsNotEmpty(i) do
10: Let q be the packet being processed on the last resource
11: WaitUntil(q.Tag � PreviousRoundSeqNumi)
12: Packet p = Dequeue(i)
13: p.Tag = SeqNumi

14: ProcessPacket(p)
15: Bi = Bi � DominantProcessingTime(p)
16: end while
17: if QueueIsNotEmpty(i) then
18: ActiveFlowList.AppendToTail(i)
19: NextSeqNum = NextSeqNum + 1
20: PreviousRoundSeqNumi = SeqNumi

21: SeqNumi = NextSeqNum
22: ECi = �Bi

23: else
24: ECi = 0
25: end if
26: MaxEC = Max(MaxEC, ECi)
27: RoundRobinCounter = RoundRobinCounter � 1
28: end while

PreviousRoundMaxEC � ECi, we have Bi � 0.
Flow i is allowed to schedule packets (if any) as long

as its balance is positive (nonnegative). To ensure a small
work progress gap between two resources, the scheduler keeps
checking the service tag of the packet that is being processed
on the last resource3 (i.e., output bandwidth) and compares
it with flow i’s sequence number in the previous round. The
scheduler waits until the former exceeds the latter, at which
time the progress gap between any two resources is within
1 round. The scheduler then dequeues a packet from the
input queue of flow i, stamps a service tag equal to flow i’s
sequence number, and performs deep packet processing on
CPU, which is also the first middlebox resource required by
the packet. After CPU processing, the scheduler knows exactly
how the packet should be processed next and what resources
are required. The packet processing time on each resource can
now be accurately estimated, for example, via some simple
packet profiling technique introduced in [12]. The scheduler
then deducts the dominant processing time of the packet from
flow i’s balance. The service for flow i continues until flow i
has no packet to process or its balance becomes negative.

If flow i is no longer active after service in the current
round, its excess counter will be reset to 0. Otherwise, flow
i is appended to the tail of the active list for service in the
next round. In this case, a new sequence number is associated
with flow i. The excess counter ECi is also updated as the
account deficit of flow i. Finally, before serving the next flow,

3If no packet is being processed, we take the service tag of the packet that
has recently been served.

the scheduler updates MaxEC and decrements RoundRobin-
Counter by 1, indicating that one flow has already finished
service in the current round.

V. ANALYTICAL RESULTS

In this section, we analyze the performance of MR3 by
deriving its time complexity, fairness, and delay bound. Due
to space constraints, we defer more detailed proofs to our
technical report [22].

A. Complexity and Fairness

MR3 is highly efficient as compared with DRFQ [12]. One
can verify that under MR3, at least one packet is scheduled
for each flow in one round. Formally, we have

Theorem 1: The time complexity of MR3 is O(1) per
packet.

Despite such low time complexity, MR3 achieves similar
fairness performance as DRFQ. To see this, let ECk

i be the
excess counter of flow i after round k, and MaxECk the max-
imum ECk

i over all flow i’s. Let Dk
i be the dominant service

flow i receives in round k. Also, let Li be the maximum packet
processing time of flow i across all resources. Finally, let L
be the maximum packet processing time across all flows, i.e.,
L = maxi{Li}. We can show that the following lemmas and
corollaries hold throughout the execution of MR3 algorithm.

Lemma 1: ECk
i  Li for all flow i and round k.

Corollary 1: MaxECk  L for all round k.
Lemma 2: For all flow i and round k, we have

Dk
i = MaxECk�1 � ECk�1

i + ECk
i , (3)

where EC0
i = 0 and MaxEC0

= 0.
Corollary 2: Dk

i  2L for all flow i and round k.
For simplicity, we assume flows are dominant-resource

monotonic [12], i.e., the flow’s dominant resource does not
change during any of its backlogged periods, which is usually
the case in middleboxes as observed in [12]. The following
theorem bounds the difference of dominant services received
by two flows that are dominant-resource monotonic. Similar
analysis also extends to general traffic patterns.

Theorem 2: For any packet arrivals, let Ti(t1, t2) be the
dominant service flow i received in the interval (t1, t2) under
MR3. The following relationship holds for any two dominant-
resource monotonic flows that are backlogged in (t1, t2):

|Ti(t1, t2)� Tj(t1, t2)|  Li + Lj + 2L. (4)

Proof sketch: Let r⇤i (resp. r⇤j) be the dominant resource
of flow i (resp. j). Without loss of generality, we assume
r⇤j  r⇤i , that is, a packet is processed on resource r⇤j before
it is processed on resource r⇤i . Suppose during (t1, t2), flow
i receives its dominant service from round s to round f . For
s  k  f , let Sk

i be the time from which flow i begins
to receive dominant service in round k, and F k

i the time
when flow i finishes its the dominant service in round k. The
difference |Ti(t1, t2)� Tj(t1, t2)| reaches its maximal value

when (t1, t2) = (F s�1
i , Sf+1

i) or (t1, t2) = (Ss
i , F

f
i). In either

case, we have

Ti(t1, t2) =

fX

k=s

Dk
i

=

fX

k=s

MaxECk�1 � ECs�1
i + ECf

i , (5)

where the second equality is derived from Lemma 2.
Since both flows i and j are backlogged in (t1, t2), flow i

is served either before j or after j in all rounds in (t1, t2). We
hence consider the following two cases.

Case 1: Flow j is served before flow i in all rounds in
(t1, t2). Since under MR3, the work progress on resource r⇤j
is never ahead of that on resource r⇤i by more than 1 round,
it is easy to check that flow j receives dominant services at
most in rounds s, . . . , f + 2, i.e.,

Tj(t1, t2) 
f+2X

k=s

Dk
j

=

f+2X

k=s

MaxECk�1 � ECs�1
j + ECf+2

j . (6)

For the same reason, flow j receives dominant services at least
in rounds s+ 2, . . . , f , i.e.,

Tj(t1, t2) �
fX

k=s+2

MaxECk�1 � ECs+1
j + ECf

j . (7)

By (5), (6), (7), and applying Lemma 1 and Corollary 1,
we see the statement holds.

Case 2: Flow j is served after flow i in all rounds in (t1, t2).
It is easy to check that flow j receives dominant services at
most in rounds s� 1, . . . , f + 1, i.e.,

Tj(t1, t2) 
f+1X

k=s�1

MaxECk�1 � ECs�2
j + ECf+1

j . (8)

For the same reason, flow j receives dominant services at least
in rounds s+ 1, . . . , f � 1, i.e.,

Tj(t1, t2) �
f�1X

k=s+1

MaxECk�1 � ECs
j + ECf�1

j . (9)

By (5), (8), (9) and deriving similarly as Case 1, we see
that the statement holds.

Corollary 3: MR3 has RFB = 4L.
Based on Theorem 2 and Corollary 3, we see that MR3

bounds the difference between dominant services received by
two backlogged flows in any time interval by a small constant.
Note that the interval (t1, t2) may be arbitrarily large. MR3

therefore achieves nearly perfect DRF across all active flows.

B. Latency

In addition to complexity and fairness, latency is also an
important concern for a packet scheduling algorithm. Two

TABLE I
PERFORMANCE COMPARISON BETWEEN MR3 AND DRFQ, WHERE L IS

THE MAXIMUM PACKET PROCESSING TIME; m IS THE NUMBER OF
RESOURCES; AND n IS THE NUMBER OF BACKLOGGED FLOWS.

Performance MR3 DRFQ [12]
Complexity O(1) O(logn)

Fairness (RFB) 4L 2L
Startup Latency 2(m+ n� 1)L nL

Single Packet Delay (4m+ 4n� 2)L Unknown

metrics are widely used in the fair queueing literature to
measure the latency performance: startup latency [12], [17]
and single packet delay [23]. The former measures how long
it takes for a previously inactive flow to receive service after
it becomes active, while the latter measures the latency from
the time when a packet reaches the head of the input queue
to the time when this packet finishes service on all resources.

Our analysis begins with the startup latency. Let m be
the number of resources concerned, and n the number of
backlogged flows. We have the following theorem.

Theorem 3: Under MR3, for any newly backlogged flow i,
the startup latency SLi is bounded by

SLi  2(m+ n� 1)L . (10)

We next state the following theorem on the single packet
delay.

Theorem 4: Under MR3, for any packet p, the single packet
delay SPD(p) is bounded by

SPD(p)  (4m+ 4n� 2)L . (11)

Table I summarizes the derived performance of MR3, as
compared with those of DRFQ [12]. We see that MR3 sig-
nificantly reduces the time complexity per packet. Similar
to DRFQ, MR3 also achieves nearly perfect fairness across
flows. The price we paid, however, is longer startup latency for
newly active flows. Since the number of middlebox resources
is typically much smaller than the number of active flows, i.e.,
m ⌧ n, the startup latency bound of MR3 is two times that of
DRFQ, i.e., 2(m+n� 1)L ⇡ 2nL. Since single packet delay
is usually hard to analyze, no analytical delay bound is given
in [12]. We experimentally compare the latency performance
of MR3 and DRFQ in the next section.

VI. SIMULATION RESULTS

As a complementary study of theoretical analysis, we eval-
uate the performance of MR3 via extensive simulations. In
particular, (1) we would like to confirm experimentally that
MR3 offers predictable service isolation and is superior to the
naive first-come-first-served (FCFS) scheduler, as the theory
indicates. (2) We want to confirm that MR3 can quickly adapt
to traffic dynamics and achieve nearly perfect DRF across
flows. (3) We compare the latency performance of MR3 with
DRFQ [12] to see if the extremely low time complexity of
MR3 is achieved at the expense of significant packet delay. (4)
We also investigate how sensitive the performance of MR3 is
when packet size distributions and arrival patterns change.

TABLE II
LINEAR MODEL FOR CPU PROCESSING TIME IN 3 MIDDLEBOX MODULES.

MODEL PARAMETERS ARE BASED ON THE MEASUREMENT RESULTS
REPORTED IN [12].

Module CPU processing time (µs)
Basic Forwarding 0.00286⇥ PacketSizeInBytes + 6.2

Statistical Monitoring 0.0008⇥ PacketSizeInBytes + 12.1
IPSec Encryption 0.015⇥ PacketSizeInBytes + 84.5

0 5 10 15 20 25 30
0

5

10

15

Flow ID

D
o

m
in

a
n

t
S

e
rv

ic
e

 (
s)

FCFS

MR3

(a) Dominant service received.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Flow ID

T
h

ro
u

g
h

p
u

t
(1

0
3
 p

kt
s/

s)

FCFS

MR3

(b) Packet throughput of flows.

Fig. 6. Dominant services and packet throughput received by different flows
under FCFS and MR3. Flows 1, 11 and 21 are ill-behaving.

General Setup: All simulation results are based on our
event-driven packet simulator written with 3,000 lines of C++
codes. We assume resources are consumed serially, with CPU
processing first, followed by link transmission. We implement
3 schedulers, FCFS, DRFQ and MR3. The last two inspect
the flows’ input queues and decide which packet should be
processed next, based on their algorithms. By default, packets
follow Poisson arrivals. The simulator simulates resource con-
sumption of packet processing in 3 typical middlebox modules,
each corresponds to one type of flows, basic forwarding, per-
flow statistical monitoring, and IPSec encryption. The first
two modules are bandwidth-bound, with statistical monitoring
consuming slightly more CPU resources than basic forward-
ing, while IPSec is CPU intensive. For direct comparison, we
set the packet processing times required for each middlebox
module the same as those in [12], which are based on real
measurements. In particular, the CPU processing time of each
module is observed to follow a simple linear model based on
packet size x, i.e., ↵kx + �k, where ↵k and �k are linear
parameters of module k. Table II summarizes the detailed
parameters based on the measurement results reported in [12].
The link transmission time is proportional to the packet size,
and the output bandwidth of the middlebox is set to 200 Mbps.

Service Isolation: We start off by confirming that MR3

offers nearly perfect service isolation, which naive FCFS
fails to provide. We initiate 30 flows that send 1300-byte
UDP packets for 30 seconds. Flows 1 to 10 undergo basic
forwarding; 11 to 20 undergo statistical monitoring; 21 to 30
undergo IPSec encryption. We generate 3 rogue flows, i.e.,
1, 11 and 21, each sending 10,000 pkts/s. All other flows
behaves normally, each sending 1,000 pkts/s. Fig. 6a shows the
dominant services received by different flows under FCFS and
MR3. We see that under FCFS, rogue flows grab an arbitrary
share of middlebox resources, while under MR3, flows receive
fair services on their dominant resources. This result is further
confirmed in Fig. 6b: Under FCFS, the presence of rogue

0 50 100 150
0

2

4

6

8

Flow ID

S
ta

rt
u
p
 L

a
te

n
cy

 (
m

s)

DRFQ

MR3

(a) Startup latency of flows.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Single Packet Delay (ms)

C
D

F

DRFQ

MR3

(b) CDF of the single packet delay.

Fig. 7. Latency comparison between DRFQ and MR3.

flows squeezes normal traffics to almost zero. In contrast,
MR3 ensures that all flows receive deserved, though uneven,
throughput based on their dominant resource requirements,
irrespective of the presence and (mis)behaviour of other traffic.

Latency: We next evaluate the latency price MR3 pays for
its extremely low time complexity, as compared with DRFQ
[12]. We implement DRFQ and measure the startup latency
as well as the single packet delay of both algorithms. In
particular, 150 UDP flows start generating traffic in serial,
where flow 1 is active at time 0, followed by flow 2 at time
0.2, and flow 3 at time 0.3, and so on. A flow randomly
chooses one of the three middlebox modules to pass through.
To congest the middlebox resources, the packet arrival rate of
each flow is set to 500 pkts/s, and the packet size is uniformly
drawn from 200 B to 1300 B. Fig. 7a depicts the per-flow
startup latency using both DRFQ and MR3. Clearly, the dense
and sequential flow starting times in this example represent a
worst-case scenario for a round-robin scheduler. We see that
under MR3, flows joining the system later see larger startup
latency, while under DRFQ, the startup latency is relatively
consistent. This is because under MR3, a newly active flow
will have to wait for a whole round before getting served.
The more active flows, the more time is required to finish
serving one round. As a result, the startup latency is linearly
dependent on the number of active flows. While this is also
true for DRFQ in the worst-case analysis (see Table I), our
simulation results show that on average, the startup latency of
DRFQ is smaller than MR3. However, we see next that this
advantage of DRFQ comes at the expense of highly uneven
single packet delays.

Compared with the startup latency, single packet delay is a
much more important delay metric. As we see from Fig. 7b,
MR3 exhibits more consistent packet delay performance, with
all packets delayed less than 15 ms. In contrast, the latency
distribution of DRFQ is observed to have a long tail: 90%
packets are delayed less than 5 ms while the rest 10% are
delayed from 5 ms to 50 ms. Further investigation reveals that
these 10% packets are uniformly distributed among all flows.
All results above indicate that the low time complexity and
near-perfect fairness of MR3 is achieved at the expense of
only slight increase in packet latency.

Dynamic Allocation: We further investigate if the DRF
allocation achieved by MR3 can quickly adapt to traffic
dynamics. To congest middlebox resources, we initiate 3 UDP

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time (s)

C
P

U
 S

h
a

re

Flow 1
Flow 2
Flow 3

0 5 10 15 20 25 30
0

0.2
0.4
0.6
0.8

1

Time (s)

B
a

n
d

w
id

th
 S

h
a

re

Flow 1 Flow 2 Flow 3

0 5 10 15 20 25 30
0

0.2
0.4
0.6
0.8

1

Time (s)
D

o
m

in
a

n
t

S
h

a
re

Flow 1 Flow 2 Flow 3

Fig. 8. MR3 can quickly adapt to traffic dynamics and achieve DRF across
all 3 flows.

flows each sending 20,000 1300-byte packets per second.
Flow 1 undergoes basic forwarding and is active in time
interval (0, 15). Flow 2 undergoes statistical monitoring and is
active in two intervals (3, 10) and (20, 30). Flow 3 undergoes
IPSec encryption and is active in (5, 25). The input queue of
each flow can cache up to 1,000 packets. Fig. 8 shows the
resource share allocated to each flow over time. Since flow
1 is bandwidth-bound and is the only active flow in (0, 3),
it receives 20% CPU share and all bandwidth. In (3, 5), both
flows 1 and 2 are active. They equally share the bandwidth
on which both flows bottleneck. Later, when flow 3 becomes
active at time 5, all three flows are backlogged in (5, 10).
Because flow 3 is CPU-bound, it grabs only 10% bandwidth
share from 2 and 3, respectively, yet is allocated 40% CPU
share. Similar DRF allocation is also observed in subsequent
time intervals. Through the whole process, we see that MR3

quickly adapts to traffic dynamics, leading to nearly perfect
DRF across flows.

Sensitivity: Our final experiment is to evaluate the perfor-
mance sensitivity of MR3 under a mixture of different packet
size distributions and arrival patterns. The simulator generates
24 UDP flows with arrival rate 10,000 pkts/s each. Flows 1
to 8 undergo basic forwarding; 9 to 16 undergo statistical
monitoring; 17 to 24 undergo IPSec encryption. The 8 flows
passing through the same middlebox module is further divided
into 4 groups. Flows in group 1 send large packets with
1400 B; Flows in group 2 send small packets with 200 B;
Flows in group 3 send bimodal packets that alternate between
small and large; Flows in group 4 send packet with random

0 5 10 15 20 25
1704

1705

1706

Flow ID

D
o

m
in

a
n

t
S

e
rv

ic
e

 (
m

s)

(a) Dominant service received.

Large Small Bimodal Random
0

1

2

3

4

Packet Size

A
ve

ra
g

e
 L

a
te

n
cy

 (
m

s)

Constant
Exponential

(b) Basic forwarding.

Large Small Bimodal Random
0

1

2

3

4

Packet Size

A
ve

ra
g

e
 L

a
te

n
cy

 (
m

s)

Constant
Exponential

(c) Statistical monitoring.

Large Small Bimodal Random
0

1

2

3

4

Packet Size

A
ve

ra
g

e
 L

a
te

n
cy

 (
m

s)

Constant
Exponential

(d) IPSec encryption.

Fig. 9. Fairness and delay sensitivity of MR3 in response to mixed packet sizes and arrival distributions.

size uniformly drawn from 200 B to 1400 B. Each group
contains exactly 2 flows, with exponential and constant packet
interarrival times, respectively. The input queue of each flow
can cache up to 1,000 packets. The simulation lasts for 30
seconds. Fig. 9a shows the dominant services received by all
24 flows, where no paritcular pattern is observed in response
to distribution changes of packet sizes and arrivals. Figs. 9b,
9c and 9d show the average single packet delay observed in
three middlebox modules, respectively. We find that while the
latency performance is highly consistent under different arrival
patterns, it is affected by the distribution of packet size. In
general, flows with small packets are slightly preferred and
will see smaller latency than those with large packets. Similar
preference for small-packet flows has also been observed in
our experiments with DRFQ.

VII. CONCLUDING REMARKS

The potential congestion of multiple resources in a middle-
box complicates the design of packet scheduling algorithms.
Previously proposed multi-resource fair queueing schemes
require O(log n) complexity per packet and are expensive to
implement at high speeds. In this paper, we present MR3,
a multi-resource fair queueing algorithm with O(1) time
complexity. MR3 serves flows in rounds. It keeps track of the
work progress on each resource and withholds the scheduling
opportunity of a packet until the progress gap between any
two resources falls below one round. Our theoretical analyses
have indicated that MR3 implements near-perfect DRF across
flows. The price we have paid is a slight increase of packet
latency. We have also validated our theoretical results via
extensive simulation studies. To our knowledge, MR3 is the
first multi-resource fair queueing algorithm that offers near-
perfect fairness with O(1) time complexity. We believe that
MR3 should be easy to implement, and may find applications
in other multi-resource scheduling contexts where jobs must be
scheduled as entities, e.g., VM scheduling inside a hypervisor.

REFERENCES

[1] V. Sekar, N. Egi, S. Ratnasamy, M. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Proc.
USENIX NSDI, 2012.

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. ACM SIGCOMM, 2012.

[3] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP?” in Proc. ACM IMC,
2011.

[4] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” in Proc. ACM SIGCOMM, 1989.

[5] A. Parekh and R. Gallager, “A generalized processor sharing approach
to flow control in integrated services networks: The single-node case,”
IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344–357, 1993.

[6] S. Golestani, “A self-clocked fair queueing scheme for broadband
applications,” in Proc. IEEE INFOCOM, 1994.

[7] J. Bennett and H. Zhang, “WF2Q: Worst-case fair weighted fair queue-
ing,” in Proc. IEEE INFOCOM, 1996.

[8] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,
“Towards high performance virtual routers on commodity hardware,” in
Proc. ACM CoNEXT, 2008.

[9] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold story of
middleboxes in cellular networks,” in Proc. SIGCOMM, 2011.

[10] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Trans. Netw., vol. 4, no. 3, pp. 375–385, 1996.

[11] P. Goyal, H. Vin, and H. Cheng, “Start-time fair queueing: A scheduling
algorithm for integrated services packet switching networks,” IEEE/ACM
Trans. Netw., vol. 5, no. 5, pp. 690–704, 1997.

[12] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” in Proc. ACM SIGCOMM, 2012.

[13] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proc. USENIX NSDI, 2011.

[14] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward software-
defined middlebox networking,” in Proc. ACM Hotnets, 2012.

[15] J. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat, “xOMB:
Extensible open middleboxes with commodity servers,” in Proc.
ACM/IEEE ANCS, 2012.

[16] S. Floyd and V. Jacobson, “Link-sharing and resource management
models for packet networks,” IEEE/ACM Trans. Netw., vol. 3, no. 4,
pp. 365–386, 1995.

[17] S. Kanhere, H. Sethu, and A. Parekh, “Fair and efficient packet schedul-
ing using elastic round robin,” IEEE Trans. Parallel Distrib. Syst.,
vol. 13, no. 3, pp. 324–336, 2002.

[18] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Predicting the
resource consumption of network intrusion detection systems,” in Recent
Advances in Intrusion Detection (RAID), vol. 5230. Springer, 2008,
pp. 135–154.

[19] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proc. IEEE, vol. 83, no. 10, pp. 1374–1396,
1995.

[20] W. Wang, B. Liang, and B. Li, “Multi-resource generalized processor
sharing for packet processing,” in Proc. ACM/IEEE IWQoS, 2013.

[21] “Cisco GSR,” http://www.cisco.com/.
[22] W. Wang, B. Li, and B. Liang, “Multi-resource round robin: A

low complexity packet scheduler with dominant resource fairness,”
University of Toronto, Tech. Rep., 2013. [Online]. Available:
http://iqua.ece.toronto.edu/⇠bli/papers/mr3.pdf

[23] S. Ramabhadran and J. Pasquale, “Stratified round robin: A low com-
plexity packet scheduler with bandwidth fairness and bounded delay,”
in Proc. ACM SIGCOMM, 2003.

