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Abstract—Cloud networks consist of a large number of links,
on which tenants have correlated and elastic bandwidth demands
in the form of coflows. Ideally, a cloud network sharing policy
should provide tenants with isolation guarantees on the minimum
coflow progress, while at the same time attaining as high utiliza-
tion as possible. Prior work shows that to achieve the optimal
isolation guarantee, strategy-proofness is needed, in that tenants
cannot lie about demands to obtain higher progresses. However,
this requirement is derived under a simplified assumption that
tenants are only interested in maximizing coflow progresses. We
show in this work that a rational tenant should pursue more
bandwidth allocation as a secondary objective after progress
maximization. In this new model, enforcing strategy-proofness
inevitably hurts the isolation guarantee. We propose a new
network sharing policy to achieve the optimal isolation guarantee
while attaining the highest possible utilization in spite of strategic,
untruthful tenants. Trace-driven evaluations show that our policy
outperforms existing alternatives with better isolation guarantee,
higher utilization, and shorter coflow completion time (CCT).

I. INTRODUCTION

Achieving optimal isolation guarantees and high utilization

constantly shows up as the top requirements in cloud network

sharing [1]–[6]. Tenants expect guarantees on the minimum

bandwidth to ensure predictable communication performance.

Meanwhile, maintaining high utilization allows the cloud

network to accommodate more traffics, which may in turn

generate higher profits.

Unlike CPU and memory, network demands are correlated
and elastic across datacenter links. Tenants running data-parallel

applications such as MapReduce have correlated bandwidth

demands on multiple links in the form of coflows [7]. For

example, consider tenant-A sending 20 Mb and 10 Mb data

over two 1 Gbps links, respectively. For every bit it sends on

link-1, at least 1
2 bits should be sent on link-2. Therefore, to

achieve the maximal coflow progress—defined as the attainable

rate on the bottleneck link (link-1 in this example)—we should

allocate tenant-A the entire link-1 and at least 1
2 of link-2.

The demands are not only correlated, but also elastic. In the

previous example, tenant-A can consume more than half of the

capacity of link-2. While this does not lead to a higher coflow

progress (1 Gbps), it speeds up the data transfer on that link,

improving the overall network utilization.

In this paper, our goal is to achieve the optimal isolation
guarantee while attaining the highest utilization in cloud

network sharing. Here, we define the isolation guarantee as

the minimum coflow progress a tenant can expect.

Fig. 1: Allocating the spare bandwidth, even though not

improving the instantaneous progress, speeds up the coflow

completion opportunistically. Tenant-A starts sending 20 Mb

and 10 Mb data over two links at 0 ms; tenant-B starts sending

10 Mb data on link-2 at 10 ms. (a) Tenant-A is given the

maximal progress without excess bandwidth at time 0. (b)

Tenant-A is allocated the full capacity of both links at time 0.

Prior work [3] shows that to achieve the optimal isolation

guarantee, strategy-proofness must be enforced, in that no

tenant can lie about demands to receive a higher progress.

To meet this requirement, High Utilization with Guarantees

(HUG) [3], has been proposed recently as a promising network

sharing policy. HUG’s strategy-proofness critically depends

on an assumption that a tenant is only interested in making

a higher coflow progress, yet indifferent to receiving more

bandwidth without progress improvement.

However, receiving more excess bandwidth, even though not

increasing the instantaneous progress, is always beneficial, as it

speeds up coflows opportunistically. Consider two allocations

both giving the maximal coflow progress in the previous

example. In Fig. 1a, tenant-A receives no spare bandwidth

and is allocated the entire link-1 and 1
2 of link-2; in Fig. 1b,

tenant-A receives the full capacity of both links. One might

think that the excess bandwidth allocated on link-2 does not

help reduce the coflow completion time (CCT). To show that

this is not true, we assume tenant-B starts sending 10 Mb

data on link-2 at 10 ms. We see that, without allocating spare

bandwidth at the beginning, tenant-A cannot finish transferring

data on link-2 by the time tenant-B starts sending, which delays

the CCT by 5 ms, or 25%, as compared to that in Fig. 1b.

In general, improving coflow progress reduces CCT in-
stantaneously, and is the primary objective a tenant should

optimize. In addition, coflows can be sped up opportunistically

by allocating excess bandwidth. Given that this speedup is
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indefinite, seeking more bandwidth allocation is a secondary
objective after progress maximization. That tenants have these

dual objectives for bandwidth allocation uniquely characterizes

the cloud network sharing problem, but it has received little

attention before [2], [3], [8], [9]. As we shall show in Sec. III,

tenants can game HUG to receive more bandwidth at the same

progress. The violation of strategy-proofness questions the

optimal isolation guarantee of HUG.

In this paper, we consider tenants seeking more bandwidth

allocation second to progress maximization. Contrary to the

previous belief [3], we show that strategy-proofness is no longer
necessary to achieve the optimal isolation guarantee. Rather,

there exists a hard tradeoff between the two properties: strictly

enforcing strategy-proofness inevitably harms the isolation

guarantee. On the other hand, allowing strategic manipulations

without restrictions can be harmful as well. Ideally, a sharing

policy should protect against “harmful” manipulations, while

leaving “unharmful” at large.

To meet this requirement, we propose HUG+, a two-stage

algorithm that improves HUG with higher utilization. In the

first stage, HUG+ seeks a max-min fair allocation w.r.t. the

progress, i.e., it always maximizes the lowest progress first,

followed by the second lowest, etc. In the second stage, HUG+

allocates spare bandwidth such that no tenant is allocated

more bandwidth on a link than its progress. This way, HUG+

provides the optimal isolation guarantee while attaining the

highest possible network utilization in spite of the strategic,

untruthful tenants.

We demonstrate the effectiveness of HUG+ using trace-

driven simulations. Compared to HUG, HUG+ improves the

progress of 69% of tenants by 2.7× on average without

slowing down the others. This translates to 17% higher network

utilization. In the long run, HUG+ outperforms HUG by 1.9×
in terms of the average coflow completion time. HUG+ scales

to large datacenters: even with 10k machines and 1k tenants, a

new allocation can be computed in milliseconds on a desktop.

II. BACKGROUND AND MODEL

In this section, we present our models for cloud network

sharing. We highlight two desirable requirements—optimal

isolation guarantee and high utilization—that any sharing policy

should meet.

A. Background and Model

Thanks to the recent advances in datacenter fabrics [10]–[12],

full bisection bandwidth network is now available in production

datacenters [13]. This allows us to model the datacenter network

as one non-blocking fabric where the edges—machine uplinks

and downlinks—are the only sources of contention. As shown in

Fig. 2, we assume a non-blocking datacenter fabric connecting

m machines through full-duplex links, where each ingress

(egress) port corresponds to a machine uplink (downlink).

Tenants run data-parallel applications whose communication

stage is abstracted out as a coflow. A coflow consists of

a collection of flows transferring data between groups of

machines, e.g., shuffle between map and reduce. In many

Fig. 2: An m×m datacenter fabric with m ingress/egress ports

connecting to m machines.

data-parallel applications such as MapReduce, the amount of

data each flow needs to transfer can be known before the flow

starts [3], [14]. We characterize the coflow of each tenant-k by

a correlation vector dk = 〈d1k, . . . , d2mk 〉, where dik ≤ 1 and

is the normalized bandwidth demand on link-i. Informally, for

every bit the coflow transfers on the bottleneck link (i.e., those

with dik = 1), at least djk bits should be sent on link-j.

Given an allocation ak = 〈a1k, . . . , a2mk 〉 where aik is the

bandwidth allocated on link-i, the coflow progress is defined, for

every tenant-k, as the minimum demand-normalized allocation

across links:

Pk = min
1≤i≤2m

aik/d
i
k. (1)

One could interpret the progress as the attainable coflow

transmission rate: the higher the progress, the shorter the

coflow completion time (CCT). In addition, with elastic de-

mands, allocating more bandwidth—even without any progress

improvement—is not wasteful but reduces CCT opportunis-

tically (cf. Fig. 1). We shall show in Sec. VI that allocating

spare bandwidth is the main source of CCT reduction.

While high progress and more bandwidth allocation are both

desirable to speed up coflows, they play different roles and

should be optimized at different priorities. In particular, the

CCT reduction given by progress improvement is guaranteed
and instantaneous, regardless of future traffic arrivals. Allo-

cating more bandwidth without progress improvement, on the

other hand, reduces the CCT indefinitely and opportunistically.

Therefore, tenants should always prioritize high progress over
more bandwidth allocation. Specifically, given an allocation,

we associate each tenant-k with a utility Uk = (Pk, Ak),
where Pk is the achieved progress, and Ak =

∑
i a

i
k is the

total amount of bandwidth allocated. The utility is evaluated

following a lexicographic order, i.e., given two allocations

ak and a′k, we have Uk > U ′
k if and only if Pk > P ′

k or

(Pk = P ′
k and Ak > A′

k).
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TABLE I: Summary of notations and definitions.

dk = 〈d1k, . . . , d2mk 〉 Reported correlation vector of tenant-k

ak = 〈a1
k, . . . , a

2m
k 〉 Allocation of tenant-k

Pk = mini a
i
k/d

i
k Coflow progress of tenant-k

Ak =
∑

i a
i
k Amount of b/w allocated to tenant-k

Uk = (Pk, Ak) Utility of tenant-k

mink Pk Isolation guarantee
∑

k Ak Network utilization

In this paper, we consider the cloud network sharing problem

where tenants compete for bandwidth allocation across links. In

particular, we are interested in non-cooperative environments

like public clouds (e.g., Amazon EC2 [15] and Microsoft Azure

[16]), in which each tenant games the reported correlation

vector to maximize its utility, i.e., the progress should be

maximized first, followed by the total amount of bandwidth

allocated. We shall focus on a Nash equilibrium at which no
tenants can unilaterally change its report to improve its utility.

B. Desirable Sharing Properties

As identified in prior work [1]–[3], there are two desirable

properties that should be satisfied by any cloud network sharing

policy: optimal isolation guarantee and high utilization.

Optimal isolation guarantee. Tenants expect guarantees on

the minimum progress to achieve performance predictability.

Specifically, given an allocation, we define the isolation guar-
antee as the minimum progress across tenants, i.e., mink Pk.

A network sharing policy with the optimal isolation guarantee
gives an allocation that maximizes the minimum progress, i.e.,

maximize min
k

Pk.

High utilization. Ideally, bandwidth should not be left in

idle if it could be used to serve unsatisfied demands [1], [2].

However, prior work shows that this is incompatible with

optimal isolation guarantee for cloud network sharing [3]. Given

this impossibility result, we require a sharing policy to achieve

as high network utilization as possible without hurting the
isolation guarantee.

Our goals are to achieve both the optimal isolation guarantee

and high utilization. Table I summarizes the important notations

and definitions.

III. INEFFICIENCY OF EXISTING POLICIES

In this section, we briefly survey three popular allocation

policies—per-link fairness among tenants [2], [17], DRF [8],

[9], and HUG [3]. We show that they either provide suboptimal

isolation guarantees or suffer from low utilization.

A. Per-Link Fairness at the Tenant Level

Prior work shows that traditional bandwidth allocation

policies, such as fairness among flows, source-destination

pairs, or sources alone, provide no isolation guarantees [2]:

by initiating more flows or creating more communication end-

points, a tenant can take an arbitrarily high share of network

bandwidth, dragging down the progress of others close to 0. To

Link−1 Link−2 Link−3
0

0.5

1

1/2 1/2 1/2

1/2 1/2 1/2

(a) Per-link Fairness.

Link−1 Link−2 Link−3
0

0.5

1

2/3 1/3 1/9

1/9 2/3 1/9

(b) DRF.

Link−1 Link−2 Link−3
0

0.5

1

2/3 1/3 1/2

1/3 2/3 1/2

(c) HUG.

Link−1 Link−2 Link−3
0

0.5

1

2/3 1/3 2/3

1/3 2/3 1/3

(d) Manipulating HUG.

Fig. 3: An example of two tenants competing on three links,

where tenant-A (blue) demands dA = 〈1, 1
2 ,

1
6 〉, and tenant-B

(orange) demands dB = 〈 16 , 1, 1
6 〉. (a) Per-link fairness equally

divides each link to tenants, and is suboptimal in isolation

guarantees. (b) DRF gives the optimal isolation guarantee 2
3

but results in poor utilization. (c) HUG evenly assigns spare,

DRF-unallocated bandwidth to tenants. (d) HUG is not strategy-

proof: by claiming d′
A = 〈1, 1

2 , 1〉, tenant-A receives more

bandwidth on link-3 at the same progress.

avoid this problem, many recent proposals [2], [17] suggest an

alternative allocation that equally divides the capacity of each

link among tenants. However, allocations based on per-link

fairness among tenants are agnostic to the demand correlation,

and are suboptimal in isolation guarantees [3].

Consider an example in Fig. 3, where two tenants, A and

B, compete on the uplinks of three machines, on which tenant-

A has correlation vector dA = 〈1, 1
2 ,

1
6 〉, and tenant-B has

dB = 〈 16 , 1, 1
6 〉. For simplicity, we omit the demands on other

non-competing links in the correlation vector. We see from

Fig. 3a that the isolation guarantee given by per-link fairness

is 1
2 , while the optimum is 2

3 , as shown in Fig. 3b.

B. Dominant Resource Fairness

If we view each link as an independent resource, then the

cloud network sharing problem is captured by a multi-resource

allocation problem. Optimal isolation guarantees can therefore

be achieved by Dominant Resource Fairness (DRF) [8], [9],

where each tenant is allocated the same share of bandwidth on

the bottleneck link (i.e., dominant resource), and the minimum

progress is maximized. Fig. 3b shows the DRF allocation in

the previous example. Both tenants receive the same progress
2
3 , which is the maximum as link-2 is already congested.

However, DRF assumes inelastic demands and does not

allocate spare bandwidth without progress improvement, which
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inevitably results in low utilization. Referring back to the

example in Fig. 3b, both link-1 and link-3 have unused

bandwidth, which accounts for 1
3 of the total bandwidth

availability. Even worse, prior work shows that in some extreme

cases, the utilization of DRF could be arbitrarily low [3]. We

therefore rule it out as a desirable policy.

C. High Utilization with Guarantees

A simple fix to the utilization problem of DRF is to continue

allocating unused bandwidth after the DRF allocation has

been done. However, naively allocating unused bandwidth

without restrictions allows tenants to game the policy for higher

progresses at the expense of others [3, Lemma 1]. It is further

shown in [3] that to achieve the optimal isolation guarantee,

the policy must be strategy-proof, in that the dominant strategy

of each tenant is to truthfully report the correlation vector.

High Utilization with Guarantees (HUG) [3] has been

proposed as a two-stage algorithm to meet the strategy-

proofness requirement. In the first stage, HUG achieves the

optimal isolation guarantee by equally increasing the progress

of every tenant to the maximum level, computed as

P ∗ =
1

maxi
∑

k d
i
k

. (2)

In the second stage, HUG maximizes the utilization by evenly

allocating unused bandwidth among tenants in a “strategy-

proof” manner. Specifically, for every tenant-k, the amount of

bandwidth it receives on a link should not exceed its progress,

i.e., aik ≤ P ∗ for all link-i. Continuing the previous example

in Fig. 3, HUG gives the same allocation as DRF in the first

stage (Fig. 3b). In the second stage, spare bandwidth is evenly

allocated to the two tenants. Because tenant-A has already

reached its allocation cap 2
3 on link-1, all the spare bandwidth

goes to tenant-B (Fig. 3c). Compared to DRF, HUG achieves

100% network utilization in this example.

Two concerns. HUG offers a promising solution to sharing

the cloud network. However, there are two concerns that have

not been noted before. First, by capping the allocation of

spare bandwidth, HUG ensures that tenants cannot achieve

higher progresses by gaming the policy, but it is still possible

for them to lie about demands to receive more bandwidth at

the same progress. Back to the previous example in Fig. 3,

suppose tenant-A lies and misreports a different correlation

vector 〈1, 1
2 , 1〉, while tenant-B remains truthful. Fig. 3d

shows the allocation given by HUG. We see that by claiming

more demands on link-3, tenant-A successfully increases its

allocation on that link to 2
3 at the same progress. Therefore,

HUG is not strategy-proof, which makes its optimal isolation

guarantee a questionable claim.

In addition, HUG enforces the same progress across tenants

(i.e., P ∗ given by (2)), which may result in low utilization that

cannot be made up by allocating spare bandwidth in the second

stage. Consider an example of three tenants shown in Fig. 4,

where dA = dB = 〈1, 1
4 , 0〉 and dC = 〈0, 1, 1

2 〉. Fig. 4a shows

the corresponding HUG allocation, where the progress of all

tenants is equally increased to 1
2 in the first stage, followed by

Link−1 Link−2 Link−3
0

0.5

1

1/2 1/4

1/2 1/4

1/2

1/2

(a) HUG.

Link−1 Link−2 Link−3
0

0.5

1

1/2 1/8

1/2 1/8

3/4
3/4

(b) A HUG improvement.

Fig. 4: An example of three tenants competing on three links,

where both tenant-A (blue) and tenant-B (orange) have dA =
dB = 〈1, 1

4 , 0〉, and tenant-C (gray) demands dC = 〈0, 1, 1
2 〉.

(a) HUG enforces the same progress 1
2 across tenants, leaving

half of link-3 idle. (b) Increasing the progress of tenant-C leads

to higher utilization without compromising isolation guarantee.

the allocation of spare bandwidth in the second stage. Because

tenant-C cannot receive more bandwidth beyond its progress 1
2 ,

half of link-3 is left unallocated. This is wasteful, as tenant-C
could have a higher progress and more allocation quota for

spare bandwidth. Consider a HUG improvement in Fig. 4b,

where tenant-C’s progress is increased to 3
4 . We see that the

isolation guarantee remains 1
2—the same as HUG—but the

utilization is higher.

We shall show in Sec. VI that the inefficiency of HUG

illustrated above is not a rare case but generally found

when replaying the production traces. Unless all tenants have

demands on all machine links—which is practically impossible

given the huge number of machines in a datacenter—enforcing

the same coflow progress likely wastes bandwidth, the degree

of which depends on the number of tenants. In fact, we show

in the following theorem that the utilization of HUG could be

arbitrarily low. The proof is deferred to our technical report

[18] due to the page limit.

Theorem 1 (Inefficiency of HUG): The utilization of HUG

can be arbitrarily close to 0.

To summarize, existing allocation policies are either subopti-

mal in isolation guarantees or unable to achieve high utilization.

It remains unclear how the cloud network should be shared

among tenants with correlated and elastic demands.

IV. STRATEGY-PROOFNESS—FOES, NOT FRIENDS

Prior work [3] identifies strategy-proofness as a necessary
condition to achieve the optimal isolation guarantee. We

stress that this result is obtained under a simplified, yet

impractical assumption that tenants are only concerned with

the instantaneous progress (i.e., Uk = Pk for all tenant-k).

However, we see from the previous discussions that a fully
rational tenant should seek more bandwidth allocation once its

progress has reached the maximum (i.e., Uk = (Pk, Ak) for

all tenant-k). Contrary to the previous belief, we show through

the following theorem that enforcing strategy-proofness among

fully rational tenants instead harms the isolation guarantee.
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Theorem 2 (Impossibility): No strategy-proof policy can

achieve an isolation guarantee at level

P ∗ =
1

maxi
∑

k d
i
k

. (3)

Proof: Let us suppose the opposite. In particular, we

assume that there exists a strategy-proof policy P that can

provide an isolation guarantee at level P ∗, i.e., Pk ≥ P ∗ for

all tenant-k. Consider an example of three tenants, A, B, and

C, competing on three links, where dA = dB = 〈1, ε, 0〉 and

dC = 〈0, ε, 1〉. Here, we let ε → 0. By assumption, policy P
ensures that the progress of every tenant is at least P ∗ = 1

2 .

Let the allocation given to tenant-A and B be respectively

denoted as aA = 〈 12 , xA, 0〉 and aB = 〈 12 , xB , 0〉. We have

ε

2
≤ xA, xB ≤ 1

2
,

where the lower bound ε
2 holds because PA, PB ≥ 1

2 , and the

upper bound 1
2 is required to ensure strategy-proofness (cf. [3,

Lemma 1] or Theorem 3 presented later). Because tenant-C has

demand on link-2, the total bandwidth allocated to tenant-A
and B on that link is less than 1 (i.e., xA + xB < 1), which

suggests that xA and xB cannot be both 1
2 . Without loss of

generality, we assume xA < 1
2 .

Now assume that tenant-A claims more demand on link-2

with d′
A = 〈1, 1, 0〉, while the other two tenants remain truthful.

The target isolation guarantee remains the same, i.e., P ′∗ = 1
2 .

Because there is no way for policy P to tell if tenant-A is lying

or not, to achieve the target isolation guarantee, the policy must

allocate tenant-A at least a′A = 〈 12 , 1
2 , 0〉. As a result, tenant-A

receives more bandwidth on link-2 at the same progress by

lying, which contradicts our previous assumption that policy

P is strategy-proof.

Because Theorem 2 is stated for strategy-proof policies, we

do not differentiate between the reported demands and the true

demands in the calculation of P ∗. We shall show in Sec. V-B

(Theorem 4) that the isolation guarantee of P ∗ is achievable,

which immediately leads to the following corollary:

Corollary 1 (Hard tradeoff): No strategy-proof policy is

optimal in isolation guarantees.

In other words, Corollary 1 indicates that strategy-proofness

is a “foe,” not a “friend” of isolation guarantee. For example,

per-link fairness among tenants (Sec. III-A) is strategy-proof,

but it is suboptimal in isolation guarantees (cf. Fig. 3a).

Given the hard tradeoff between strategy-proofness and

isolation guarantee, we can (1) either retain the former first,

then optimize the later; or (2) optimize isolation guarantee in the

presence of strategic, untruthful tenants. A general consensus

summarized in [1] reveals that tenants care more about isolation

guarantee than allocation “fairness.” We therefore do not give

up on the optimality of isolation guarantee, but are tolerant of

strategic behaviors.

We caution that Corollary 1 should not be misinterpreted as

if strategic manipulations were “helpful” and should be allowed

in all cases. In fact, it is shown in [3, Lemma 1] that some

manipulations are harmful to the isolation guarantee, which is

rephrased in the following theorem.

Theorem 3 ([3, Lemma 1]): Any allocation policy meeting

the following two conditions results in strategic manipulations

that can hurt the isolation guarantee:

1) it first uses DRF to increase the progress of every tenant

to P ∗ given by (2), and then allocates spare bandwidth;

2) there exists a tenant-k whose allocation on a link-i is

more than its progress, i.e., aik > Pk.

Intuitively, we need to differentiate between two types of

strategic manipulations, harmful to the isolation guarantee and

unharmful. To achieve the optimal isolation guarantee, an
allocation policy should guard against harmful manipulations,
while leaving unharmful ones at large. We next show how this

can be achieved by a HUG improvement algorithm.

V. HUG+: DESIGN AND ANALYSIS

In this section, we present HUG+, a HUG improvement

algorithm that provides the optimal isolation guarantee while

achieving the highest attainable network utilization.

A. HUG+

We see from Sec. III-C that the root cause behind the

inefficiency of HUG is the enforcement of the same progress

across tenants: a tenant that could have a higher progress (e.g.,

tenant-C in the example in Fig. 4) is forced to keep it as low

as others. Because HUG does not allocate more bandwidth

on a link beyond a tenant’s progress, having as high progress

as possible for every tenant in the first place is the key to

achieving high utilization.

Following this intuition, we propose HUG+, a two-stage

algorithm that improves HUG with higher utilization. In the first

stage, HUG+ seeks a max-min fair allocation w.r.t. progress.

Specifically, the algorithm starts by equally increasing the

progress of all tenants to the maximum in round-1. It then

decides which tenant’s progress can be further increased without

lowering that of others. All these tenants remain active, who

are those having no demand on congested links (no spare

bandwidth). The other tenants become inactive and have their

allocations frozen. The algorithm proceeds to round-2, in which

the progress of all active tenants is equally increased to a new

maximum level. The entire process repeats until there are no

more active tenants. Algorithm 1 gives the details, where the

computation of Stage-1 resembles multi-round DRF [9] applied

to 2m resources.

In the second stage, HUG+ allocates unused bandwidth to

increase the network utilization. By Theorem 3, allocating spare

bandwidth without restrictions hurts the isolation guarantee.

Therefore, we restrict the allocation such that no tenant is

assigned more bandwidth on a link than its progress, i.e.,

aik ≤ Pk, for all tenant-k and link-i.

Example. We use the example in Fig. 4 to illustrate how

HUG+ works. In the first stage, HUG+ starts by equally

increasing the progress of all three tenants to 1
2 , which is

the maximum as link-1 is congested. Because both tenant-A
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Algorithm 1 HUG+

Input: Correlation vector {dk} reported by every tenant-k
Output: Bandwidth allocation {ak} given to every tenant-k
Stage 1: Compute a max-min fair allocation w.r.t. progress using

multi-round DRF [9]
r ← 1 � Current round
bi ← 1, 1 ≤ i ≤ 2m � Available b/w on link-i
Ar ← {1, . . . , n} � Active tenants in round r
ak ← 0, k ∈ Ar � Allocation of tenant-k
Pk ← 0, k ∈ Ar � Progress of tenant-k
while Ar �= ∅ do

Compute the maximum progress increment in round r:

Δr ← min
1≤i≤2m

bi∑
k∈Ar

dik
(4)

for all active tenant-k, k ∈ Ar do
Pk ← Pk +Δr � Update tenant-k’s progress
ak ← ak +Δrdk � Allocate b/w to tenant-k

bi ← 1−∑
k a

i
k � Update available b/w on all link-i

r ← r + 1 � Proceed to the next round
Ar ← {k : ∀i, dik > 0 ⇒ bi > 0} � Tenants having no

demand on congested links remain active

Stage 2: Restrict the allocation of spare bandwidth to tenants on all
2m links, such that ai

k ≤ Pk for all tenant-k and link-i

TABLE II: Illustration of HUG+ allocation in the example of

Fig. 4, where dA = dB = 〈1, 1
4 , 0〉 and dC = 〈0, 1, 1

2 〉.
Stage-Round Tenant-A Tenant-B Tenant-C

S1-R1 〈1
2
, 1
8
, 0〉 〈1

2
, 1
8
, 0〉 〈0, 1

2
, 1
4
〉

S1-R2 〈 1
2
, 1
8
, 0〉 〈 1

2
, 1
8
, 0〉 〈0, 3

4
, 3
8
〉

S2 〈 1
2
, 1
8
, 0〉 〈 1

2
, 1
8
, 0〉 〈0, 3

4
, 3
4
〉

and tenant-B have demands on link-1, their progresses cannot

be further increased. The two tenants become inactive, and

their allocations are frozen. The algorithm proceeds to round-2,

where tenant-C is the only one active. HUG+ increases its

progress to 3
4 , at which link-2 is congested. Tenant-C then

becomes inactive. Because there are no more active tenants,

Stage-1 concludes, and Stage-2 kicks in. Tenant-C is allocated

the spare bandwidth on link-3, increasing its allocation to its

progress 3
4 . The algorithm halts and ends up with the same

allocation illustrated in Fig. 4b. Table II summarizes the entire

allocation process.

B. HUG+ Properties

While HUG+ is a simple improvement over HUG, we show

that it provides the optimal isolation guarantee while attaining

the highest possible utilization.

Optimal isolation guarantee. We have shown in Sec. IV

that to achieve the optimal isolation guarantee, strategy-

proofness should not be enforced. This is indeed the case

in HUG+. Referring back to the previous example in Fig. 3,

we see that HUG+ ends up with the same allocation as HUG

(Fig. 3c), and a tenant (i.e., tenant-A in Fig. 3d) can lie about

its correlation vector to receive more bandwidth at the same

progress. Nevertheless, the isolation guarantee remains at level

2
3 , the same as before (Fig. 3c vs. Fig. 3d). We next show that

this is not a coincidence.

Because tenants can lie about demands, we need to dif-

ferentiate between the true progress and revealed progress:

the former is computed based on the true correlation vector
of a tenant, and the latter based on the reported correlation

vector. Formally, let d̄k and dk respectively denote the true

and reported correlation vector of tenant-k. Given an allocation

ak, the true progress of tenant-k is

P̄k = min
1≤i≤2m

aik/d̄
i
k, (5)

while the revealed progress is Pk = mini a
i
k/d

i
k. An allocation

policy should provide isolation guarantees on the true progress.

However, the challenge is: without strategy-proofness, we

cannot tell if the revealed progress is true or not, let alone the

optimality of isolation guarantees.

To address this challenge, we consider a Nash equilibrium at

which no tenant can unilaterally change its report to improve

the utility. We show through the following theorem that such

an equilibrium not only exists, but also provides guarantees

on the minimum true progress. The proof is deferred to our

technical report [18] due to the space constraints.

Theorem 4 (Isolation guarantee): With HUG+, there exists

a Nash equilibrium at which the true progress of each tenant-k
is at least P ∗, i.e.,

P̄k ≥ P ∗ =
1

maxi
∑

l d̄
i
l

. (6)

Recall that we have shown in Theorem 2 that the isolation

guarantee at level P ∗ is not achievable by a strategy-proof

policy.1 HUG+ breaks this glass ceiling by selectively allowing

manipulations that are “unharmful” to the isolation guarantee.

It is straightforward to show that the isolation guarantee P ∗

offered by HUG+ in Theorem 4 is the optimum tenants can

expect. We hence omit the proof of the following theorem.

Theorem 5 (Optimal isolation guarantee): HUG+ pro-

vides the optimal isolation guarantee.

High utilization. We next show that HUG+ achieves the

highest attainable utilization.

Theorem 6 (High utilization): Among all policies with op-

timal isolation guarantees, HUG+ attains the highest utilization.

Proof: Consider an allocation policy P with the optimal

isolation guarantee. By Theorem 4 and 5, policy P provides

the isolation guarantee at level P ∗. By Theorem 3, policy P
allocates a tenant no more bandwidth on a link than its progress.

Policy P therefore achieves no higher utilization than HUG+,

as the latter allocates each tenant exactly the same amount of

bandwidth on a link as its progress, if possible.

In addition to the optimal isolation guarantee and high

utilization, HUG+ trivially retains min-cut proportionality
[3], a desirable property possessed by HUG. In a nutshell,

this property ensures that each tenant receives the minimum

bandwidth in proportion to the size of the minimum cut [19]

1In Theorem 2, there is no need to differentiate between the true demand
d̄k and the reported demand dk .
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TABLE III: Properties of per-link fairness, multi-round DRF,

HUG, and HUG+: strategy-proofness (SP), optimal isolation

guarantee (IG), and high utilization (HU), where SP and optimal

IG are incompatible with each other.

SP Optimal IG HU
Per-link Fairness [2]

√ × ×
Multi-round DRF [9] × √ ×

HUG [3] × √ ×
HUG+ × √ √

of its coflow communication pattern (e.g., many-to-one, many-

to-many, etc.). We refer to [3] for detailed discussions.

To summarize, we compare HUG+ in Table III against the

other three allocation policies described in Sec. III. We see

that HUG+ is the only policy that obtains the maximal sets of

non-conflicting properties.

C. Practical Consideration

Like HUG [3], HUG+ can be easily incorporated into the

prevalent cloud monitoring services like Amazon CloudWatch

[20]. Through public APIs, tenants periodically communicate

correlation vectors with a central controller, who computes new

allocations and notifies the monitoring agent running on each

machine for local enforcement. The controller only needs to

compute the progress of each tenant and updates local agents.

Upon receiving the progress update, the agent running on

machine-i respectively enforces allocation Pkd
i
k and Pkd

m+i
k

on the uplink and downlink for tenant-k. It then allocates

spare bandwidth evenly to local tenants following Stage-2 of

Algorithm 1. Compared to HUG, the implementation overhead

mainly comes from the computation of multi-level progresses

in rounds in the central controller. We show in the next section

that this overhead is not a scalability concern.

VI. EVALUATION

We evaluated HUG+ against various allocation policies—per-

link fairness (e.g., PS-P [2]), HUG [3], and multi-round DRF

[9]—using trace-driven simulations. We start by characterizing

the performance of instantaneous allocations w.r.t. coflow

progress, isolation guarantees, and utilization. We then evaluate

how optimizing instantaneous allocations could reduce the

coflow completion time in the long run. Finally, we study

the scalability of HUG+ by comparing its computational

overhead against HUG in a simulated large-scale datacenter.

The highlights of our evaluation are summarized as follows:

• Regarding the instantaneous allocations, HUG+ provides

the maximal isolation guarantee at the highest utilization.

Compared to HUG, HUG+ speeds up the progress of 69%

of tenants by 2.7× on average without slowing down the

others, leading to 17% higher utilization.

• HUG+ outperforms all alternative policies in the long run,

reducing the average CCT by 1.9× and 1.5× as compared

with HUG and multi-round DRF, respectively.

• HUG+ scales to large datacenters and can be computed in

milliseconds in a simulated 10,000-machine cluster. The

computational overhead is less than 4× of that of HUG.

TABLE IV: Coflows binned by their lengths (Short or Long)

and widths (Narrow or Wide) in Coflow-Benchmark [21].

Bin SN LN SW LW
% of Coflows 60% 16% 12% 12%
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Fig. 5: Characteristics of instantaneous allocation with 100

concurrent coflows using different policies.

A. Workload Description and Simulation Setup

Workload. We use the one-hour workload trace in Coflow-

Benchmark [21] as the input of our simulation. The workload is

synthesized based on a Hive/MapReduce trace collected from

a 3000-machine cluster with 150 racks at Facebook [14]. The

trace contains 526 coflows scaled down to a 150-port fabric,

where all mappers (reducers) in the same rack are combined

into one rack-level mapper (reducer). For each coflow, the

trace logs its arrival time, placements of mappers/reducers, and

the amount of data shuffled, based on which we can easily

calculate the correlation vector using the optimal rate allocation

algorithm given in [14], [22].

We categorize coflows into four bins based on their lengths

and widths. Following the convention [3], [7], [14], [23], we

say a coflow is short (long) if the size of its longest flow is less

(greater) than 5 MB, and narrow (wide) if the number of its

flows is less (greater) than 50. Table IV details the distribution

of coflows in four bins.

Simulation setup. In our simulation, we assume a non-

blocking 150×150 datacenter fabric with 150 ingress/engress

ports corresponding to the uplinks/downlinks of 150 racks

connected to it. The bandwidth capacity of each port is set to 1

Gbps. We assume that each coflow corresponds to a tenant. We

implemented all the allocation policies—HUG+, HUG [3], per-

link fairness [2], and multi-round DRF [9]—atop CoflowSim

[24], the de facto simulator for coflow scheduling.

2016 IEEE 24th International Conference on Network Protocols (ICNP)

7



B. Instantaneous Allocation Performance

We start our evaluation by comparing instantaneous alloca-

tion performance under different policies. In particular, we took

a snapshot of 100 coflows randomly sampled from the trace

[21]. For each coflow, we computed its allocation and progress

using different policies. We have repeated the simulations

several times feeding different random samples of coflows, and

have observed consistent performance. We report the result of

one simulation run as follows.

Coflow progress. Fig. 5a shows the distribution of coflow

progress under per-link fairness, HUG, multi-round DRF, and

HUG+. By design, the latter two policies give the same progress

to each tenant, and their CDF curves align with each other.

We see that per-link fairness performs the worst in terms

of isolation guarantee—only 22% of that of the other three

policies—and has the lowest mean progress (99 Mbps). We

attribute the poor guarantee to per-link fairness’s being agnostic

to the demand correlation across links. This problem is avoided

using the other three policies, all giving the optimal guarantee

on the minimum progress. However, unlike HUG+ (multi-round

DRF), HUG refrains tenants from a higher progress beyond

the minimum guarantee, which slows down 69% of coflows

by 2.7× on average. As a result, the mean progress of HUG

is only 46% of that using HUG+ (multi-round DRF).

Given the salient progress improvement of HUG+, we are

curious about which coflows have been benefited with higher

progresses than the minimum guarantee, i.e., Pk > P ∗. Fig. 5b

shows the number of these coflows in four bins. We see

that among all 69 coflows with a higher progress beyond the

isolation guarantee, 64 are narrow. Intuitively, compared with

wide ones, narrow coflows have demands on fewer links, and

are less likely bottlenecked on the congested links when the

minimum progress guarantee is reached in Stage-1 of HUG+,

allowing them to have a higher progress than the guarantee.

Network utilization. Fig. 5c shows the instantaneous uti-

lization using different policies. We see that HUG+ achieves

the highest utilization among all four alternatives, and is 17%

more efficient than the second best (HUG). In addition to this

expected result, we make another two observations that seem

counterintuitive at the first glimpse.

First, we see that per-link fairness performs the worst. This

is somehow unexpected, as per-link fairness is work conserving
[2], and will not leave bandwidth unallocated in the presence

of unmet demands. We found that the root cause behind is

that the bandwidth, though allocated, cannot be utilized due to

the flow conservation constraint [19], i.e., the total amount of

ingress traffics must match that of egress traffics. Therefore,

more bandwidth allocations, either for ingress or egress traffics,

are wasteful. This has been commonly observed in per-link

fairness for its being agnostic to the demand correlation.

Second, given the significant progress improvement of multi-

round DRF over HUG (Fig. 5a), we might expect that the

former outperforms the latter in utilization as well. However,

an opposite observation is drawn in Fig. 5c. This is due to

the fact that DRF does not allocate excess bandwidth without
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Fig. 6: Long-term characteristics using different policies.

progress improvement. In our experiment, the utilization loss

due to unallocated spare bandwidth outweighs the utilization

gains derived from higher progress.

C. Long-Term Performance

We have shown in the previous evaluations that HUG+

outperforms all the other policies with the optimal instantaneous

performance, such as the isolation guarantee and utilization.

We next evaluate how the instantaneous optimality translates

to long-term performance gains in terms of the CCT reduction.

In particular, to simulate a congested environment with more

competitions among tenants, we overloaded the datacenter

fabric by linearly scaling up the one-hour trace of 526 coflows

[21] to 2630 coflows arriving in two hours.

Fig. 6a shows the distribution of CCT using different

allocation policies. We see that per-link fairness results in

significantly longer CCT than that of the other three policies.

This observation is consistent with that drawn in [3]. Given

the clear disadvantage of per-link fairness, we exclude it from

further comparison. In addition, we see from Fig. 6a that

HUG+ achieves the shortest CCT, but the speedup seems not

salient enough to be visually identifiable. We stress that this

indistinguishability is purely due to the visualization of using

log-scale x-axis in Fig. 6a. To better illustrate the difference

between HUG+ and the other two policies, we instead use the

following two metrics for comparison: normalized CCT and

shuffle slowdown [3].

• Normalized CCT is defined, for each coflow, as its duration

using the compared policy normalized by that using

HUG+, i.e.,

Normalized CCT =
Coflow Duration

Duration using HUG+
.
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TABLE V: Statistical summary of slowdown.

Per-Link Fairness HUG DRF HUG+
Min 1.00 1.00 1.00 1.00

Mean 15.44 3.28 2.74 1.96

95th 30.56 7.40 5.50 4.00

Std. Dev. 7.71 1.78 1.37 1.13

• Shuffle slowdown is defined, for each coflow, as its

duration using the compared policy normalized by the

minimum possible duration if it were the only coflow

sending in the datacenter fabric, i.e.,

Slowdown =
Coflow Duration

Minimum Duration
.

Normalized CCT. We present the mean normalized CCT

of HUG and multi-round DRF in four coflow bins in Fig. 6b,

where the error bar captures one standard deviation. We

observed the average normalized CCT consistently greater

than 1 across all bins—meaning that HUG+ speeds up coflows

indistinguishably. In particular, HUG+ reduces the average CCT

of HUG and multi-round DRF by 1.9× and 1.5×, respectively.

Slowdown. A clear win for HUG+ is also observed in Fig. 6c,

where the distributions of slowdown under the three policies

are given for comparison. We summarize in Table V the min,

average, and 95th percentile slowdown as well as the standard

deviation measured under different policies. HUG+ consistently

outperforms the other three alternatives, reducing the 95th

percentile slowdown of HUG and multi-round DRF by 1.9×
and 1.4×, respectively.

HUG vs. multi-round DRF. Both normalized CCT (Fig. 6b)

and slowdown (Fig. 6c) indicate that coflows have experienced

longer completion time under HUG than under multi-round

DRF. Recall that HUG is characterized by high utilization

but low progress, and multi-round DRF the other way around

(cf. Sec. VI-B). The fact that HUG results in longer CCT

than DRF validates our tenant model that receiving more

bandwidth is less beneficial than having a higher progress,

and is the secondary objective tenants set to optimize (cf.

Sec. II). HUG+ improves both the progress and the utilization

of spare bandwidth, achieving the best of both worlds.

D. Scalability

Prior work shows that, for a centralized resource allocator

like HUG to scale, the computation of a new allocation should

be done in milliseconds [3]. Compared to HUG, the main

overhead introduced by HUG+ is the computation of multi-level

progresses in rounds (i.e., Stage-1 of Algorithm 1). To evaluate

the scalability of HUG+, we compared the computational

overhead of HUG+ against HUG in a large, simulated cluster.

Specifically, we simulated a 10,000-machine datacenter with

1,000 randomly generated coflows competing for bandwidth,

using both HUG and HUG+. We run the simulation 1,000 times

on a desktop with 2.6 GHz Intel� CoreTM i7-5600U processor

and 8 GB memory. HUG took about 16.3 milliseconds on

average to compute a new allocation, while HUG+ took 52.8

milliseconds on average, less than 4× of that required by

HUG. Based on the measurements given in [3], the additional

computational overhead has little impact on the scalability.

VII. RELATED WORK

Fairness at flow/machine level. Traditional network sharing

mechanisms rely on per-flow fairness [25], [26] to provide

isolation guarantee. However, per-flow fairness is susceptible

to manipulation: tenants can obtain an arbitrarily high share

of network bandwidth by initiating more flows. To avoid

this problem, recent work focuses on machine-level fairness.

Notably, Seawall [4] suggests per-source fair sharing on

the congested links. However, per-source (per-destination)

allocation can be unfair to destinations (sources). Popa et

al. [2] further shows that per source-destination pair allocation

is not fair for tenants either. The lack of isolation guarantees

of flow- or machine-level allocation policies results in highly

volatile, unpredictable services [1], [2]. In contrast, HUG+

provides tenant-level isolation guarantees with predictable

network performance.

Tenant-level reservation. Static, reservation-based band-

width allocation policies have been implemented in recent

systems to achieve performance predictability. For example,

SecondNet [6] provides tenants with bandwidth guarantees

through the abstraction of virtual datacenter. Oktopus [5]

implements the abstraction of virtual network, which isolates

tenant performance from the underlying infrastructure and

allows tenants to express their network requirements. Pulsar

[27] provides guarantees on the end-to-end throughput through

the abstraction of a virtual datacenter dedicated to each tenant.

All these systems provide network performance isolation atop

flexible virtual topologies. However, the enforcement of static

reservation does not allow tenants to use the spare bandwidth

of another, making the network utilization a major concern

of these systems. HUG+ avoids this problem by dynamically

allocating spare bandwidth to tenants.

Network-wide/Tenant-level fair sharing. In cooperative

environments where strategy-proofness is not a concern, work

conservation is required to achieve the highest utilization.

Systems like NetShare [28] are work conserving, but provide

no isolation guarantee. PS-P [2] and EyeQ [17] address this

problem with bandwidth guarantees, but at a suboptimal level.

In addition, their implementations require expensive hardware

support in switches. HUG [3] comes as an attractive solution

with the optimal isolation guarantee. HUG is work conserving

as well: since strategy-proofness is not a concern, spare

bandwidth can be allocated without restrictions. HUG+ retains

all these desirable properties, and further allows tenants to

receive higher progresses beyond the minimum guarantee.

In non-cooperative environments like public clouds, work

conservation is no longer desirable as it could be at odds with

the optimal isolation guarantee. Instead, strategy-proofness

is believed necessary [3], if tenants are only interested in

making a higher progress. HUG serves as an ideal solution in

this model, where it achieves the optimal isolation guarantee,

while attaining high utilization without compromising strategy-

proofness [3]. However, we have shown in this paper that a
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rational tenant should always pursue more bandwidth after its

progress reaches the maximum. In this case, strategy-proofness

cannot coexist with the optimal isolation guarantee. HUG+

retains the maximal sets of non-conflicting properties, replacing

HUG as a desirable network sharing policy.

Multi-resource allocation. Cloud network sharing is in

essence a multi-resource allocation problem, if we view each

link as a resource. Existing multi-resource allocation policies,

such as DRF [8], [9] and its variants [29], [30], assume

inelastic demands where user utilities are captured by Leontief

preferences [30], [31]. Ignoring demand elasticity in cloud

network sharing inevitably results in low utilization [3].

VIII. CONCLUDING REMARK

In this paper, we have studied the cloud network sharing

problem for tenants with correlated and elastic demands on

multiple links. Our goals are to achieve both the optimal

isolation guarantee and high utilization. Contrary to the previous

belief, we have shown that to achieve the optimal isolation

guarantee, strategy-proofness should not be enforced. On the

other hand, allowing strategic manipulations without restrictions

could do more harm than good.

We have addressed this “dilemma” with HUG+, a two-

stage bandwidth allocation algorithm. In the first stage, HUG+

maximizes the isolation guarantee using multi-round DRF;

it then allocates spare bandwidth such that no tenant is

assigned more bandwidth than its progress. We have shown that

HUG+ provides the optimal isolation guarantee while attaining

the highest possible network utilization in spite of strategic,

untruthful tenants. Experimental results show that by achieving

these properties, HUG+ outperforms existing network sharing

policies with better isolation guarantee, higher utilization, and

shorter coflow completion time.

We have focused on evaluating HUG+ using workload traces

collected from production clusters. In the future, theoretical

aspects should be investigated, such as the equilibrium of

strategic behaviors and the Price of Anarchy [32, Ch. 17].

Furthermore, the evaluation of other system performance, such

as the operator’s revenue derived from the tenants’ payments

for network usage, is interesting and relevant in public clouds.
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