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Abstract—We study the multi-resource allocation problem in
cloud computing systems where the resource pool is constructed
from a large number of heterogeneous servers, representing
different points in the configuration space of resources such as
processing, memory, and storage. We design a multi-resource
allocation mechanism, called DRFH, that generalizes the notion
of Dominant Resource Fairness (DRF) from a single server to
multiple heterogeneous servers. DRFH provides a number of
highly desirable properties. With DRFH, no user prefers the
allocation of another user; no one can improve its allocation
without decreasing that of the others; and more importantly, no
user has an incentive to lie about its resource demand. As a direct
application, we design a simple heuristic that implements DRFH
in real-world systems. Large-scale simulations driven by Google
cluster traces show that DRFH significantly outperforms the
traditional slot-based scheduler, leading to much higher resource
utilization with substantially shorter job completion times.

I. INTRODUCTION

Resource allocation under the notion of fairness and effi-
ciency is a fundamental problem in the design of cloud com-
puting systems. Unlike traditional application-specific clusters
and grids, a cloud computing system distinguishes itself with
unprecedented server and workload heterogeneity. Modern
datacenters are likely to be constructed from a variety of server
classes, with different configurations in terms of processing ca-
pabilities, memory sizes, and storage spaces [1]. Asynchronous
hardware upgrades, such as adding new servers and phasing
out existing ones, further aggravate such diversity, leading to
a wide range of server specifications in a cloud computing
system [2]. Table I illustrates the heterogeneity of servers in
one of Google’s clusters [2], [3].

In addition to server heterogeneity, cloud computing sys-
tems also represent much higher diversity in resource demand
profiles. Depending on the underlying applications, the work-
load spanning multiple cloud users may require vastly different
amounts of resources (e.g., CPU, memory, and storage). For
example, numerical computing tasks are usually CPU inten-
sive, while database operations typically require high-memory
support. The heterogeneity of both servers and workload
demands poses significant technical challenges on the resource
allocation mechanism, giving rise to many delicate issues
— notably fairness and efficiency — that must be carefully
addressed.

Despite the unprecedented heterogeneity in cloud comput-
ing systems, state-of-the-art computing frameworks employ
rather simple abstractions that fall short. For example, Hadoop
[4] and Dryad [5], the two most widely deployed cloud
computing frameworks, partition a server’s resources into

TABLE I
CONFIGURATIONS OF SERVERS IN ONE OF GOOGLE’S CLUSTERS [2], [3].
CPU AND MEMORY UNITS ARE NORMALIZED TO THE MAXIMUM SERVER

(HIGHLIGHTED BELOW).

Number of servers CPUs Memory
6732 0.50 0.50
3863 0.50 0.25
1001 0.50 0.75
795 1.00 1.00
126 0.25 0.25
52 0.50 0.12
5 0.50 0.03
5 0.50 0.97
3 1.00 0.50
1 0.50 0.06

bundles — known as slots — that contain fixed amounts
of different resources. The system then allocates resources
to users at the granularity of these slots. Such a single
resource abstraction ignores the heterogeneity of both server
specifications and demand profiles, inevitably leading to a
fairly inefficient allocation [6].

Towards addressing the inefficiency of the current allo-
cation system, many recent works focus on multi-resource
allocation mechanisms. Notably, Ghodsi et al. [6] suggest
a compelling alternative known as the Dominant Resource
Fairness (DRF) allocation, in which each user’s dominant
share — the maximum ratio of any resource that the user has
been allocated in a server — is equalized. The DRF allocation
possesses a set of highly desirable fairness properties, and
has quickly received significant attention in the literature [7],
[8], [9], [10]. While DRF and its subsequent works address
the demand heterogeneity of multiple resources, they all limit
the discussions to a simplified model where all resources
are concentrated into one super computer1. Such an all-
in-one resource model drastically contrasts the state-of-the-
practice infrastructure of cloud computing systems. Moreover,
it ignores the heterogeneity of servers: The resulting resource
allocations only depend on the total amount of resources
pooled in the system, irrespective of the underlying resource
distribution of servers. In fact, with heterogeneous servers,
even the definition of dominant resource is unclear: Depending
on the underlying server configurations, a computing task may
bottleneck on different resources in different servers. We shall
note that naive extensions, such as applying the DRF allocation
to each server separately, leads to a highly inefficient allocation
(details in Sec. III-D).

1While [6] briefly touches on the case where resources are distributed to
small servers (known as the discrete scenario), its coverage is rather informal.

978-1-4799-3360-0/14/$31.00 c�2014 IEEE



2

This paper represents the first rigorous study to propose
a solution with provable operational benefits that bridge the
gap between the existing multi-resource allocation models and
the prevalent datacenter infrastructure. We propose DRFH,
a DRF generalization in Heterogeneous environments where
resources are pooled by a large amount of heterogeneous
servers, representing different points in the configuration space
of resources such as processing, memory, and storage. DRFH
generalizes the intuition of DRF by seeking an allocation that
equalizes every user’s global dominant share, which is the
maximum ratio of any resources the user has been allocated
in the entire cloud resource pool. We systematically analyze
DRFH and show that it retains most of the desirable properties
that the all-in-one DRF model provides [6]. Specifically,
DRFH is Pareto optimal, where no user is able to increase its
allocation without decreasing other users’ allocations. Mean-
while, DRFH is envy-free in that no user prefers the allocation
of another user. More importantly, DRFH is truthful in that a
user cannot schedule more computing tasks by claiming more
resources that are not needed, and hence has no incentive to
misreport its actual resource demand. DRFH also satisfies a
set of other important properties, namely single-server DRF,
single-resource fairness, bottleneck fairness, and population
monotonicity (details in Sec. III-C).

As a direct application, we design a heuristic scheduling
algorithm that implements DRFH in real-world systems. We
conduct large-scale simulations driven by Google cluster traces
[3]. Our simulation results show that compared to the tradi-
tional slot schedulers adopted in prevalent cloud computing
frameworks, the DRFH algorithm suitably matches demand
heterogeneity to server heterogeneity, significantly improving
the system’s resource utilization, yet with a substantial reduc-
tion of job completion times.

II. RELATED WORK

Despite the extensive computing system literature on fair
resource allocation, many existing works limit their discus-
sions to the allocation of a single resource type, e.g., CPU
time [11], [12] and link bandwidth [13], [14], [15], [16], [17].
Various fairness notions have also been proposed throughout
the years, ranging from application-specific allocations [18],
[19] to general fairness measures [13], [20], [21].

As for multi-resource allocation, state-of-the-art cloud com-
puting systems employ naive single resource abstractions. For
example, the two fair sharing schedulers currently supported
in Hadoop [22], [23] partition a node into slots with fixed
fractions of resources, and allocate resources jointly at the
slot granularity. Quincy [24], a fair scheduler developed for
Dryad [5], models the fair scheduling problem as a min-cost
flow problem to schedule jobs into slots. The recent work [25]
takes the job placement constraints into consideration, yet it
still uses a slot-based single resource abstraction.

Ghodsi et al. [6] are the first in the literature to present a sys-
tematic investigation on the multi-resource allocation problem
in cloud computing systems. They propose DRF to equalize
the dominant share of all users, and show that a number of
desirable fairness properties are guaranteed in the resulting

allocation. DRF has quickly attracted a substantial amount
of attention and has been generalized to many dimensions.
Notably, Joe-Wong et al. [7] generalize the DRF measure
and incorporate it into a unifying framework that captures the
trade-offs between allocation fairness and efficiency. Dolev et
al. [8] suggest another notion of fairness for multi-resource
allocation, known as Bottleneck-Based Fairness (BBF), under
which two fairness properties that DRF possesses are also
guaranteed. Gutman and Nisan [9] consider another settings of
DRF with a more general domain of user utilities, and show
their connections to the BBF mechanism. Parkes et al. [10],
on the other hand, extend DRF in several ways, including the
presence of zero demands for certain resources, weighted user
endowments, and in particular the case of indivisible tasks.
They also study the loss of social welfare under the DRF
rules. More recently, Kash et al. [26] extend the DRF model to
allow users to join the system over time but will never leave.
However, all these works assume, explicitly or implicitly, that
all resources are concentrated into a super computer, which is
not the case in the prevalent datacenter system.

Other related works include fair-division problems in the
economics literature, in particular the egalitarian division
under Leontief preferences [27] and the cake-cutting problem
[28]. These works also assume the all-in-one resource model,
and hence cannot be directly applied to cloud computing
systems with heterogeneous servers.

III. SYSTEM MODEL AND ALLOCATION PROPERTIES

In this section, we model multi-resource allocation in a
cloud computing system with heterogeneous servers. We for-
malize a number of desirable properties that are deemed the
most important for allocation mechanisms in cloud computing
environments.

A. Basic Setting

In a cloud computing system, the resource pool is com-
posed of a cluster of heterogeneous servers S = {1, . . . , k},
each contributing m hardware resources (e.g., CPU, memory,
storage) denoted by R = {1, . . . ,m}. For each server l, let
cl = (cl1, . . . , clm)

T be its resource capacity vector, where
each element clr denotes the total amount of resource r
available in server l. Without loss of generality, for every
resource r, we normalize the total capacity of all servers to 1,
i.e., X

l2S

clr = 1, r = 1, 2, . . . ,m.

Let U = {1, . . . , n} be the set of cloud users sharing the
cloud system. For every user i, let Di = (Di1, . . . , Dim)

T be
its resource demand vector, where Dir is the fraction (share)
of resource r required by each task of user i over the entire
system. For simplicity, we assume positive demands for all
users, i.e., Dir > 0, 8i 2 U, r 2 R. We say resource r⇤i is the
global dominant resource of user i if

r⇤i 2 argmax

r2R
Dir .
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CPUs

Server 1 Server 2
(2 CPUs, 12 GB) (12 CPUs, 2 GB)

Fig. 1. An example of a system containing two heterogeneous servers shared
by two users. Each computing task of user 1 requires 0.2 CPU time and 1
GB memory, while the computing task of user 2 requires 1 CPU time and
0.2 GB memory.

In other words, r⇤i is the most heavily demanded resource
required by user i’s task in the entire resource pool. For all
user i and resource r, we define

dir = Dir/Dir⇤i

as the normalized demand and denote by di = (di1, . . . , dim)

T

the normalized demand vector of user i.
As a concrete example, consider Fig. 1 where the sys-

tem contains two heterogeneous servers. Server 1 is high-
memory with 2 CPUs and 12 GB memory, while server
2 is high-CPU with 12 CPUs and 2 GB memory. Since
the system contains 14 CPUs and 14 GB memory in to-
tal, the normalized capacity vectors of server 1 and 2 are
c1 = (CPU share,memory share)T = (1/7, 6/7)T and c2 =

(6/7, 1/7)T , respectively. Now suppose there are two users.
User 1 has memory-intensive tasks each requiring 0.2 CPU
time and 1 GB memory, while user 2 has CPU-heavy tasks
each requiring 1 CPU time and 0.2 GB memory. The demand
vector of user 1 is D1 = (1/70, 1/14)T and the normalized
vector is d1 = (1/5, 1)T , where memory is the global
dominant resource. Similarly, user 2 has D2 = (1/14, 1/70)T

and d2 = (1, 1/5)T , and CPU is its global dominant resource.
For now, we assume users have an infinite number of tasks

to be scheduled, and all tasks are divisible [6], [8], [9], [10],
[26]. We shall discuss how these assumptions can be relaxed
in Sec. V.

B. Resource Allocation

For every user i and server l, let Ail = (Ail1, . . . , Ailm)

T

be the resource allocation vector, where Ailr is the share
of resource r allocated to user i in server l. Let Ai =

(Ai1, . . . ,Aik) be the allocation matrix of user i, and A =

(A1, . . . ,An) the overall allocation for all users. We say an
allocation A is feasible if no server is required to use more
than any of its total resources, i.e.,

X

i2U

Ailr  clr, 8l 2 S, r 2 R .

For all user i, given allocation Ail in server l, the maximum
number of tasks (possibly fractional) that it can schedule is
calculated as

Nil(Ail) = min

r2R
{Ailr/Dir} .

The total number of tasks user i can schedule under allocation
Ai is hence

Ni(Ai) =

X

l2S

Nil(Ail) . (1)

Intuitively, a user prefers an allocation that allows it to
schedule more tasks.

A well-justified allocation should never give a user more
resources than it can actually use in a server. Following the
terminology used in the economics literature [27], we call such
an allocation non-wasteful:

Definition 1: For user i and server l, an allocation Ail is
non-wasteful if taking out any resources reduces the number
of tasks scheduled, i.e., for all A0

il � Ail
2, we have that

Nil(A
0
il) < Nil(Ail) .

User i’s allocation Ai = (Ail) is non-wasteful if Ail is non-
wasteful for all server l, and allocation A = (Ai) is non-
wasteful if Ai is non-wasteful for all user i.

Note that one can always convert an allocation to non-
wasteful by revoking those resources that are allocated but
have never been actually used, without changing the number
of tasks scheduled for any user. Therefore, unless otherwise
specified, we limit the discussions to non-wasteful allocations.

C. Allocation Mechanism and Desirable Properties
A resource allocation mechanism takes user demands as

input and outputs the allocation result. In general, an allocation
mechanism should provide the following essential properties
that are widely recognized as the most important fairness and
efficiency measures in both cloud computing systems [6], [7],
[25] and the economics literature [27], [28].

Envy-freeness: An allocation mechanism is envy-free if no
user prefers the other’s allocation to its own, i.e., Ni(Ai) �
Ni(Aj) for any two users i, j 2 U . This property essentially
embodies the notion of fairness.

Pareto optimality: An allocation mechanism is Pareto op-
timal if it returns an allocation A such that for all feasible
allocations A0, if Ni(A0

i) > Ni(Ai) for some user i, then
there exists a user j such that Nj(A0

j) < Nj(Aj). In other
words, there is no other allocation where all users are at least
as well off and at least one user is strictly better off. This
property ensures the allocation efficiency and is critical for
high resource utilization.

Truthfulness: An allocation mechanism is truthful if no user
can schedule more tasks by misreporting its resource demand
(assuming a user’s demand is its private information), irrespec-
tive of other users’ behaviour. Specifically, given the demands
claimed by other users, let A be the resulting allocation when
user i truthfully reports its resource demand Di, and let A0 be
the allocation returned when user i misreports by D0

i 6= Di.
Then under a truthful mechanism we have Ni(Ai) � Ni(A0

i).
Truthfulness is of a special importance for a cloud computing
system, as it is common to observe in real-world systems that
users try to lie about their resource demands to manipulate the
schedulers for more allocation [6], [25].

2For any two vectors x and y, we say x � y if xi  yi, 8i and for some
j we have strict inequality: xj < yj .
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In addition to these essential properties, we also consider
four other important properties below:

Single-server DRF: If the system contains only one server,
then the resulting allocation should be reduced to the DRF
allocation.

Single-resource fairness: If there is a single resource in the
system, then the resulting allocation should be reduced to a
max-min fair allocation.

Bottleneck fairness: If all users bottleneck on the same
resource (i.e., having the same global dominant resource), then
the resulting allocation should be reduced to a max-min fair
allocation for that resource.

Population monotonicity: If a user leaves the system and
relinquishes all its allocations, then the remaining users will
not see any reduction in the number of tasks scheduled.

In addition to the aforementioned properties, sharing in-
centive is another important property that has been frequently
mentioned in the literature [6], [7], [8], [10]. It ensures that
every user’s allocation is not worse off than that obtained by
evenly dividing the entire resource pool. While this property is
well defined for a single server, it is not for a system containing
multiple heterogeneous servers, as there is an infinite number
of ways to evenly divide the resource pool among users, and
it is unclear which one should be chosen as a benchmark. We
defer the discussions to Sec. IV-D, where we justify between
two possible alternatives. For now, our objective is to design an
allocation mechanism that guarantees all the properties defined
above.

D. Naive DRF Extension and Its Inefficiency

It has been shown in [6], [10] that the DRF allocation satis-
fies all the desirable properties mentioned above when there is
only one server in the system. The key intuition is to equalize
the fraction of dominant resources allocated to each user in the
server. When resources are distributed to many heterogeneous
servers, a naive generalization is to separately apply the DRF
allocation per server. Since servers are heterogeneous, a user
might have different dominant resources in different servers.
For instance, in the example of Fig. 1, user 1’s dominant
resource in server 1 is CPU, while its dominant resource in
server 2 is memory. Now apply DRF in server 1. Because
CPU is also user 2’s dominant resource, the DRF allocation
lets both users have an equal share of the server’s CPUs, each
allocated 1. As a result, user 1 schedules 5 tasks onto server
1, while user 2 schedules 1 onto the same server. Similarly, in
server 2, memory is the dominant resource of both users and
is evenly allocated, leading to 1 task scheduled for user 1 and
5 for user 2. The resulting allocations in the two servers are
illustrated in Fig. 2, where both users schedule 6 tasks.

Unfortunately, this allocation violates Pareto optimality and
is highly inefficient. If we instead allocate server 1 exclusively
to user 1, and server 2 exclusively to user 2, then both users
schedule 10 tasks, more than those scheduled under the DRF
allocation. In fact, we see that naively applying DRF per
server may lead to an allocation with arbitrarily low resource
utilization.

50%

CPU Memory

100%

0%

50%

CPU Memory

100%

0%

User1 User2

Server 1 Server 2

42%

8%

Fig. 2. DRF allocation for the example shown in Fig. 1, where user 1 is
allocated 5 tasks in server 1 and 1 in server 2, while user 2 is allocated 1
task in server 1 and 5 in server 2.

The failure of the naive DRF extension to the heterogeneous
environment necessitates an alternative allocation mechanism,
which is the main theme of the next section.

IV. DRFH ALLOCATION AND ITS PROPERTIES

In this section, we describe DRFH, a generalization of DRF
in a heterogeneous cloud computing system where resources
are distributed in a number of heterogeneous servers. We
analyze DRFH and show that it provides all the desirable
properties defined in Sec. III.

A. DRFH Allocation
Instead of allocating separately in each server, DRFH jointly

considers resource allocation across all heterogeneous servers.
The key intuition is to achieve the max-min fair allocation for
the global dominant resources. Specifically, given allocation
Ail, let Gil(Ail) be the fraction of global dominant resources
user i receives in server l, i.e.,

Gil(Ail) = Nil(Ail)Dir⇤i
= min

r2R
{Ailr/dir} . (2)

We call Gil(Ail) the global dominant share user i receives
in server l under allocation Ail. Therefore, given the overall
allocation Ai, the global dominant share user i receives is

Gi(Ai) =

X

l2S

Gil(Ail) =

X

l2S

min

r2R
{Ailr/dir} . (3)

DRFH allocation aims to maximize the minimum global dom-
inant share among all users, subject to the resource constraints
per server, i.e.,

max

A
min

i2U
Gi(Ai)

s.t.
X

i2U

Ailr  clr, 8l 2 S, r 2 R .
(4)

Recall that without loss of generality, we assume non-
wasteful allocation A (see Sec. III-B). We have the following
structural result. The proof is deferred to our technical report
[29].

Lemma 1: For user i and server l, an allocation Ail is
non-wasteful if and only if there exists some gil such that
Ail = gildi. In particular, gil is the global dominant share
user i receives in server l under allocation Ail, i.e.,

gil = Gil(Ail) .
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CPU Memory

5/7

0
CPU Memory

0

User1 User2

Server 1 Server 2

1/7 1/7

6/7 6/7

Resource 
Share

Fig. 3. An alternative allocation with higher system utilization for the example
of Fig. 1. Server 1 and 2 are exclusively assigned to user 1 and 2, respectively.
Both users schedule 10 tasks.

Intuitively, Lemma 1 indicates that under a non-wasteful
allocation, resources are allocated in proportion to the user’s
demand. Lemma 1 immediately suggests the following rela-
tionship for all user i and its non-wasteful allocation Ai:

Gi(Ai) =

X

l2S

Gil(Ail) =

X

l2S

gil .

Problem (4) can hence be equivalently written as

max

{gil}
min

i2U

X

l2S

gil

s.t.
X

i2U

gildir  clr, 8l 2 S, r 2 R ,
(5)

where the constraints are derived from Lemma 1. Now let
g = mini

P
l2S gil. Via straightforward algebraic operation,

we see that (5) is equivalent to the following problem:

max

{gil}
g

s.t.
X

i2U

gildir  clr, 8l 2 S, r 2 R ,

X

l2U

gil = g, 8i 2 U .

(6)

Note that the second constraint ensures the fairness with
respect to the equalized global dominant share g. By solving
(6), DRFH allocates each user the maximum global dominant
share g, under the constraints of both server capacity and
fairness. By Lemma 1, the allocation received by each user
i in server l is simply Ail = gildi.

For example, Fig. 3 illustrates the resulting DRFH allocation
in the example of Fig. 1. By solving (6), DRFH allocates
server 1 exclusively to user 1 and server 2 exclusively to user
2, allowing each user to schedule 10 tasks with the maximum
global dominant share g = 5/7.

We next analyze the properties of DRFH allocation obtained
by solving (6) in the following two subsections.

B. Analysis of Essential Properties

Our analysis of DRFH starts with the three essential re-
source allocation properties, namely, envy-freeness, Pareto
optimality, and truthfulness. We first show that under the
DRFH allocation, no user prefers other’s allocation to its own.

Proposition 1 (Envy-freeness): The DRFH allocation ob-
tained by solving (6) is envy-free.

Proof: Let {gil} be the solution to problem (6). For all user
i, its DRFH allocation in server l is Ail = gildi. To show
Ni(Aj)  Ni(Ai) for any two users i and j, it is equivalent
to prove Ni(Aj)  Ni(Ai). We have

Gi(Aj) =
P

l Gil(Ajl)

=

P
l minr{gjldjr/dir}


P

l gjl = Gi(Ai) ,

where the inequality holds because

min

r
{djr/dir}  djr⇤i /dir⇤i  1 ,

where r⇤i is user i’s global dominant resource.
We next show that DRFH leads to an efficient allocation

under which no user can improve its allocation without de-
creasing that of the others.

Proposition 2 (Pareto optimality): The DRFH allocation
obtained by solving (6) is Pareto optimal.

Proof: Let {gil}, and the corresponding g, be the solution
to problem (6). For all user i, its DRFH allocation in server
l is Ail = gildi. Since (5) and (6) are equivalent, {gil} also
solves (5), with g being the maximum value of the objective
of (5).

Assume, by way of contradiction, that allocation A is not
Pareto optimal, i.e., there exists some allocation A0, such
that Ni(A0

i) � Ni(Ai) for all user i, and for some user j
we have strict inequality: Nj(A0

j) > Nj(Aj). Equivalently,
this implies that Gi(A0

i) � Gi(Ai) for all user i, and
Gj(A0

j) > Gj(Aj) for user j. Without loss of generality,
let A0 be non-wasteful. By Lemma 1, for all user i and server
l, there exists some g0il such that A0

il = g0ildi. We show that
based on {g0il}, one can construct some {ĝil} such that {ĝil}
is a feasible solution to (5), yet leads to a higher objective
than g, contradicting the fact that {gil} optimally solve (5).

To see this, consider user j. We have

Gj(Aj) =
P

l gjl = g < Gj(A0
j) =

P
l g

0
jl.

For user j, there exists a server l0 and some ✏ > 0, such that
after reducing g0jl0 to g0jl0 � ✏, the resulting global dominant
share remains higher than g, i.e.,

P
l g

0
jl � ✏ � g. This leads

to at least ✏dj idle resources in server l0. We construct {ĝil}
by redistributing these idle resources to all users.

Denote by {g00il} the dominant share after reducing g0jl0 to
g0jl0 � ✏, i.e.,

g00il =

⇢
g0jl0 � ✏, i = j, l = l0;

g0il, o.w.

The corresponding non-wasteful allocation is A00
il = g00ildi for

all user i and server l. Note that allocation A00 is preferred
over the original allocation A by all users, i.e., for all user i,
we have

Gi(A
00
i ) =

X

l

g00il =

⇢ P
l g

0
jl � ✏ � g = Gj(Aj), i = j;P

l g
0
il = Gi(A0

i) � Gi(Ai), o.w.

We now construct {ĝil} by redistributing the ✏dj idle
resources in server l0 to all users, each increasing its global
dominant share g00il0 by � = minr{✏djr/

P
i dir}, i.e.,

ĝil =

⇢
g00il0 + �, l = l0;
g00il, o.w.
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It is easy to check that {ĝil} remains a feasible allocation. To
see this, it suffices to check server l0. For all its resource r,
we have

P
i ĝil0dir =

P
i(g

00
il0

+ �)dir

=

P
i g

0
il0
dir � ✏djr + �

P
i dir

 cl0r � (✏djr � �
P

i dir)  cl0r .

where the first inequality holds because A0 is a feasible
allocation.

On the other hand, for all user i 2 U , we have
P

l ĝil =
P

l g
00
il + � = Gi(A00

i ) + � � Gi(Ai) + � > g .

This contradicts the premise that g is optimal for (5).
For now, all our discussions are based on a critical assump-

tion that all users truthfully report their resource demands.
However, in a real-world system, it is common to observe
users to attempt to manipulate the scheduler by misreporting
their resource demands, so as to receive more allocation
[6], [25]. More often than not, these strategic behaviours
would significantly hurt those honest users and reduce the
number of their tasks scheduled, inevitably leading to a fairly
inefficient allocation outcome. Fortunately, we show by the
following proposition that DRFH is immune to these strategic
behaviours, as reporting the true demand is always the best
strategy for every user, irrespective of the others’ behaviour.

Proposition 3 (Truthfulness): The DRFH allocation ob-
tained by solving (6) is truthful.

Proof: For any user i, fixing all other users’ clamed de-
mands d0

�i = (d0
1, . . . ,d

0
i�1,d

0
i+1, . . . ,d

0
n) (which may not

be their true demands), let A be the resulting allocation when
i truthfully reports its demand di, that is, Ail = gildi and
Ajl = gjld0

j for all user j 6= i and server l, where gil and
gjl are the global dominant shares users i and j receive on
server l under Ail and Ajl, respectively. Similarly, let A0 be
the resulting allocation when user i misreports its demand as
d0
i. Let g and g0 be the global dominant share user i receives

under Ai and A0
i, respectively. We check the following two

cases and show that Gi(A0
i)  Gi(Ai), which is equivalent

to Ni(A0
i)  Ni(Ai).

Case 1: g0  g. In this case, let ⇢i = minr{d0ir/dir} be
defined for user i. Clearly,

⇢i = minr{d0ir/dir}  d0ir⇤i /dir
⇤
i
 1 ,

where r⇤i is the dominant resource of user i. We then have

Gi(A
0
i) =

P
l Gil(A0

il) = ⇢ig
0  g = Gi(Ai) .

Case 2: g0 > g. For all user j 6= i, when user i truthfully
reports its demand, let Gj(Aj ,d0

j) be the global dominant
share of user j w.r.t. its claimed demand d0

j , i.e.,

Gj(Aj ,d0
j) =

P
l minr{gjld0jr/d0jr} =

P
l gjl = g .

Similarly, when user i misreports, let Gj(A0
j ,d

0
j) be the global

dominant share of user j w.r.t. its claimed demand d0
j , i.e.,

Gj(A0
j ,d

0
j) =

P
l minr{g0jld0jr/d0jr} =

P
l g

0
jl = g0 ,

As a result, Gj(A0
j ,d

0
j) > Gj(Aj ,d0

j), 8j 6= i. We must have
Gi(A0

i) < Gi(Ai). Otherwise, allocation A0 is preferred over

A by all users and is strictly preferred by user j 6= i w.r.t. the
claimed demands (d0

�i,di). This contradicts the Pareto op-
timality of DRFH allocation. (Recall that allocation A is an
DRFH allocation given the claimed demands (d0

�i,di). )

C. Analysis of Important Properties
In addition to the three essential properties shown in the

previous subsection, DRFH also provides a number of other
important properties. First, since DRFH generalizes DRF to
heterogeneous environments, it naturally reduces to the DRF
allocation when there is only one server contained in the
system, where the global dominant resource defined in DRFH
is exactly the same as the dominant resource defined in DRF.

Proposition 4 (Single-server DRF): The DRFH leads to the
same allocation as DRF when all resources are concentrated
in one server.

Next, by definition, we see that both single-resource fairness
and bottleneck fairness trivially hold for the DRFH allocation.
We hence omit the proofs of the following two propositions.

Proposition 5 (Single-resource fairness): The DRFH allo-
cation satisfies single-resource fairness.

Proposition 6 (Bottleneck fairness): The DRFH allocation
satisfies bottleneck fairness.

Finally, we see that when a user leaves the system and
relinquishes all its allocations, the remaining users will not
see any reduction of the number of tasks scheduled. Formally,

Proposition 7 (Population monotonicity): The DRFH
allocation satisfies population monotonicity.

Proof: Let A be the resulting DRFH allocation, then for all
user i and server l, Ail = gildi and Gi(Ai) = g, where {gil}
and g solve (6). Suppose user j leaves the system, changing the
resulting DRFH allocation to A0. By DRFH, for all user i 6= j
and server l, we have A0

il = g0ildi and Gi(A0
i) = g0, where

{g0il}i 6=j and g0 solve the following optimization problem:

maxg0
il,i 6=j g0

s.t.
P

i 6=j g
0
ildir  clr, 8l 2 S, r 2 R ,

P
l2U g0il = g0, 8i 6= j .

(7)

To show Ni(A0
i) � Ni(Ai) for all user i 6= j, it is

equivalent to prove Gi(A0
i) � Gi(Ai). It is easy to verify

that g, {gil}i 6=j satisfy all the constraints of (7) and are
hence feasible to (7). As a result, g0 � g. This is exactly
Gi(A0

i) � Gi(Ai).

D. Discussions of Sharing Incentive
In addition to the aforementioned properties, sharing in-

centive is another important allocation property that has been
frequently mentioned in the literature, e.g., [6], [7], [8], [10],
[25]. It ensures that every user’s allocation is at least as good
as that obtained by evenly partitioning the entire resource pool.
When the system contains only a single server, this property
is well defined, as evenly dividing the server’s resources leads
to a unique allocation. However, for the system containing
multiple heterogeneous servers, there is an infinite number of
ways to evenly divide the resource pool, and it is unclear which
one should be chosen as the benchmark for comparison. For
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example, in Fig. 1, two users share the system with 14 CPUs
and 14 GB memory in total. The following two allocations
both allocate each user 7 CPUs and 7 GB memory: (a) User
1 is allocated 1/2 resources of server 1 and 1/2 resources of
server 2, while user 2 receives the rest; (b) user 1 is allocated
(1.5 CPUs, 5.5 GB) in server 1 and (5.5 CPUs, 1.5 GB) in
server 2, while user 2 receives the rest.

One might think that allocation (a) is a more reasonable
benchmark as it allows all n users to have an equal share
of every server, each receiving 1/n of the server’s resources.
However, this benchmark has little practical meaning: With
a large n, each user will only receive a small fraction of
resources on each server, which likely cannot be utilized by
any computing task. In other words, having a small slice
of resources in each server is essentially meaningless. We
therefore consider another benchmark that is more practical.

Since cloud systems are constructed by pooling hundreds
of thousands of servers [1], [2], the number of users is
typically far smaller than the number of servers [6], [25],
i.e., k � n. An equal division would allocate to each user
k/n servers drawn from the same distribution of the system’s
server configurations. For each user, the allocated k/n servers
are then treated as a dedicated cloud that is exclusive to the
user. The number of tasks scheduled on this dedicated cloud
is then used as a benchmark and is compared to the number of
tasks scheduled in the original cloud computing system shared
with all other users. We will evaluate such a sharing incentive
property via trace-driven simulations in Sec. VI.

V. PRACTICAL CONSIDERATIONS

So far, all our discussions are based on several assumptions
that may not be the case in a real-world system. In this section,
we relax these assumptions and discuss how DRFH can be
implemented in practice.

A. Weighted Users with a Finite Number of Tasks
In the previous sections, users are assumed to be assigned

equal weights and have infinite computing demands. Both
assumptions can be easily removed with some minor modi-
fications of DRFH.

When users are assigned uneven weights, let wi be the
weight associated with user i. DRFH seeks an allocation
that achieves the weighted max-min fairness across users.
Specifically, we maximize the minimum normalized global
dominant share (w.r.t the weight) of all users under the same
resource constraints as in (4), i.e.,

max

A
min

i2U
Gi(Ai)/wi

s.t.
X

i2U

Ailr  clr, 8l 2 S, r 2 R .

When users have a finite number of tasks, the DRFH allo-
cation is computed iteratively. In each round, DRFH increases
the global dominant share allocated to all active users, until
one of them has all its tasks scheduled, after which the user
becomes inactive and will no longer be considered in the
following allocation rounds. DRFH then starts a new iteration
and repeats the allocation process above, until no user is active

or no more resources could be allocated to users. Our analysis
presented in Sec. IV also extends to weighted users with a
finite number of tasks.

B. Scheduling Tasks as Entities
Until now, we have assumed that all tasks are divisible.

In a real-world system, however, fractional tasks may not
be accepted. To schedule tasks as entities, one can apply
progressive filling as a simple implementation of DRFH. That
is, whenever there is a scheduling opportunity, the scheduler
always accommodates the user with the lowest global dom-
inant share. To do this, it picks the first server that fits the
user’s task. While this First-Fit algorithm offers a fairly good
approximation to DRFH, we propose another simple heuristic
that can lead to a better allocation with higher resource
utilization.

Similar to First-Fit, the heuristic also chooses user i with
the lowest global dominant share to serve. However, instead
of randomly picking a server, the heuristic chooses the “best”
one that most suitably matches user i’s tasks, and is hence
referred to as the Best-Fit DRFH. Specifically, for user i with
resource demand vector Di = (Di1, . . . , Dim)

T and a server
l with available resource vector ¯cl = (c̄l1, . . . , c̄lm)

T , where
c̄lr is the share of resource r remaining available in server
l, we define the following heuristic function to measure the
task’s fitness for the server:

H(i, l) = kDi/Di1 � ¯cl/c̄l1k1 , (8)

where k·k1 is the L1-norm. Intuitively, the smaller H(i, l),
the more similar the resource demand vector Di appears to
the server’s available resource vector ¯cl, and the better fit user
i’s task is for server l. For example, a CPU-heavy task is more
suitable to run in a server with more available CPU resources.
Best-Fit DRFH schedules user i’s tasks to server l with the
least H(i, l). We evaluate both First-Fit DRFH and Best-Fit
DRFH via trace-driven simulations in the next section.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of DRFH via
extensive simulations driven by Google cluster-usage traces
[3]. The traces contain resource demand/usage information of
over 900 users (i.e., Google services and engineers) on a clus-
ter of 12K servers. The server configurations are summarized
in Table I, where the CPUs and memory of each server are
normalized so that the maximum server is 1. Each user submits
computing jobs, divided into a number of tasks, each requiring
a set of resources (i.e., CPU and memory). From the traces,
we extract the computing demand information — the required
amount of resources and task running time — and use it as
the demand input of the allocation algorithms for evaluation.

Dynamic allocation: Our first evaluation focuses on the
allocation fairness of the proposed Best-Fit DRFH when users
dynamically join and depart the system. We simulate 3 users
submitting tasks with different resource requirements to a
small cluster of 100 servers. The server configurations are
randomly drawn from the distribution of Google cluster servers
in Table I, leading to a resource pool containing 52.75 CPU
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Fig. 4. CPU, memory, and global dominant share for three users on a 100-
server system with 52.75 CPU units and 51.32 memory units in total.

TABLE II
RESOURCE UTILIZATION OF THE SLOTS SCHEDULER WITH DIFFERENT

SLOT SIZES.
Number of Slots CPU Utilization Memory Utilization

10 per maximum server 35.1% 23.4%
12 per maximum server 42.2% 27.4%
14 per maximum server 43.9% 28.0%
16 per maximum server 45.4% 24.2%
20 per maximum server 40.6% 20.0%

units and 51.32 memory units in total. User 1 joins the system
at the beginning, requiring 0.2 CPU and 0.3 memory for each
of its task. As shown in Fig. 4, since only user 1 is active at the
beginning, it is allocated 40% CPU share and 62% memory
share. This allocation continues until 200 s, at which time
user 2 joins and submits CPU-heavy tasks, each requiring 0.5
CPU and 0.1 memory. Both users now compete for computing
resources, leading to a DRFH allocation in which both users
receive 44% global dominant share. At 500 s, user 3 starts
to submit memory-intensive tasks, each requiring 0.1 CPU
and 0.3 memory. The algorithm now allocates the same global
dominant share of 26% to all three users until user 1 finishes
its tasks and departs at 1080 s. After that, only users 2 and
3 share the system, each receiving the same share on their
global dominant resources. A similar process repeats until all
users finish their tasks. Throughout the simulation, we see that
the Best-Fit DRFH algorithm precisely achieves the DRFH
allocation at all times.

Resource utilization: We next evaluate the resource uti-
lization of the proposed Best-Fit DRFH algorithm. We take
the 24-hour computing demand data from the Google traces
and simulate it on a smaller cloud computing system of
2,000 servers so that fairness becomes relevant. The server
configurations are randomly drawn from the distribution of
Google cluster servers in Table I. We compare Best-Fit DRFH
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Fig. 5. Time series of CPU and memory utilization.
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Fig. 6. DRFH improvements on job completion times over Slots scheduler.

with two other benchmarks, the traditional Slots schedulers
that schedules tasks onto slots of servers (e.g., Hadoop Fair
Scheduler [23]), and the First-Fit DRFH that chooses the
first server that fits the task. For the former, we try different
slot sizes and chooses the one with the highest CPU and
memory utilization. Table II summarizes our observations,
where dividing the maximum server (1 CPU and 1 memory in
Table I) into 14 slots leads to the highest overall utilization.

Fig. 5 depicts the time series of CPU and memory utilization
of the three algorithms. We see that the two DRFH implemen-
tations significantly outperform the traditional Slots scheduler
with much higher resource utilization, mainly because the
latter ignores the heterogeneity of both servers and workload.
This observation is consistent with findings in the homoge-
neous environment where all servers are of the same hardware
configurations [6]. As for the DRFH implementations, we
see that Best-Fit DRFH leads to uniformly higher resource
utilization than the First-Fit alternative at all times.

The high resource utilization of Best-Fit DRFH naturally
translates to shorter job completion times shown in Fig. 6a,
where the CDFs of job completion times for both Best-Fit
DRFH and Slots scheduler are depicted. Fig. 6b offers a more
detailed breakdown, where jobs are classified into 5 categories
based on the number of its computing tasks, and for each
category, the mean completion time reduction is computed.
While DRFH shows no improvement over Slots scheduler
for small jobs, a significant completion time reduction has
been observed for those containing more tasks. Generally,
the larger the job is, the more improvement one may expect.
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users running on dedicated clouds
(DCs) and the shared cloud (SC).
Each circle’s radius is logarithmic to
the number of tasks submitted.

Similar observations have also been found in the homogeneous
environments [6].

Fig. 6 does not account for partially completed jobs and
focuses only on those having all tasks finished in both Best-
Fit and Slots. As a complementary study, Fig. 7 computes the
task completion ratio — the number of tasks completed over
the number of tasks submitted — for every user using Best-
Fit DRFH and Slots schedulers, respectively. The radius of
the circle is scaled logarithmically to the number of tasks the
user submitted. We see that Best-Fit DRFH leads to higher
task completion ratio for almost all users. Around 20% users
have all their tasks completed under Best-Fit DRFH but do
not under Slots.

Sharing incentive: Our final evaluation is on the sharing
incentive property of DRFH. As mentioned in Sec. IV-D,
for each user, we run its computing tasks on a dedicated
cloud (DC) that is a proportional subset of the original shared
cloud (SC). We then compare the task completion ratio in DC
with that obtained in SC. Fig. 8 illustrates the results. While
DRFH does not guarantee 100% sharing incentive for all users,
it benefits most of them by pooling their DCs together. In
particular, only 2% users see fewer tasks finished in the shared
environment. Even for these users, the task completion ratio
decreases only slightly, as can be seen from Fig. 8.

VII. CONCLUDING REMARKS

In this paper, we study a multi-resource allocation problem
in a heterogeneous cloud computing system where the resource
pool is composed of a large number of servers with differ-
ent configurations in terms of resources such as processing,
memory, and storage. The proposed multi-resource allocation
mechanism, known as DRFH, equalizes the global dominant
share allocated to each user, and hence generalizes the DRF
allocation from a single server to multiple heterogeneous
servers. We analyze DRFH and show that it retains almost
all desirable properties that DRF provides in the single-server
scenario. Notably, DRFH is envy-free, Pareto optimal, and
truthful. We design a Best-Fit heuristic that implements DRFH
in a real-world system. Our large-scale simulations driven by
Google cluster traces show that, compared to the traditional
single-resource abstraction such as a slot scheduler, DRFH
achieves significant improvements in resource utilization, lead-
ing to much shorter job completion times.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[2] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozuch, “Hetero-
geneity and dynamicity of clouds at scale: Google trace analysis,” in
Proc. ACM SoCC, 2012.

[3] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google Cluster-Usage
Traces,” http://code.google.com/p/googleclusterdata/.

[4] “Apache Hadoop,” http://hadoop.apache.org.
[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

distributed data-parallel programs from sequential building blocks,” in
Proc. EuroSys, 2007.

[6] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proc. USENIX NSDI, 2011.

[7] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework,” in Proc. IEEE
INFOCOM, 2012.

[8] D. Dolev, D. Feitelson, J. Halpern, R. Kupferman, and N. Linial, “No
justified complaints: On fair sharing of multiple resources,” in Proc.
ACM ITCS, 2012.

[9] A. Gutman and N. Nisan, “Fair allocation without trade,” in Proc.
AAMAS, 2012.

[10] D. Parkes, A. Procaccia, and N. Shah, “Beyond dominant resource
fairness: Extensions, limitations, and indivisibilities,” in Proc. ACM EC,
2012.

[11] S. Baruah, J. Gehrke, and C. Plaxton, “Fast scheduling of periodic tasks
on multiple resources,” in Proc. IEEE IPPS, 1995.

[12] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel, “Proportionate progress:
A notion of fairness in resource allocation,” Algorithmica, vol. 15, no. 6,
pp. 600–625, 1996.

[13] F. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: Shadow prices, proportional fairness and stability,” J. Oper.
Res. Soc., vol. 49, no. 3, pp. 237–252, 1998.

[14] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 556–567,
2000.
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