
District: Embracing Local Markets in Truthful
Spectrum Double Auctions

Wei Wang, Baochun Li and Ben Liang
Department of Electrical and Computer Engineering

University of Toronto

Abstract—Market-driven spectrum auctions offer an efficient
way to improve spectrum utilization by transferring unused
or under-used spectrum from its primary license holder to
spectrum-deficient secondary users. Such a spectrum market
exhibits strong locality in two aspects: 1) that spectrum is a
local resource and can only be traded to users within the license
area, and 2) that holders can partition the entire license areas
and sell any pieces in the market. We design a spectrum double
auction that incorporates such locality in spectrum markets,
while keeping the auction economically robust and computation-
ally efficient. Our designs in District are tailored to cases with
and without knowledge of bid distributions. An auctioneer can
start from one design without any a priori information, and
then switch to the other alternative after accumulating sufficient
distribution knowledge. Complementary simulation studies show
that spectrum utilization can be significantly improved when
distribution information is available.

I. INTRODUCTION
The recent explosive growth of wireless networks, with their

ever-growing demand for radio spectrum, has exacerbated the
problem of spectrum scarcity. Such scarcity, however, is not an
outcome of exhausted physical spectrum, but a result of ineffi-
cient channel utilization due to existing policies that channels
are licensed to their authorized holders (typically those who
win government auctions of spectrum), and unlicensed access
is not allowed even if the channel is not used.
In order to utilize such idle channels and to improve their

utilization, it is critical to design sufficient incentives that
encourage primary license holders to allow other spectrum-
deficient users to access these channels. It is intuitive to
observe that under-used channels have values that can be
efficiently determined by a market, governed by spectrum auc-
tions. If designed well, a spectrum auction offers an efficient
way to create a market: it attracts both license holders and
wireless users to join, and to either buy or sell idle channels in
the market. Once a transaction is conducted, the seller (license
holder) earns extra income by leasing unused channels to the
buyer (wireless user), who pays to obtain channel access.
Yet, it is important to point out that transactions take place

in secondary markets where spectrum is leased in a local
geographical region. Unlike physical commodities that can be
traded all over the world, spectrum is a local resource and
is available only in local markets — only within the license
region can a user be able to access the channel.
Practical spectrum markets, such as SpecEx [1], take ad-

vantage of this locality and provide flexible selling options to
attract participation. They allow license holders to partition
their license areas and decide which pieces to sell and which
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Fig. 1: A license holder partitions its entire license area into
three regions, A, B and C. It can sell any of the pieces in the
local spectrum market.

pieces to reserve. As suggested by the FCC, the holder uploads
her decisions — the vacant spectrum as well as the associated
geographical area — to an Internet database [2]. An unlicensed
wireless device then queries the database to obtain a list of
channels that can be used at the device’s location. Fig. 1
illustrates an example, where the license holder divides the
entire license area into three regions and can sell any of the
pieces to wireless users.
Unfortunately, market locality, as an inherent characteristic

of spectrum markets in practice, is seldom mentioned in the
literature. Most existing spectrum auctions [3], [4], [5], [6],
[7], [8], [9], [10] are designed based on global markets, where
channels are globally accessible to all users, and have to be
traded as a whole in the entire license area. This impractical
assumption seriously degrades the flexibility of selling options,
leaving license holders unable or unwilling to join the market.
It is typical for channels to be only available to wireless users
in limited local regions, rather than the entire license area of
a license holder. Wireless users who are outside of the limited
local regions are not able to access these available channels.
For example, in Fig. 1, a channel may be vacant in region A,
yet utilized by its license holder in region B and C. In global
markets, however, a license holder has to decide if it is able to
make channels vacant in its entire license area, and partially
available channels that are only vacant in some of the regions
are not ready for sale.
To bridge such a gap between existing literature and practi-

cal limitations of geographical spectrum locality, in this paper,
we present District, a set of new spectrum double auction
mechanisms that are specifically designed for local spectrum
markets. With District, a license holder can freely partition its
entire license area and either sell or reserve spectrum in local
markets, based on their own requirements. Moreover, District
allows the same channel to be used by multiple wireless users
if no interference occurs.
We believe that it is crucial for District to maintain basic



properties of economic robustness (truthfulness in particular).
As a matter of fact, introducing the notion of local markets
imposes non-trivial challenges when economic robustness is
to be maintained. Most existing spectrum double auctions [4],
[6], [7] are based on McAfee’s design [11], which is for
global markets only. Their direct extensions, unfortunately, is
either not feasible or leading to fairly inefficient outcomes. To
maintain economic robustness, District is designed to work ef-
fectively in cases with and without a priori information about
bid distributions. In the former case, District extends Myer-
son’s virtual valuations [12] to double auctions and designs
a market that price discriminates. In the latter case, District
is designed to price uniformly. Both designs are proved to be
computationally efficient and economically robust. Extensive
simulation studies show that District substantially improves
spectrum utilization with local markets, and is scalable to large
networks.
The remainder of this paper is organized as follows. In

Sec. II, we present the system model and formulate the
problem considered in this paper. In Sec. III, we show that
simple extensions to existing spectrum auction designs are not
feasible. Sec. V and Sec. IV formally present the two designs
of District in cases without and with distribution information,
respectively. Extensive simulation results are given in Sec. VI.
Sec. VII reviews related work and Sec. VIII concludes the
paper.

II. SYSTEM MODEL

In a practical spectrum market (e.g., SpecEx), license hold-
ers sell the rights to access their under-used channels, while
wireless users attempt to buy channel access at affordable
prices. This can be modeled by a double auction with one
auctioneer. In each round, every seller has one channel for
sale in an indicated license area — called the local market —
in which the channel is vacant, e.g., region A in Fig. 1. Every
seller reports the channel, the associated local market, and an
ask to the auctioneer, while every buyer requests to buy one
channel by submitting a bid to the auctioneer. All bids and asks
are submitted in a sealed manner — no one has access to any
information about the others’ submissions. After collecting all
submissions, the auctioneer computes the best set of channel
transactions to clear the market. The main challenge is to
establish proper payoff schemes and to optimally match buyers
and sellers, with the constraint that all channel transactions
must be made within local markets, and that no interfering
buyers are assigned to the same seller. Fig. 2 illustrates an
example of such a double auction with multiple spectrum
sellers and buyers in different local markets. Note that the
local markets are drawn as circles only for illustration. In fact,
they can have any shape and may not even be contiguous in
general. We assume there are M participating license holders
and N wireless users.

A. Modelling Channel Transactions within Local Markets
Channels should be assigned without introducing interfer-

ence. We use a conflict graph G = (V,E) to represent the
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Fig. 2: A spectrum double auction with 7 buyers and 5 sellers.
An auctioneer performs the auction among sellers and buyers.
Sellers can partition their license areas and sell any pieces of
their spectrum in the local market. All license areas for sale
are circular in this figure, but can have any shape in general.
The dotted lines indicate interfering buyers.

interference relation among buyers, where V is the collection
of buyers and E is the collection of edges, such that two buyers
share an edge if they are in conflict with each other and cannot
use the same channel. In our example shown in Fig. 2, seven
conflicting pairs of buyers are illustrated with dotted lines.
We say seller m and buyer n are tradable if n is within

m’s local market so that it can trade with m. The region of
the local market is defined by m. The set of tradable sellers
of buyer n is denoted as Cn. For example, in Fig. 2, B1’s
tradable sellers are S1 and S5, i.e., CB1 = {S1, S5}.
A channel assignment scheme is feasible if all transactions

are between tradable sellers and buyers, and no two buyers
sharing an edge in G are assigned to the same seller. A
feasible assignment can be equivalently converted to a
graph coloring scheme by treating Cn as the available
colors that can be used to color a node n in G. In this
sense, a buyer n is assigned to a tradable seller m if
node n ∈ V is colored by m ∈ Cn, and vice versa. As
an example, one feasible channel assignment in Fig. 2 is
{(B1, S1), (B2, S4), (B4, S5), (B5, S2), (B6, S3), (B7, S3)}.
We say a buyer n (a seller m) is a winner if node n is
colored (color m is used) in G; otherwise, it is a loser. For
notational convenience, we integrate the available colors of
nodes into the conflict graph and denote it by G = (V,E,C),
where C = {Cn|n ∈ V }.

B. Spectrum Double Auction

With the knowledge of G, the auctioneer collects asks (bids)
from the sellers (buyers). Denote by am and bn the ask and
the bid submitted by seller m and buyer n, respectively. Every
sellerm has a true ask atm, a price that it believes its channel is
worth. Every buyer n also has a true bid btn, a price quantifying
its economic benefit of getting a channel. atm (btn) is the private
information of seller m (buyer n), and is unknown to anyone
else (including the auctioneer). Note that the seller m may
submit a different value other than the true ask (i.e., am "=



atm), as long as it believes that this is more beneficial. The
same may also be adopted by buyer n (i.e., bn "= btn).
After collecting all asks a = (a1, . . . , aM ) and bids

b = (b1, . . . , bN ), the auctioneer clears the market by com-
puting the assignment of channels and winner payoffs. The
assignment is represented by the coloring of conflict graph
G, as mentioned above. Every winning seller m is paid
pm for leasing a channel, while every winning buyer n is
charged cn, both by the auctioneer. Therefore, the payoffs
consist of both the payments p = (p1, . . . , pM ) to sellers
and the charges c = (c1, . . . , cN ) to buyers. Then, for each
winning pair, the utility of seller m is us

m = pm − atm,
and that of buyer n is ub

n = btn − cn. For all losing sellers
and buyers, the payment, charges, and corresponding utilities
are zero. Also, the auctioneer gains a revenue, defined as
the difference between the total charges and total payments,
γ =

∑

n cn −
∑

m pm.

C. Economic Requirements
To encourage participation, an auction should satisfy some

basic economic requirements [13] as defined below.
1) Individual Rationality: An auction is individually ra-

tional if no winning buyer is charged higher than its bid
(cn ≤ bn), and no winning seller is paid less than its ask
(pm ≥ am). With this property, participants will always benefit
by joining the auction.
2) Budget Balance: To make the auction self-sustained

without any external subsidies, the generated revenue is re-
quired to be non-negative. Formally, an auction has ex post
budget balance if γ ≥ 0. A weaker requirement is ex ante
budget balance, where the revenue is non-negative in expec-
tation, i.e., Eγ ≥ 0.
3) Truthfulness: Selfish participants can strategically bid

to manipulate the market and obtain favorable outcomes by
hurting the others. To avoid such manipulation, we should de-
sign a mechanism to ensure that all participants bid truthfully.
Formally, an auction is truthful if no one can expect more
benefit by cheating. That is, for all n (m), bn = btn (am = atm)
is always the best bid (ask) with the maximum utility ub

n (us
m),

no matter how other participants behave.
We say an auction is economically robust [4], [7] if it is

individually rational, budget balanced (either ex post or ex
ante), and truthful.

D. Problem Definition
The motivation for introducing a spectrum market is to

improve channel utilization. We therefore prefer facilitating
as many wireless users as possible to access idle channels.
For an auction mechanism M, we define auction efficiency as
the proportion of winning buyers:

ηM =
Nw

N
, (1)

where Nw is the number of winning buyers.
With input G = (V,E,C), asks a and bids b, an auction

mechanism M outputs payments p, charges c and a colored
graph G. Ideally, we would like to find an economically robust
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Fig. 3: A simple extension to TRUST [4].

auction mechanism that also maximizes the auction efficiency.
However, the impossibility theorem [14] dictates that maximal
auction efficiency is incompatible with economic robustness.
In this work, we view economic robustness as a hard constraint
to ensure a well-behaving spectrum market. Hence, we are
concerned with the following optimization problem:

max
M

ηM ;

s.t. M is economically robust.
(2)

The proposed auction mechanisms in District are shown
to be economically robust while maintaining high auction
efficiency.

III. DESIGNING AUCTIONS FOR LOCAL MARKETS

To design auction mechanisms for local spectrum markets,
we begin by investigating into the possibility of extending
existing spectrum auctions based on global markets. We will
see in the following that simple extensions are either not
feasible or leading to fairly inefficient outcomes.
In single-sided auctions, only one side (either buyers or

sellers) has bidding strategies. VERITAS, proposed in [3],
is known as the first single-sided spectrum auction designed
to be truthful. However, it is shown that when extended to
double auctions the truthfulness no longer holds [4]. Similar
challenges also apply to [5], [9], and [10]. Therefore, such
extensions do not satisfy our requirement for economic ro-
bustness.
When double auctions are considered, there exist some

works in the literature on their designs in a global spectrum
market [4], [6], [7]. In [6] and [7], spectrum reuse is not
considered, and a complete conflict graph is assumed. Neither
of them is applicable to our system model.
In [4], an economically robust double auction design has

been proposed, referred to as TRUST, in a global spectrum
market. It is possible to propose a simple extension to TRUST
for local markets if the traded license areas are of some special
shape. For example, suppose all license areas are circular. As
shown in Fig. 3, we can partition the entire geographical region
into hexagonal cells, each with edge length r/2, where r is the
minimum radius of all circular license areas. Then, it is always
feasible for a buyer to trade with any seller whose license area
is centered within the same cell of the buyer. In other words,
within one cell, the market is global. The proposed extension
applies TRUST in every cell to cover the whole market.



However, such an extension is problematic. First, the traded
areas need to be of some special shapes, which is usually not
the case in practice. Second, buyers are only allowed to trade
with sellers whose area centers are within the same cell. As a
result, many originally feasible transactions are blocked. For
example, in Fig. 3, buyer B2 cannot trade with seller S4 even
if B2 is within S4’s license area. For this reason, the auction
efficiency can be fairly low, especially when the cell edge is
short. We later verify this by our numerical results, shown in
Sec. VI.
The failure to simply extend auction mechanisms designed

for global markets indicates that a new design tailored to local
markets is required. In this paper, we present District, a set of
auction mechanisms that are specifically designed to address
unique challenges imposed by market locality. We present two
alternative designs, District-D and District-U, for the cases
with and without a priori knowledge on bid distributions,
respectively. An auctioneer without any distribution knowledge
can start with District-U for a moderate level of auction
efficiency, and then switch to District-D to pursue a higher
level of efficiency after collecting sufficient information about
bid distributions.

IV. District-U: AUCTION WITH UNIFORM PRICING

District-U adopts uniform pricing policies, such that all
buyers (sellers) are charged (paid) exactly the same if they win,
without a priori knowledge on bids or asks. The basic idea is
trade reduction: non-profitable trades among low-bid buyers
and high-ask sellers are explicitly reduced, which is critical in
maintaining ex post budget balance. At a price, however, the
auction efficiency is limited due to the reduction of feasible
transaction pairs.

A. Preliminaries
Without loss of generality, we assume bids and asks are

sorted, from the most competitive to the least competitive:
b1 ≥ b2 ≥ . . . ≥ bN ≥ 0 ; (3)
0 ≤ a1 ≤ a2 ≤ . . . ≤ aM . (4)

For convenience, we introduce the following notations.
• GM ′,N ′ : A subgraph of G = (V,E,C) with only the
first M ′ colors (sellers) and the first N ′ nodes (buyers).
That is, GM ′,N ′ = (V ′, E′, C ′) where V ′ = {1, . . . , N ′}
and C ′ = {C ′

1, . . . , C
′
N} where C ′

j = Cj ∩ {1, . . . ,M ′}.
• GraphColoring(G) : A graph coloring algorithm return-
ing a colored G. District-U accepts only a deterministic
graph coloring algorithm with no randomness introduced.

B. Mechanism Design
To achieve trade reduction, District-U first decides how

many buyers to admit. To this end, we require the auctioneer
to pick a predefined N ′, announcing that only the top N ′

buyers are admitted to continue with the auction, while the
rest are dropped. The auctioneer then computes the set of M ′

sellers admitted, and subsequently determines the winners and
payoffs. The details are given in Algorithm 1.

Algorithm 1 District-U for a predefined N ′

1. M ′ = argmax
0≤i<M

ai+1 ≤ bN ′+1

2. GraphColoring(GM ′,N ′)
3. Seller m trades with buyer n if node n is colored by m
4. for each winning buyer n do
5. cn = bN ′+1

6. end for
7. for each winning seller m do
8. pm = aM ′+1

9. end for
10. return transactions and payoffs (c and p).

C. Economic Properties
District-U is economically robust for any deterministic

graph coloring algorithm. To see this, we first prove that it is
bid monotonic with critical payoffs, which leads to truthfulness
and individual rationality [13]. We then prove that it is also
ex post budget balanced.
Proposition 1: District-U is bid monotonic. That is, for

every buyer n (seller m), if by submitting bn (am) it wins,
then by submitting b′n > bn (a′m < am) it also wins, given
the others’ submissions remain unchanged.

Proof: Suppose buyer n wins by bidding bn. Then
bN ′+1 ≤ bn < b′n. Hence, by bidding b′n, n remains among the
top N ′ buyers. It will be admitted again, and GM ′,N ′ remains
unchanged. With the same GM ′,N ′ as the input, the output of
GraphColoring remains the same (because it is deterministic),
which implies that n wins again. The proof for seller m is
similar.
Definition 1: For winning buyer n (seller m), we say bn

(am) is critical if n (m) wins by submitting b′n > bn (a′m <
am) and loses by submitting b′n < bn (a′m > am), given the
others’ submissions remain unchanged.
Proposition 2: In District-U, bN ′+1 (aM ′+1) is critical for

winning buyer n (seller m).
Proof: For winning buyer n, it will remain in the set of

top N ′ buyers as long as it bids bn > bN ′+1, which ensures it
to be admitted and win out. However, if n bids bn < bN ′+1,
it will be replaced by buyer N ′ + 1 and lose.
For winning seller m, it will remain in the set of top M ′

sellers as long as it asks am < aM ′+1, which ensures it to be
admitted and win out. However, suppose m asks am > aM ′+1

and wins. Then there must be at least one seller m′ satisfying
am ≤ am′ ≤ bN ′+1, which implies that aM ′+1 < am′ ≤
bN ′+1. But this is impossible due to the definition ofM ′ (line 1
of Algorithm 1). Therefore m loses.
As shown in [13], a bid monotonic auction is truthful and

individually rational if it always charges critical bids from
buyers and pays critical asks to sellers. Therefore, Proposi-
tions 1 and 2 are sufficient for District-U to be truthful and
individually rational.
Proposition 3: District-U is ex post budget balanced.
Proof: For every transaction made between seller m and

buyer n, pm = aM ′+1 ≤ bN ′+1 = cn. Since the number



of winning buyers is greater than or equal to the number of
winning sellers, we have γ =

∑

n cn −
∑

m pm ≥ 0.
Hence, we conclude as the follows.
Theorem 1: District-U is economically robust.

D. Performance and Complexity
The performance of District-U is dominated by the prede-

fined N ′ and the adopted graph coloring algorithm.
On the one hand, increasing N ′ admits more buyers to join,

which potentially improves the auction efficiency. On the other
hand, increasing N ′ results in a lower cut-off bid bN ′+1 and a
lower cut-off ask aM ′+1. Therefore, fewer sellers are admitted,
which hurts the auction efficiency. It is worth mentioning
that, if the auctioneer were to enumerate N ′ in an attempt
to adaptively optimize the auction efficiency, that would break
bid monotonicity, making the auction untruthful. Therefore, a
fixed N ′ must be chosen a priori. Without any statistics about
the possible bids and asks, one reasonable choice may be the
midpoint, i.e., N ′ = 'N/2(. We later present numerical data
that shows how the auction efficiency varies with different
choices of N ′.
As for the graph coloring algorithm, it not only affects

the auction efficiency, but also dominates the computational
complexity. Fortunately, District-U imposes no restrictions
on the algorithm except being deterministic. Therefore, any
coloring algorithm with high computational efficiency could
be directly adopted by District-U.
In conclusion, District-U is designed as a suitable starting

mechanism for auctioneers without a priori information on
bids or asks. Its auction efficiency is upper bounded by
η̄ = N ′/N due to the trade reduction nature. We will see
in the following that, after accumulating sufficient bid and
ask information, the auctioneer can enjoy higher efficiency by
switching to District-D.

V. District-D: AUCTION WITH DISCRIMINATORY PRICING
When bid and ask distributions are available, one can

expect higher efficiency via District-D, an auction that price
discriminates (i.e., winners have different payoffs). We begin
by using Myerson’s virtual valuations [12] to characterize the
expected revenue of a truthful spectrum auction M. We show
that an economically robust M is equivalent to a weighted
graph coloring with a non-negative expected sum weight. We
design District-D based on this and show that the design is
computationally efficient.

A. Preliminaries
For every buyer n, denote its bid distribution function by

F b
n(·) and the corresponding density function by f b

n(·). The
functions F s

m(·) and fs
m(·) are similarly defined for seller m.

Since M is designed to be truthful, we do not discriminate
the true bid (ask) and the submitted bid (ask) in the following
context.
In [12], Myerson defines virtual valuations for buyers in a

single-sided auction. We extend this idea to double auctions
and apply it to our design. Formally, we define ψm(am) and

φn(bn) as the virtual valuations of seller m asking for am and
buyer n bidding bn, respectively, where

ψm(am) = am +
F s
m(am)

fs
m(am)

,

φn(bn) = bn −
1− F b

n(bn)

f b
n(bn)

.

We assume regular distributions [12], i.e., all φn(·) and ψm(·)
are increasing functions. Let v = (a1, . . . , aM , b1, . . . , bN ) be
the vector of submitted asks and bids. Denote by γM(v, G)
the revenue of auction M with submissions v and conflict
graph G as the input. When there is no confusion, we simply
write γM(v, G) as γ(v). The following lemma shows that
the expected revenue can be fully characterized by the virtual
valuations of all winners.
Lemma 1 (Extended Myerson): Given submissions v, let

xn(v) = 1 (ym(v) = 1) if n (m) wins, i.e., n is colored (m
is used for coloring), and xn(v) = 0 (ym(v) = 0) otherwise.
Then we have

Ev [γ(v)] = Ev

[

∑

n

φn(bn)xn(v)−
∑

m

ψm(am)ym(v)

]

.

(5)
The proof of the above lemma is similar to Myerson’s the-

orem [12] and is omitted here. Lemma 1 reveals an important
fact — dealing with virtual valuations is equivalent to dealing
with submitted bids (asks), in terms of the expected revenue.
Introducing φn(·) and ψm(·) greatly simplifies the auction

design problem. Suppose the conflict graph G is given. For a
buyer n bidding bn, we assign φn(bn) as the node weight to
node n. For seller m with ask am, we assign ψm(am) as the
color weight to color m. Then the right hand side of (5) can
be defined as the expected sum weight of a colored graph G.
Therefore, achieving ex ante budget balance is equivalent to
maintaining a non-negative expected sum weight. Furthermore,
we see that the expected revenue of a truthful mechanism can
be totally characterized by winners only, independent of their
payoffs. In other words, it suffices to focus only on winner-
determination designs (i.e., graph coloring) to achieve ex ante
budget balance.

B. Winner Determination

The first component of District-D is an algorithm for the
auctioneer to determine the winning buyers and sellers.
In the proposed heuristic algorithm, at every iteration, we

pick a feasible buyer-seller pair with the maximum marginal
revenue measured by virtual valuation. If the total revenue is
non-negative after adding the pair’s marginal revenue, the pair
is accepted. Otherwise, the pair is rejected and the algorithm
terminates. For convenience, we introduce the following nota-
tions before presenting the formal algorithm in Algorithm 2.

• T – Round-by-round record of transactions already made
by the winner determination algorithm.

• T b – Set of winning buyers associated with T .
• T s – Set of winning sellers associated with T .



• ∆m,n(T , am, bn) – Marginal revenue generated by as-
signing m to n, given T , m’s ask am, and n’s bid bn.
By (5), we have

∆m,n(T , am, bn) = φn(bn) · In/∈T b − ψm(am) · Im/∈T s ,
(6)

where Ix = 1 if condition x is satisfied, and Ix = 0
otherwise.

• MaxMarginalRev(T ) – Given T , calculate the trans-
action (m,n) with the maximum marginal revenue
among all feasible transactions, i.e., ∆m,n(T , am, bn) =
maxi,j ∆i,j(T , ai, bj). The return is (m,n,∆), where
∆ = −∞ if no transaction is feasible, and ∆ =
∆m,n(T , am, bn) otherwise.

Algorithm 2 District-D Winner Determination
1. Initialization: γ ← 0, T ← ∅, and stop ← false.
2. while stop = false do
3. (m,n,∆)← MaxMarginalRev(T )
4. if γ +∆ ≥ 0 then
5. γ ← γ +∆
6. Make a deal: Add (m,n) to T , color n by m
7. else
8. stop ← true
9. end if
10. end while
11. return T

Proposition 4: District-D is ex ante budget balanced.
Proof: Given conflict graph G, for all asks a and all

bids b, Algorithm 2 always colors G with a non-negative sum
weight. Hence E[γM(v, G)] ≥ 0. Since this statement holds
for every G, we conclude the proof.
Proposition 5: Algorithm 2 is bid monotonic.
Proof: We prove the buyer’s case by contradiction. Sup-

pose by submitting bn (Bid 1), n wins in the kth iteration of
Algorithm 2, while by submitting b′n > bn (Bid 2), n loses.
For convenience, for Bid 2, denote the other buyers’ bids

by b′j = bj , j "= n. Also denote ∆φn = φn(b′n) − φn(bn).
We see that ∆φn ≥ 0 due to the assumption of an increasing
φn(·). By (6), we have:

∆i,j(T , ai, b
′
j)−∆i,j(T , ai, bj) = ∆φn · Ij=n. (7)

Let (Tl, γl) and (T ′
l , γ′l) be the vectors containing the trans-

actions and total revenue after the lth iteration of Algorithm 2
with Bid 1 and Bid 2, respectively. Since buyer n does not
win in the first k − 1 iterations in either case, Tl = T ′

l , γl =
γ′l , l = 0, . . . , k−1 (T0 = T ′

0 = ∅, γ0 = γ′0 = 0). Now for any
feasible transaction pair (i, j) in the kth iteration with Bid 2,
its marginal revenue is

∆i,j(T
′
k−1, ai, b

′
j) = ∆i,j(Tk−1, ai, b

′
j)

= ∆i,j(Tk−1, ai, bj) +∆φnIj=n, (8)

where the second equality holds because of (7).
For Bid 1, suppose n trades with m in the kth iteration.

Then, (m,n) is of the maximum marginal revenue and main-
tains the budget balance, i.e.,

∆m,n(Tk−1, am, bn) = max
i,j

∆i,j(Tk−1, ai, bj), (9)

γk−1 +∆m,n(Tk−1, am, bn) ≥ 0 . (10)

Now inspect the marginal revenue of the same transaction
pair (m,n) in the kth round with Bid 2. Let i = m and j = n.
By (8), we have:

∆m,n(T
′
k−1, am, b′n) = ∆m,n(Tk−1, am, bn) +∆φn

= max
i,j

∆i,j(Tk−1, ai, bj) +∆φn

= max
i,j

∆i,j(T
′
k−1, ai, b

′
j) .

Here, the second equality holds because of (9); while the third
equality follows from the fact that ∆φn ≥ 0.
Thus, we conclude that (m,n) should also be selected in

the kth iteration in Bid 2, because it generates the maximum
marginal revenue and keeps the budget balanced. This contra-
dicts the assumption that n loses with Bid 2.
With a similar argument, we see that the statement also

holds for the seller’s case.
Next, we present the pricing mechanisms, which find the

critical bid and ask in a computationally efficient manner.

C. Buyer Pricing

By Definition 1, we see that the critical bid is the minimum
submission required to win. The basic idea is that to win the
auction, there is no need to bid as high as possible. Instead,
it suffices to win if one can do better than its competitors.
Following this idea, we first remove buyer n from bidding.
We then conduct winner determination to obtain the winners
list and see the winning competitors’ bids. Buyer n can win as
long as its bid is higher than the one submitted by the weakest
competitor. The detailed procedure is given in Algorithm 3.
For simplicity, let T be the transactions list generated by

Algorithm 2. Let Tl be the first l transactions in T , i.e., Tl =
{(i1, j1), . . . , (il, jl)}, where (il, jl) is the lth transaction made
between seller il and buyer jl. Finally, let T s

l be the winning
sellers associated with Tl.
Proposition 6: For every winning buyer n, Algorithm 3

returns its critical bid cn.
Proof: We first prove that n wins by bidding higher than

cn, i.e., bn > cn. It suffices to consider two cases:
Case 1: cn is finalized in the first k loops, i.e., cn = bln, l ≤

k. From Line 6, we see that φn(cn) = φn(bln) = φjl(bjl). For
n bidding bn > cn, the worst case is that it loses in the first
l − 1 rounds (l = 1, . . . , k). But in the lth round, φn(bn) >
φn(cn) = φjl(bjl), where the inequality holds since φn(x) is
increasing. This implies that selecting n would generate more
marginal revenue than selecting jl, i.e., ∆il,n(Tl−1, ail , bn) >
∆il,jl(Tl−1, ail , bjl). Notice that (il, jl) is of the maximum
marginal revenue when n is absent, we conclude that (il, n)
maximizes the marginal revenue. Therefore, n wins by being
selected to trade with il.



Algorithm 3 District-D Buyer Pricing for winning buyer n
1. Remove n and run Algorithm 2 to obtain the transaction
(seller, buyer) list T = {(i1, j1), . . . , (ik, jk)}.

2. Sn ← n’s tradable sellers, cn ←∞, and γ ← 0
3. for l = 1 to k do
4. γ ← γ +∆il,jl(Tl−1, ail , bjl)
5. if il ∈ Sn and jl conflicts with n then
6. bln ← φ−1

n (φjl(bjl))
7. cn ← min{cn, bln}
8. Sn ← Sn \ {il}
9. end if
10. end for
11. if Sn "= ∅ then
12. bk+1

n ← mini∈Sn
φ−1
n (ψi(ai)Ii/∈T s

k
− γ)

13. cn ← min{cn, bn}
14. end if
15. return cn

Case 2: cn = bk+1
n . For n bidding bn > cn, the worst

case is that it loses in the first k rounds. In this case,
φn(bn) > φn(cn) = φn(bk+1

n ) = mini∈Sn
ψi(ai)Ii/∈T s

k
− γ.

We assume ψm(am)Im/∈T s

k
= mini∈Sn

ψi(ai)Ii/∈T s

k
where

m ∈ Sn. In this case, seller m can still trade with n after
the first k rounds, with marginal revenue ∆m,n(Tk, am, bn) =
φn(bn) − ψm(am)Im/∈T s

k
> −γ. By doing so, the total

revenue remains non-negative, i.e., ∆m,n(Tk, am, bn)+γ > 0.
Therefore, n wins.
Next, if n bids less than cn (i.e., bn < cn), then it loses in the

first k rounds: φn(bn) < φn(bln) = φjl(bjl) for all l = 1, . . . , k
implies smaller marginal revenue, i.e., ∆il,n(Tl−1, ail , bn) <
∆il,jl(Tl−1, ail , bjl). Moreover, even if Sn "= ∅ after the first
k rounds, n cannot trade with any seller m ∈ Sn, for the total
revenue would be negative otherwise: ∆m,n(Tk, am, bn)+γ =
φn(bn)− (ψm(am)Im/∈T s

k
− γ) < 0. Therefore, n loses.

D. Seller Pricing

For sellers, the analysis on pricing is similar. Seller m only
needs to ask lower than its competitors to win the auction. We
first removem and run winner determination to see its winning
competitors’ asks. Sellerm can win by asking lower than these
competitors. The detailed procedure is given in Algorithm 4.
In Algorithm 4, we see that if m asks lower than alm cal-

culated in Line 6 (am < alm, l = 1, . . . , k), it wins. The worst
case for m is that it loses in the first l−1 rounds, but in the lth
round, ψm(am) < ψm(alm) = φjl(bjl)−∆il,jl(Tl−1, ail , bjl),
which implies that assigning (m, jl) would generate more
marginal revenue than assigning (il, jl):

∆m,jl(Tl−1, am, bjl) = φjl(bjl)− ψm(am)

> ∆il,jl(Tl−1, ail , bjl) .
(11)

Therefore m is selected instead of il.
It is possible that even with m absent, there remain tradable

buyers left unassigned. In other words, m does not have
competitors for these buyers. To trade with any of these buyers,

Algorithm 4 District-D Seller Pricing for winning seller m
1. Remove m and run Algorithm 2 to obtain the transaction
(seller, buyer) list T = {(i1, j1), . . . , (ik, jk)}.

2. Bm ← m’s tradable buyers, pm ← −∞, and γ ← 0
3. for l = 1 to k do
4. γ ← γ +∆il,jl(Tl−1, ail , bjl)
5. if jl is m’s tradable buyer then
6. alm ← ψ−1

m (φjl(bjl)−∆il,jl(Tl−1, ail , bjl))
7. pm ← max{pm, alm}
8. Bm ← Bm \ {jl}
9. end if
10. end for
11. if Bm "= ∅ then
12. ak+1

m ← maxj∈Bm
ψ−1
m (φj(bj) + γ)

13. pm ← max{pm, am}
14. end if
15. return pm

m only needs to keep the total revenue non-negative, which
is true if it asks for no more than ak+1

m calculated in Line 12.
On the other hand, if m asks for more than any alm, it loses

— it either cannot beat some competitors or cannot maintain
the budget balance. Therefore, we have:
Proposition 7: For every winning seller m, Algorithm 4

returns its critical ask pm.

E. Economic Properties and Computational Efficiency
From Proposition 5, 6 and 7, we see that District-D is bid

monotonic and generates critical prices. Therefore, it is truthful
and individually rational. Noting that District-D is also ex ante
budget balanced by Proposition 4, we hence conclude that
Theorem 2: District-D is economically robust.
Now we discuss the time complexity of District-D. In

Algorithm 2, one transaction is made in each round of the loop,
and the loop runs at most N rounds for N transactions. Within
the loop, the complexity is dominated by MaxMarginalRev(·).
A simple implementation is to go through all tradable trans-
actions without conflicting with previously made trades, and
to select the one with the maximum marginal revenue. There
are at most MN such transactions, each requiring at most N
comparisons to clarify the conflicting relation. We hence need
O(MN2) time for MaxMarginalRev(·) and O(MN3) time
for Algorithm 2. Note that Algorithm 2 also dominates the
complexity of Algorithm 3 and 4, and runs at most N times
to calculate the payoffs in each case. By omitting the constant
factor, we conclude that District-D runs within O(MN4)
time.

VI. SIMULATION RESULTS
We evaluate the performance of District with extensive

simulations. Buyers are uniformly distributed in a 1 × 1
geographical region. Two buyers interfere with each other if
their Euclidean distance is less than 0.1. Every seller indicates
a license area to sell. For simplicity, the license area is set to
be circular, with radius uniformly distributed in [0.2, 0.5] and
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Fig. 4: Trade-off on auction
efficiency in District-U with
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enrolled.
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Fig. 6: Auction revenue of
District-U with 50% buyers
enrolled.
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Fig. 7: Auction efficiency of
District-D.

0 20 40 60 80 100
0

5

10

15

20

Sellers

Au
ct

io
n 

R
ev

en
ue

 

 
10 Buyers
20 Buyers
50 Buyers
100 Buyers

Fig. 8: Auction revenue of
District-D.

101 102 103
0

0.1

0.2

0.3

0.4

0.5

Sellers

Au
ct

io
n 

Ef
fic

ie
nc

y

 

 
10 Buyers
20 Buyers
50 Buyers
100 Buyers

Fig. 9: Auction efficiency of
TRUST-extension.

center uniformly located in the entire region. All bids and asks
are normalized and follow the uniform distribution in the range
of [0, 1]. Since District is truthful by design, these are also true
bids and true asks. We use a greedy graph coloring algorithm
in District-U throughout the experiments. That is, we always
color the node with the fewest uncolored neighbors.
Since District is already proven to be economically robust,

we further evaluate its performance in terms of auction effi-
ciency only. We also present numerical results for the gener-
ated revenue to study the relation between auction efficiency
and revenue. However, since maintaining budget balance is
sufficient for District, revenue maximization is outside the
scope of this work, some in-depth discussions of which can
be found in [5], [10]. Each result obtained below has been
averaged over 10000 runs.
District-U. As a trade reduction auction, District-U only

admits top buyers with high bids to join. Specifically, the
admission rate is determined as r = N ′/N , where N ′ is a
predefined cut-off ranking for buyers. There is a trade-off in
choosing r (or equivalently,N ′), as discussed in Sec. IV. Fig. 4
illustrates such a trade-off. For a fixed number of buyers and
sellers, neither high nor low admission rate is beneficial to
auction efficiency, since in both cases the number of tradable

pairs is reduced. This shortage is gradually alleviated when
more sellers (from 10 to 30 in the experiment) join the
market to provide more channels. Also notice that the auction
efficiency is a linear function of the admission rate when the
rate is low, which implies that the low efficiency is caused by
the deficit in channel supplies.
Next, we focus on the middle ground with r = 50%, not

only because it is a reasonable choice when no bid information
is known a priori, but also because District-U only serves as
a temporary solution for the auctioneer until sufficient bid
knowledge is available. Fig. 5 and 6 illustrate the auction
efficiency and revenue when r = 50%. We see that the auction
efficiency differs little in all four experiments, except a slight
decrease with the growth of buyers. Also notice that the deficit
of channel supplies dominates the auction efficiency until the
number of sellers exceeds 20, after which the efficiency is
constrained by the adopted admission rate. The market is
saturated with stable efficiency with around 30 sellers, and the
efficiency is upper bounded by 0.5. In addition, we see that the
maximum revenue does not come with the optimal efficiency,
but high revenue is indeed generated when the number of
winners becomes a dominating factor.
District-D. Though District-U does not require a priori

information and is ex post budget balanced, its efficiency is
highly constrained due to its trade reduction nature: many
feasible trades are reduced to avoid a budget deficit. As shown
in Fig. 7, when the bid distribution knowledge is available,
District-D can do better: as more sellers become available and
the channel supplies increase, the auction efficiency can grow
quickly without a hard cap constrained, until the market is
saturated with almost all buyers served.
Interestingly, as shown in Fig. 7, the more buyers join

the market, the higher the auction efficiency is. We give an
intuitive explanation here. The design rationale of District-
D is to add as many trades as possible, with the constraint
that the total revenue (measured by virtual valuations) is non-
negative in every stage. However, not all transactions are
profitable. If the auction has accumulated sufficient revenue in
the past trades, then it can compensate for the deficit caused by
these transactions while still maintaining budget balance. For
a smaller market with fewer buyers, the revenue accumulated
is limited and is insufficient to compensate for the deficit. As
a result, the trade that is not profitable has to be dropped,
leaving a relatively low auction efficiency compared with a
market with more buyers. Fig. 8 validates this point of view
— low efficiency usually comes with low revenue. In this
sense, District-D is scalable to large networks.
We next compare the performance of District-D and

District-U (r = 50%) by inspecting Fig. 5, 6, 7 and 8. As ex-
pected, District-D outperforms District-U in auction efficiency,
with significant efficiency gain in a market containing more
buyers. It is interesting to see that for a smaller market with
fewer buyers, District-D generates more revenue than District-
U, although the gap is small. However, as more buyers join
the market, the revenue generated by District-U overwhelms
District-D. The reason behind this is that District-U always



makes profitable transactions, while District-D accepts un-
profitable trades that are compensated with the accumulated
revenue. As a result, District-U serves as an appropriate
starting mechanism for the auctioneer to sustain the auction
without external subsidies. With moderate auction efficiencies,
it makes time for the auctioneer to collect bid distribution
information. Once the distribution is available, the auctioneer
can switch to District-D to pursue higher auction efficiency.
District vs. a Simple Extension of TRUST. Sec. III dis-

cusses a scheme to directly extend existing spectrum auctions
into local markets. A natural question is whether such a
simple extension provides acceptable performance. To study
this, we extend TRUST (with Greedy-U as an allocation
algorithm [4]) as described in Sec. III and investigate its
auction efficiency. In Fig. 9, we see that, with market sizes
comparable to those experimented in District (i.e., fewer than
100 sellers and buyers), the efficiency of TRUST-extension is
fairly low (generally less than 0.1) and grows slowly when
channel supplies increase. Moreover, when more buyers join
the auction, the market is saturated and the efficiency drops.
This is in stark contrast to the scalability of District-D. The
efficiency of TRUST-extension improves only when a very
large amount of channel supplies are available in the market,
but it is still severely limited when the number of buyers
is small. By comparing Fig. 9 with both Fig. 5 and Fig. 7,
we conclude that District significantly outperforms the simple
extension in Sec. III.

VII. RELATED WORK

Auction mechanisms serve as an efficient way to distribute
scarce resources in a market. To encourage participation, the
auction is required to be economically robust. Many well-
known mechanisms, including both single-sided and double-
sided auctions, are designed to achieve truthfulness for phys-
ical commodities [11], [12], [14], [15].
As a counterpart of the commodity auction, spectrum auc-

tion provides efficient solution to distribute spectrum resources
in wireless networks. Early works include transmit power
auctions [16] and spectrum band auctions [17], [18]. Truth-
fulness is first considered for single-sided spectrum auction
in [3], where spectrum reuse is supported. Similar model is
also adopted by the following work: [5] and [10] aim to
generate maximum revenue for the seller; [9] supports channel
reserve prices in the model; and [8] studies the fairness issue
in spectrum allocations. Truthful spectrum double auction is
first designed in [4]. [6] further advocates conducting double
auctions in spectrum secondary markets, with participants
being secondary users. [7] takes the time domain into account
and proposes a truthful online auction. All these works discuss
truthfulness in the sense of global markets, where the spectrum
to be auctioned is globally accessible to all buyers and to be
sold as a whole in the entire license area of a primary license
holder.
However, market locality is essential in spectrum trading

and is emphasized by the recent push for white spaces
databases [2] maintained by a third party such as Spectrum

Bridge [1]. Spectrum owners should be allowed to partition
their entire license area and lease parts of it to enterprises and
consumers. District caters to their requirements and differs
significantly from previous works by considering such market
locality, while achieving economic robustness and efficient
spectrum reuse.

VIII. CONCLUSION
In this paper, we present District, a set of new spectrum dou-

ble auctions that incorporate market locality for practical spec-
trum markets, where sellers can freely partition their license
areas to either sell or reserve, based on their own requirements.
An auctioneer can start from District-U, a uniform pricing
auction, to obtain moderate auction efficiency without any a
priori information about bids. After accumulating sufficient
knowledge of bid distributions, it can then switch to District-
D, a discriminatory pricing auction, to pursue high auction
efficiency. Our computationally efficient designs are proved to
be economically robust and scalable to large networks. To our
knowledge, this is the first set of double spectrum auctions
designed for local markets with these properties.
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