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Abstract
The realizable-to-agnostic transformation (Beimel et al., 2015; Alon et al., 2020) provides a general
mechanism to convert a private learner in the realizable setting (where the examples are labeled by
some function in the concept class) to a private learner in the agnostic setting (where no assumptions
are imposed on the data). Specifically, for any concept class C and error parameter α, a private
realizable learner for C can be transformed into a private agnostic learner while only increasing
the sample complexity by Õ(VC(C)/α2), which is essentially tight assuming a constant privacy
parameter ε = Θ(1). However, when ε can be arbitrary, one has to apply the standard privacy-
amplification-by-subsampling technique (Kasiviswanathan et al., 2011), resulting in a suboptimal
extra sample complexity of Õ(VC(C)/α2ε) that involves a 1/ε factor.

In this work, we give an improved construction that eliminates the dependence on ε, thereby
achieving a near-optimal extra sample complexity of Õ(VC(C)/α2) for any ε ≤ 1. Moreover, our
result reveals that in private agnostic learning, the privacy cost is only significant for the realiz-
able part. We also leverage our technique to obtain a nearly tight sample complexity bound for
the private prediction problem, resolving an open question posed by Dwork and Feldman (2018)
and Dagan and Feldman (2020).
Keywords: Differential Privacy, Agnostic Learning, Private Prediction

1. Introduction

Differential privacy (DP) (Dwork et al., 2006b,a) has emerged as a popular notion for quantifying the
disclosure of individual information and has been widely deployed to protect personal privacy (Ap-
ple Differential Privacy Team, 2017; Abowd, 2018). Informally, a randomized algorithm is said
to be differentially private if changing a single input item does not significantly affect the output
distribution. As a consequence, it safeguards against data inference through the algorithm’s output.

Machine learning algorithms are usually trained on datasets that contain sensitive information,
necessitating the need for privacy protection. The intersection of differential privacy and machine
learning was first explored by Kasiviswanathan et al. (2011), who introduced private learning by
integrating DP with two foundational learning models: probably approximately correct (PAC) learn-
ing (Vapnik and Chervonenkis, 1971; Valiant, 1984) and agnostic learning (Haussler, 1992; Kearns
et al., 1994). The former assumes the data points are labeled by some function in a given concept
class C and requires the learner to output a hypothesis with an error close to 0. This setting is often
referred to as the realizable setting. In contrast, the latter is termed the agnostic setting, which can
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be seen as an extension of the realizable setting that removes the assumption on the existence of a
labeling function. In agnostic learning, the output hypothesis is required to have an error close to
optimal by any concept in C, which might be much larger than 0.

It turns out that the two settings are closely related: any private PAC learner can be transformed
into a private agnostic learner via the realizable-to-agnostic transformation (Beimel et al., 2015;
Alon et al., 2020). More formally, given a private PAC learner for concept class C, the transformation
produces a private agnostic learner for C with an increase of Õ(VC(C)/α2) in the sample complexity,
where α is the error parameter. Such an increase is optimal since it matches the lower bound on
(non-private) agnostic learning (Simon, 1996). However, this transformation results in an algorithm
with a constant privacy parameter ε = Θ(1). If one pursues an arbitrary privacy level, the privacy-
amplification-by-subsampling technique (Kasiviswanathan et al., 2011) has to be applied. This
raises the extra sample complexity to Õ(VC(C)/α2ε), incorporating an undesirable 1/ε factor. It is
natural to ask if we can remove the 1/ε factor and still achieve an optimal extra sample complexity
when ε is extremely small.

While private learning mandates that the entire output hypothesis must preserve privacy, this re-
quirement might be excessively stringent. It has been shown that several concept classes, which can
be easily learned in the non-private setting, pose significant challenges under differential privacy
constraints (Beimel et al., 2010; Feldman and Xiao, 2014; Bun et al., 2015; Alon et al., 2019). To
bypass these hardness results, Dwork and Feldman (2018) introduced the problem of private pre-
diction. This framework is particularly relevant when the complete model, trained on sensitive data,
cannot be fully released to users (who might be potential adversaries). Instead, users submit queries
consisting of unlabeled data points, and the system provides predictions on these points while ensur-
ing privacy. In the realizable setting, they showed that the sample complexity of answering a single
query privately is Θ̃(VC(C)/εα), which is notably lower than that of private learning (Beimel et al.,
2019; Alon et al., 2019; Bun et al., 2020; Ghazi et al., 2021). In the more challenging agnostic set-
ting, the initial upper bound for sample complexity was Õ(VC(C)/α3ε). This was subsequently re-
fined by Dagan and Feldman (2020) to Õ(min(VC(C)/α2ε, VC(C)2/αε)+VC(C)/α2). Despite these
improvements, there remains a gap between this upper bound and the Ω̃(VC(C)/αε + VC(C)/α2)
lower bound.

1.1. Results

Our main contribution is a transformation that converts any realizable learning algorithm to an
agnostic learning algorithm under (ε, δ)-differential privacy. Remarkably, this transformation only
increases the sample complexity asymptotically by Õ(VC(C)/α2) for any ε ≤ 1. Such an extra
sample complexity is near-optimal as it matches the Ω̃(VC(C)/α2) lower bound on agnostic learning
even without privacy (Simon, 1996).

Theorem 1 (Informal Version of Theorem 18) An (ε, δ)-differentially private realizable learner
for C with error α and with sample complexity m can be transformed into an (ε, δ)-differentially pri-
vate agnostic learner for C with excess error O(α) and with sample complexity Õ(m+ VC(C)/α2).

Our methodology builds upon the foundational transformation proposed by Beimel et al. (2015),
which was originally limited to only achieving a constant level of privacy. We observe that directly
applying the privacy-amplification-by-subsampling method (Kasiviswanathan et al., 2011) suffers
from a 1/ε blow-up because it runs the transformation only on a subsampled dataset whose size is
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approximately ε of the input size and naively discards unsampled data points. To effectively utilize
all data points, we design a novel score function that estimates the generalization error using the
entire dataset rather than only the subsampled dataset while still enjoying amplification of privacy,
thus avoiding the privacy cost incurred by previous methods. Additionally, we adopt a technique
due to Alon et al. (2020) to accommodate improper learners.

We also obtain improved results for the private prediction problem in the agnostic setting by
applying our transformation to a private prediction algorithm in the realizable setting due to Dwork
and Feldman (2018) with some mild modification. The result is demonstrated as follows.

Theorem 2 There is an ε-differentially private prediction algorithm that (α, β)-agnostically learns
C using Õ(VC(C)/αε+ VC(C)/α2) samples.

This upper bound is tight up to logarithmic factors. In fact, a matching lower bound can be
derived by combining a lower bound of Ω(VC(C)/αε) on the sample complexity of private predic-
tion in the realizable setting established by Dwork and Feldman (2018) with an Ω̃(VC(C)/α2) lower
bound for agnostic learning (Simon, 1996).

1.2. Related Work

Realizable-to-agnostic transformation: The general approach of transforming realizable learn-
ers to agnostic learners under differential privacy was first introduced by Beimel et al. (2015). Their
method, however, is only applicable to proper learners. This limitation was later addressed by Alon
et al. (2020), who extended the applicability to improper learners using the generalization property
of DP. Despite being general, their methods only satisfy a constant level of privacy. The connec-
tion between realizable and agnostic learning under privacy was also investigated by Hopkins et al.
(2022). However, their reduction only works for a relaxation of private learning called semi-private
learning, where the algorithms have access to a public unlabeled dataset, and cannot be applied
to private learning, which treats the entire input dataset as private and does not rely on any pub-
lic data points. The optimal sample complexity of private agnostic learning was also considered
by Li et al. (2024) under pure differential privacy. They provided an algorithm building upon the
pure private realizable learner in (Beimel et al., 2019). Nevertheless, the algorithm is not a general
transformation and does not work for approximate differential privacy.

Private prediction: The study of private prediction was pioneered by Dwork and Feldman (2018),
who established a near-optimal sample complexity of Θ̃(VC(C)/αε) for the realizable setting. In
the agnostic setting, they gave a suboptimal upper bound of Õ(VC(C)/α3ε) for any general con-
cept class C. When C is the class of unions of intervals, they presented an algorithm with an ex-
pected excess error of α using Õ(VC(C)/αε + VC(C)/α2) samples, which is nearly optimal with
a constant success probability. The upper bound for general concept classes was further improved
to Õ(min(VC(C)/α2ε, VC(C)2/αε) + VC(C)/α2) by Dagan and Feldman (2020). Similar to our
method, their algorithm combines the realizable-to-agnostic transformation (Beimel et al., 2015)
and the privacy-amplification-by-subsampling technique (Kasiviswanathan et al., 2011) with some
modification. However, the use of a VC argument in their proof introduces an extra multiplicative
factor of VC(C), rendering their bound suboptimal.
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2. Preliminaries

We start with some notations. Let X be an arbitrary domain. A concept/hypothesis is a function
that labels each x ∈ X by either 0 or 1. A concept/hypothesis class is a set of concepts/hypotheses.
We use D to denote a distribution over X × {0, 1}, and DX to denote its marginal distribution over
X . Let S = {(x1, y1), . . . , (xn, yn)} ∈ (X × {0, 1})n be a dataset consisting of n data points. The
corresponding unlabeled dataset is denoted as SX = {x1, . . . , xn}. For two hypotheses h1 and h2,
we define h1 ⊕ h2 as a hypothesis such that (h1 ⊕ h2)(x) = I[h1(x) ̸= h2(x)].

Given a hypothesis h, the generalization error of h with respect to a distribution D is defined as
errD(h) = Pr(x,y)∼D[h(x) ̸= y]. The empirical error of h with respect to a dataset S is defined as
errS(h) =

1
n

∑n
i=1 I[h(xi) ̸= yi].

For two hypotheses h1 and h2, the generalization disagreement between h1 and h2 with re-
spect to a distribution DX is defined as disDX (h1, h2) = Prx∼DX [h1(x) ̸= h2(x)]. The em-
pirical disagreement between h1 and h2 with respect to an unlabeled dataset SX is defined as
disSX (h1, h2) =

1
n

∑n
i=1 I[h1(xi) ̸= h2(xi)].

In the PAC learning framework, the learning algorithm receives as input a dataset sampled
according to some underlying distribution D, where the data points are labeled by some concept
c ∈ C. The objective is to output a hypothesis h with low generalization error errD(h).

Definition 3 (PAC Learning (Valiant, 1984)) We say a learning algorithm A is an (α, β)-PAC
learner for concept class C with sample complexity m if for any distribution D over X × {0, 1}
such that Pr(x,y)∼D[c(x) = y] = 1 for some c ∈ C, it takes a dataset S = {(x1, y1), . . . , (xm, ym)}
as input, where each (xi, yi) is drawn i.i.d. from D, and outputs a hypothesis h satisfying

Pr[errD(h) ≤ α] ≥ 1− β,

where the probability is taken over the random generation of S and the random coins of A.

PAC learning focuses on the realizable case, which assumes that the underlying distribution D is
labeled by some concept c ∈ C. In contrast, agnostic learning (Haussler, 1992; Kearns et al., 1994)
does not impose any assumptions on the distribution D. Instead, the goal is to identify a hypothesis
whose generalization error is close to that of the best possible concept in C.

Definition 4 (Agnostic Learning) We say a learning algorithm A is an (α, β)-agnostic learner for
concept class C with sample complexity m if for any distribution D over X ×{0, 1}, it takes as input
a dataset S = {(x1, y1), . . . , (xm, ym)}, where each (xi, yi) is drawn i.i.d. from D, and outputs a
hypothesis h satisfying

Pr[errD(h) ≤ inf
c∈C

errD(c) + α] ≥ 1− β,

where the probability is taken over the random generation of S and the random coins of A.

In PAC and agnostic learning, if the learner A always produces a hypothesis that is a concept in
C, then we say A is a proper learner. Otherwise, we say A is an improper learner.

We next introduce some useful tools and results from learning theory.

Definition 5 (The Growth Function) Let SX = (x1, . . . , xn) be an unlabeled dataset of size n.
The set of all dichotomies on SX realized by C is denoted by

ΠC(SX ) = {{(x1, c(x1)), . . . , (xn, c(xn))} | c ∈ C} .
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The growth function of C is defined as ΠC(n) = maxSX∈Xn |ΠC(SX )|.

The Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 1971) of a concept class
C is defined as the largest number d such that ΠC(d) = 2d (or infinity, if no such maximum exists),
denoted by VC(C). Sauer’s lemma (Sauer, 1972) states that the number of dichotomies is polynomi-
ally bounded if C has a finite VC dimension.

Lemma 6 (Sauer’s Lemma) For any n ≥ VC(C), we have ΠC(n) ≤
(

en
VC(C)

)VC(C)
.

The following realizable generalization bound (Vapnik and Chervonenkis, 1971; Blumer et al.,
1989) relates the generalization disagreement and the empirical disagreement simultaneously for
every pair of concepts: if one is small, then the other will also be small.

Lemma 7 (Realizable Generalization Bound) Let C be a concept class and DX be a distribution
over X . Suppose SX = {x1, . . . , xn}, where each xi is drawn i.i.d. from DX . Define the following
two events:

• E1: For any h1, h2 ∈ C such that disSX (h1, h2) ≤ α, it holds that disDX (h1, h2) ≤ 2α.

• E2: For any h1, h2 ∈ C such that disDX (h1, h2) ≤ α, it holds that disSX (h1, h2) ≤ 2α.

Then we have
Pr[E1 ∩ E2] ≥ 1− β

given that

n ≥ C · VC(C) ln(1/α) + ln(1/β)

α

for some universal constant C.

We also have the following agnostic generalization bound (Talagrand, 1994), which ensures
that for every concept c ∈ C, its generalization error and empirical error are close. Unlike the
realizable generalization bound, the agnostic generalization bound does not require the error to be
small. However, this relaxation increases the sample complexity by roughly a factor of 1/α.

Lemma 8 (Agnostic Generalization Bound) Let C be a concept class and D be a distribution
over X ×{0, 1}. Suppose S = {(x1, y1), . . . , (xn, yn)}, where each (xi, yi) is drawn i.i.d. from D.
Then we have

Pr[∀c ∈ C, |errS(c)− errD(c)| ≤ α] ≥ 1− β

given that

n ≥ C · VC(C) + ln(1/β)

α2

for some universal constant C.

In this work, we consider learning algorithms that preserve differential privacy. We say that two
datasets S1 and S2 are neighboring if they differ by a single entry. A private algorithm is required
to produce similar outputs for every pair of neighboring datasets. The similarity between the output
distributions is quantified by two parameters ε and δ. We refer to the case when δ = 0 as pure
differential privacy, and when δ > 0 we term it approximate differential privacy.
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Definition 9 (Differential Privacy (Dwork et al., 2006b,a)) A randomized algorithm A is said to
be (ε, δ)-differentially private if for any two neighboring datasets S1 and S2 and any set O of
outputs, we have

Pr[A(S1) ∈ O] ≤ eε Pr[A(S2) ∈ O] + δ.

When δ = 0, we may omit the parameter δ and simply say that A is ε-differentially private.

In private learning, the learning algorithm produces a hypothesis that contains the prediction
result for every x ∈ X . However, in the private prediction problem introduced by Dwork and
Feldman (2018), the algorithm A receives a dataset S along with a query x and outputs only the
prediction on x. For privacy, we require it to satisfy differential privacy with respect to the dataset
S. For utility, we treat A(S, ·) as a (randomized) classifier and require it to exhibit a low error in
the PAC/agnostic setting. The formal definition is provided below.

Definition 10 (Private Prediction Dwork and Feldman (2018)) Let A be an algorithm that takes
a labeled dataset S and an unlabeled data point x as input and produces a prediction value in
{0, 1}. We say A is an (ε, δ)-differentially private prediction algorithm if for any x ∈ X , the output
A(S, x) is (ε, δ)-differentially private with respect to S.

Define errD(A(S, ·)) = Pr(x,y)∼D,A[A(S, x) ̸= y]. We say A (α, β)-PAC learns C if for any
distribution D such that Pr(x,y)∼D[c(x) = y] = 1 for some c ∈ C, we have

Pr
S∼Dn

[errD(A(S, ·)) ≤ α] ≥ 1− β.

Similarly, we say A (α, β)-agnostically learns C if for any distribution D, we have

Pr
S∼Dn

[errD(A(S, ·)) ≤ inf
c∈C

errD(c) + α] ≥ 1− β.

We next describe the exponential mechanism (McSherry and Talwar, 2007) and its properties.
Let H be a finite set and q : (X × {0, 1})n ×H → R be a score function. We say q has sensitivity
∆ if maxh∈H |q(S1, h) − q(S2, h)| ≤ ∆ for any neighboring datasets S1 and S2 of size n. The
exponential mechanism outputs an element h ∈ H with probability

exp(−ε · q(S, h)/2∆)∑
f∈H exp(−ε · q(S, f)/2∆)

.

Lemma 11 (Properties of the Exponential Mechanism (McSherry and Talwar, 2007)) The ex-
ponential mechanism is ε-differentially private. Moreover, with probability 1 − β, it outputs an h
such that

q(S, h) ≤ min
f∈H

q(S, f) +
2∆

ε
ln(|H|/β).

An important property of differential privacy is that it implies generalization (Dwork et al.,
2015a,b; Bassily et al., 2016; Rogers et al., 2016; Feldman and Steinke, 2017; Jung et al., 2020): a
differentially private learning algorithm with a low empirical error also exhibits a low generalization
error. The following version of the generalization property was used by Alon et al. (2020) in their
transformation to handle improper learners. Note that this bound holds even for ε > 1.
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Lemma 12 (DP Generalization) Let A be an (ε, δ)-differentially private learning algorithm that
takes SX ∈ X n as input and outputs a predicate h : X → {0, 1}. Suppose each element in SX is
drawn i.i.d. from some distribution DX , then we have

Pr

[
Ex∼DX [h(x)] > e2ε

(∑
x∈SX

h(x)

n
+

10

εn
log

(
1

εδn

))]
< O

(
εδn

log
(

1
εδn

)) ,

where the probability is taken over the random generation of SX and the random coins of A.

A learner that outputs a hypothesis with low empirical error is called an empirical learner (Bun
et al., 2015), which can be constructed from a PAC learner while preserving privacy.

Definition 13 (PAC Empirical Learner) An algorithm A is said to be an (α, β)-PAC empirical
learner for concept class C with sample complexity m if for any c ∈ C and any dataset S =
{(x1, c(x1)), . . . , (xm, c(xm))}, it takes S as input and outputs a hypothesis h such that

Pr[errS(h) ≤ α] ≥ 1− β.

Lemma 14 (Private Empirical Learner) Let ε ≤ 1. Suppose A be an (ε, δ)-differentially private
(α, β)-PAC learner for C with sample complexity m. Then there exists an (1, O(δ/ε))-differentially
private (α, β)-PAC empirical learner A′ for C with sample complexity O(εm). Moreover, if A is
proper, then A′ is also proper.

3. The Transformation

In this section, we present our realizable-to-agnostic transformation. We will start by describing a
relabeling procedure proposed by Beimel et al. (2015), which serves as the key component of our
transformation.

Let C be a concept class and S ∈ (X × {0, 1})n be a dataset. In the agnostic setting, S may not
be consistent with any c ∈ C. The idea of Beimel et al. (2015) is to first relabel S by some concept
h ∈ C. After that, realizable learning algorithms can be applied.

Their method first constructs a candidate set H such that for every labeling of S there is one
concept in H consistent with that labeling. Then it initiates the exponential mechanism with score
function q(S, h) = errS(h) to select a concept h for relabeling. Though the selection of h is not
private since the construction of H depends on S, they proved that running a private algorithm on the
relabeled dataset Sh still preserves differential privacy. Moreover, the agnostic generalization bound
and the property of the exponential mechanism ensure that errD(h) is close to the optimal error
achieved by concepts in C. Thus, if we can find some hypothesis g such that errD(g) ≈ errD(h) by
running a realizable learner on Sh, the resulting algorithm is an agnostic learner as desired.

However, the data points in Sh are no longer i.i.d. from some distribution because the selection
of h depends on S. Therefore, directly running a private PAC learner on the relabeled dataset Sh

might not produce a good hypothesis. One should instead convert it to an empirical learner and apply
the empirical learner to obtain some hypothesis g whose empirical error is small on Sh. When the
learner is proper (i.e., g ∈ C), the realizable generalization bound implies that disDX (g, h) is small,
which indicates errD(g) ≈ errD(h). However, when the given private PAC learner is improper
(and so is the resulting empirical learner), the realizable generalization bound cannot provide any
guarantee on disDX (g, h).
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To deal with improper learners, we next discuss a technique due to Alon et al. (2020). In their
work, they split the input dataset S into two parts S = U◦V and showed that a simple variant
of Beimel et al. (2015)’s algorithm, which outputs V h as well, still preserves privacy with respect
to U (i.e., the V portion is regarded as public). They then considered an auxiliary algorithm that
outputs g⊕h̄ for some h̄ ∈ C consistent with V h and used the generalization property of DP to derive
an upper bound on disDX (g, h̄). Since disDX (h, h̄) can be controlled by applying the realizable
generalization bound to VX , the triangle inequality yields a bound on disDX (g, h). Therefore, the
generalization error of g can be successfully bounded.

The above transformation incurs an extra sample complexity of Õ(VC(C)/α2) when converting
a private PAC learner to a private agnostic learner (Beimel et al., 2015; Alon et al., 2020). However,
it only provides a constant level of privacy (i.e., ε = Θ(1)) even if the PAC learner A is (ε, δ)-
differentially private for some ε ≪ 1. To achieve an arbitrary privacy level ε, one has to apply the
privacy-amplification-by-subsampling technique (Kasiviswanathan et al., 2011): first subsample a
dataset T from S with size |T | ≈ ε|S| = εn, then perform the transformation on T only. Since the
size of T should be at least Õ(VC(C)/α2) to ensure the agnostic generalization of every h ∈ H ⊆ C,
the overall transformation results in an extra sample complexity of Õ(VC(C)/α2ε).

We now illustrate how to eliminate the 1/ε factor. Let W denote the dataset containing the data
points that are not in T , i.e., S = T◦W . In the above process, we discard W after sampling and
do not exploit any information contained in W , which seems too wasteful. Our idea is to utilize W
so that we can apply the agnostic generalization bound to the entire dataset rather than T only. To
be specific, we still construct H from the subsampled dataset T , but evaluate the score function of
every h ∈ H over S. Thus, we only require |S| ≥ Õ(VC(C)/α2) to ensure agnostic generalization.

The primary obstacle here is how to ensure that such a modification still preserves privacy. Let
S1 = T1◦W1 and S2 = T2◦W2 be two neighboring datasets. There are two cases: T1 = T2

and T1 ̸= T2. In the case where T1 = T2, we will construct the same candidate set H from
them. Therefore, it is easy to achieve privacy for the selection of h (the hypothesis for relabeling
the dataset) by launching an ε-differentially private exponential mechanism since W1 and W2 are
neighboring datasets. According to the post-processing property of DP, running any algorithm on
the relabeled dataset is also ε-differentially private.

However, it is not as simple in the case where T1 ̸= T2, as the candidate sets constructed from
T1 and T2 are different. To see why, let T̂ be the overlapping portion of T1 and T2, which has size
|T | − 1. The privacy analysis proposed by Beimel et al. (2015) requires |q(S1, h1) − q(S2, h2)|
to be small for any h1 and h2 that agree on T̂ . This naturally holds in the original transformation,
where the score function is q(S, h) = errT (h) (recall that we discard all data points in W ) and the
difference |q(S1, h1) − q(S2, h2)| is only 1/|T | since h1 and h2 agree on T̂ . However, if we try to
incorporate the W portion and set the score function to be q(S, h) = errS(h), the difference can be
close to 1 as h1 and h2 may totally disagree on W1 = W2, failing to provide a satisfactory privacy
guarantee.

We overcome this issue by devising a score function that estimates the generalization error of
h using the entire dataset while having a small “sensitivity”. In particular, we run the exponential
mechanism with the following score function:

q(T◦W,h) = min
f∈C

{disTX (h, f) + errW (f)}.
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Algorithm 1: ARelabel

Input: Parameter ε, Datasets T,W
1. Initialize H = ∅.

2. For every possible labeling in ΠC(TX ), add to H an arbitrary concept h ∈ C that is consistent
with the labeling.

3. Define the following score function q:

q(T◦W,h) = min
f∈C

{disTX (h, f) + errW (f)} .

4. Choose h ∈ H using the exponential mechanism with privacy parameter ε, score function q,
and sensitivity parameter ∆ = 1

|W | .

5. Relabel T using h and output the relabeled dataset T h.

Algorithm 2: AAgnostic

Input: Parameter ε, Dataset S = {(x1, y1), . . . , (xn, yn)}, Private Algorithm A
1. Sample a subset I ⊆ [n] of size |I| = ⌈εn⌉ uniformly at random.

2. Let T = {(xi, yi) | i ∈ I} and W = {(xi, yi) | i ∈ [n] \ I}.

3. Execute ARelabel (Algorithm 1) with parameter ε and input datasets T,W to obtain relabeled
dataset T h.

4. Output A(T h).

The above score function can be interpreted as searching for a concept f that is close to h
over TX and also has a low empirical error on W . We describe the relabeling procedure in Algo-
rithm 1, where we set the privacy parameter as ε and sensitivity parameter as 1/|W | to ensure that
it preserves ε-differential privacy when T1 = T2. In the case that T1 ̸= T2, one can verify that
|q(S1, h1) − q(S2, h2)| ≤ 1/|T | = Θ(1/εn). Because we have set the privacy parameter as ε and
sensitivity parameter ∆ = Θ(1/n), we can apply the analysis of Beimel et al. (2015) to show that
running a private algorithm on the relabeled dataset is still private with a constant privacy param-
eter. Note that this case only happens with probability ε. We can apply the privacy-amplification-
by-subsampling argument to deduce (actually, the formal proof requires a more delicate privacy
analysis for this case) that the overall algorithm is private with privacy parameter ε. We formally
describe the details of the entire agnostic learning algorithm in Algorithm 2 and state its privacy
guarantee in the following lemma.

Lemma 15 (Privacy of AAgnostic) Suppose A is (1, δ)-differentially private. Then AAgnostic (Al-
gorithm 2) is (O(ε), O(εδ))-differentially private.

9
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Algorithm 3: AAuxiliary

Input: Parameter ε, Datasets U, V,W , Private Algorithm A
1. Execute ARelabel (Algorithm 1) with parameter ε and input datasets T = U◦V,W to obtain

relabeled dataset T h = Uh◦V h.

2. Select an arbitrary h̄ ∈ C that is consistent with V h.

3. Output A(T h)⊕ h̄.

We then prove the utility guarantee of AAgnostic. The first step is to show that ARelabel will
relabel the dataset using some h whose generalization error is close to the optimal. We show that it
suffices to set |T | = Õ(VC(C)/α) and |W | = Õ(VC(C) ·max(1/α2, 1/αε)).

Claim 16 Let T and W be two datasets with every data point sampled i.i.d. from D. Suppose

|T | ≥ C1 ·
VC(C) ln(1/α) + ln(1/β)

α

and

|W | ≥ max

(
C2 ·

VC(C) + ln(1/β)

α2
,
|T |
6ε

)
,

where C1 and C2 are universal constants. Then with probability 1− β, ARelabel (Algorithm 1) will
relabel T using some h ∈ C such that

errD(h) ≤ inf
c∈C

errD(c) + α.

Now it remains to show that the output hypothesis A(T h) is close to h on the underlying distri-
bution D. When A is a proper learner (i.e., A(T h) ∈ C), this is directly implied by the realizable
generalization.

To handle the case that A may be improper, we adopt the proof strategy of Alon et al. (2020).
The key idea is to construct an auxiliary algorithm AAuxiliary (Algorithm 3). It splits T into T =
U◦V (we set |U | = |V | = |T |/2) and outputs A(T h) ⊕ h̄ for some h̄ ∈ C that is consistent with
V h. Given that |V | is sufficiently large, the realizable generalization bound implies that h̄ is close
to h on the underlying distribution D, hence on UX as well. Since the output hypothesis A(T h) is
also close to h over UX , A(T h) should be close to h̄ on UX .

We prove that AAuxiliary satisfies a constant level of differential privacy using an argument
similar to part of the proof of Lemma 15. This allows us to bound the generalization disagreement
between A(T h) and h̄ by the generalization property of DP. Therefore, we have errD(A(T h)) ≈
errD(h̄) ≈ errD(h), which proves the utility guarantee of AAgnostic.

Lemma 17 (Utility of AAgnostic) Suppose A is a (1, δ)-differentially private (α, β)-PAC empirical
learner with sample complexity m. Then AAgnostic (Algorithm 2) is an (O(α), O(β+εnδ))-agnostic
learner with sample complexity

n = O

(
m

ε
+

VC(C) log(1/α) + log(1/β)

αε
+

VC(C) + log(1/β)

α2

)
.

10
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Now we are able to prove our main theorem. In our transformation, we first invoke Lemma 14 to
create a (1, δ′ = O(δ/ε))-differentially private empirical learner from the given (ε, δ)-differentially
private PAC learner. We then use this empirical learner as the private algorithm A in AAgnostic.
Lemma 15 ensures that AAgnostic is (O(ε), O(εδ′) = O(δ))-differentially private. The final sample
complexity follows from Lemma 17.

Theorem 18 Let ε ≤ O(1). Suppose there is an (ε, δ)-differentially private (α, β)-PAC learner for
C with sample complexity m. Then there exists an (ε, δ)-differentially private (O(α), O(β + δn))-
agnostic learner for C with sample complexity

n = O

(
m+

VC(C) log(1/α) + log(1/β)

αε
+

VC(C) + log(1/β)

α2

)
.

Moreover, if the original learner is proper, then the resulting learner is also proper.

Proof By Lemma 14, there exists a (1, δ′)-differentially private (α, β)-PAC empirical learner A
for C with sample complexity O(εm), where δ′ = O(δ/ε). Then by Lemma 15, we have that
AAgnostic is (O(ε), O(εδ′) = O(δ))-differentially private. Moreover, by Lemma 17, AAgnostic is an
(O(α), O(β + εδ′n) = O(β + δn))-agnostic learner with sample complexity

n = O

(
m+

VC(C) log(1/α) + log(1/β)

αε
+

VC(C) + log(1/β)

α2

)
.

The constant factors on the privacy parameters can be removed by the privacy-amplification-by-
subsampling technique. Furthermore, if the original learner is proper, then Lemma 14 suggests that
A is also proper. Therefore, AAgnostic is proper since it outputs A(T h).

Ignoring logarithmic factors, the second term in the resulting sample complexity is dominated
by m (Bun et al., 2015). Hence, the extra sample complexity introduced by our transformation is
Õ(VC(C)/α2), which is near-optimal.

4. Private Prediction

In this section, we provide an algorithm for private prediction in the agnostic setting with a nearly
optimal sample complexity of Õ(VC(C)/αε + VC(C)/α2). We need the following algorithm for
private prediction in the realizable setting (Dwork and Feldman, 2018).

Lemma 19 Let r = ⌈6 ln(4/α)/ε⌉ and A′ be a PAC learning algorithm. Suppose hypotheses
g1, . . . , gr are obtained by running r instances of A′ on disjoint portions of the input dataset S.
Then there exists an ε-differentially private prediction algorithm A that answers a prediction query
x based on some aggregation mechanism over {g1(x), . . . , gr(x)} such that

∀i ∈ [r], errD(gi) ≤ α/4 ⇒ errD(A(S, ·)) ≤ α.

Like private agnostic learning, we run AAgnostic with the private prediction algorithm A in the
above lemma. The privacy analysis remains unchanged. However, the utility guarantee no longer
holds because A only preserves privacy for a single prediction rather than the entire hypothesis,
prohibiting us from applying the generalization property of DP.

11
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To circumvent this issue, we choose the base learner A′ to be an algorithm that outputs some
concept in C that is consistent with the (relabeled) dataset. This allows us to leverage the realizable
generalization bound to argue that with high probability, the generalization error (with respect to the
relabeled distribution) of every instance of A′ is small no matter which concept h ∈ C is selected
to relabel the dataset, indicating that the generalization error of A is also small. That is to say, the
generalization error of A is close to that of h with respect to the original distribution.

Theorem 20 (Theorem 2 Restated) Let ε ≤ O(1). There exists an ε-differentially private predic-
tion algorithm that (α, β)-agnostically learns C with sample complexity

O

(
VC(C) log2(1/α) + log(1/α) log(log(1/α)/β)

αε
+

VC(C) + log(1/β)

α2

)
.

Proof Consider an algorithm A′ that arbitrarily selects a concept from C that is consistent with the
input dataset. Let A be a 1-differentially private mechanism constructed using Lemma 19 with the
base learner A′. Then by Lemma 15, the overall algorithm AAgnostic is O(ε)-differentially private.

We now prove the accuracy of AAgnostic. Let D be the underlying distribution and DX be
its marginal distribution on X . Set n′ ≥ C · VC(C) ln(1/α)+ln(r/β)

α for some constant C and r =
⌈6 ln(4/α)⌉. Let T ′

X = {x1, . . . , xn′} be some unlabeled dataset, where each xi is drawn i.i.d.
from DX . When C is sufficiently large, the realizable generalization bound (Lemma 7) suggests
that with probability 1 − β/r, it holds that disDX (h1, h2) ≤ α/4 for any h1, h2 ∈ C that are
consistent on T ′

X . Let S = T◦W be the entire input dataset such that

|T | ≥ rn′ = O

(
VC(C) log2(1/α) + log(1/α) log(log(1/α)/β)

α

)
and h be the concept chosen by ARelabel for relabeling. Then by Lemma 19 and the union bound,
it holds with probability 1− β that errDh(A(T h, ·)) ≤ α, where Dh is the distribution obtained by
labeling DX with h.

By Claim 16, we have errD(h) ≤ infc∈C errD(c) + α with probability 1 − β given that |T | ≥
C1 · VC(C) ln(1/α)+ln(1/β)

α and |W | ≥ C2 · VC(C)+ln(1/β)
α2 + |T |

6ε for constants C1, C2. Therefore, the
triangle inequality and the union bound imply that with probability 1− 2β, we have

errD(AAgnostic(S, ·)) = errD(A(T h, ·)) ≤ errDh(A(T h, ·)) + errD(h) ≤ inf
c∈C

errD(c) + 2α.

Adjusting ε, α, β by constant factors yields the desired result.
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Appendix A. Proof of Lemma 14

The following lemma is due to Bun et al. (2015). We remark that although their original statement
requires n ≥ 2m, their proof actually works under the stronger conditions we present below.

Lemma 21 Let ε ≤ 1. Suppose A is an (ε, δ)-differentially private algorithm that takes a dataset
of size m as input. For any n such that n ≥ 2 and 6εm/n ≤ 1, consider an algorithm A′ works as
follows:

1. Takes as input a dataset S of size n.

2. Constructs a dataset T of size m, where each data point is sampled independently and uni-
formly from S with replacement.

3. Runs A on the dataset constructed in the previous step.

Then A′ is (ε′, δ′)-differentially private for ε′ = 6εm/n and δ′ = exp(6εm/n)4mn δ.

Proof [Proof of Lemma 14] Let A be an (ε, δ)-differentially private (α, β)-PAC learner for C
with sample complexity m. Construct an algorithm A′ as in Lemma 21 with n = ⌈6εm⌉. Then
Lemma 21 directly implies that A′ is (1, O(δ/ε))-differentially private.

Let D be the empirical distribution over S. Since A is an (α, β)-PAC learner for C, we have
errD(A(T )) ≤ α with probability 1 − β over the random generalization of T and the internal
randomness of A. This is equivalent to Pr[errS(A′(S)) ≤ α] ≥ 1 − β, where the probability is
taken over the internal randomness of A′. Thus, A′ is an (α, β)-PAC empirical learner for C.

Moreover, since A′ runs A on some dataset T , A is proper implies that A′ is proper.
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Appendix B. Proof of Lemma 15

Proof Let S1, S2 be two neighboring datasets and O be any set of outputs. Without loss of general-
ity, we assume S1 and S2 differ on the first element. That is, S1 = {(x1, y1), (x2, y2), . . . , (xn, yn)}
and S2 = {(x′1, y′1), (x2, y2), . . . , (xn, yn)}. Define

pt(I) = Pr[AAgnostic(St) ∈ O | the sampled index set is I]

for t ∈ {1, 2} and I ⊆ [n] of size ⌈εn⌉. Since I is sampled uniformly at random, we have

Pr[AAgnostic(St) ∈ O] =
1(
n
|I|
)∑

I

pt(I).

Now consider a fixed index set I . Let T1,W1 and T2,W2 be the corresponding partitions of S1

and S2. We will consider two cases: 1 ∈ I and 1 /∈ I .
When 1 /∈ I , we have T1 = T2. Therefore, ARelabel(T1,W1) and ARelabel(T2,W2) will con-

struct the same candidate set H . For every h ∈ H , suppose its score function is minimized by f1 on
dataset T1◦W1, i.e., q(T1◦W1, h) = dis(T1)X (h, f1)+errW1(f1). Since W1 and W2 are neighboring
datasets, we can bound q(T2◦W2, h) as follows:

q(T2◦W2, h) = min
f∈C

{
dis(T2)X (h, f) + errW2(f)

}
≤ dis(T2)X (h, f1) + errW2(f1)

≤ dis(T1)X (h, f1) + errW1(f1) +
1

|W1|

= q(T1◦W1, h) +
1

|W1|
.

By symmetry, q(T2◦W2, h) ≤ q(T1◦W1, h) +
1

|W1| . Therefore, the sensitivity of q is 1
|W1| . It then

follows by Lemma 11 that

Pr[ARelabel(T1,W1) = T h
1 ] ≤ eε Pr[ARelabel(T2,W2) = T h

2 ]

for any T h
1 = T h

2 . The post-processing property of DP immediately implies

p1(I) ≤ eεp2(I).

We then turn to the case that 1 ∈ I . We will prove the following conclusion for every i /∈ I:

p1(I) ≤ eO(1)p2((I \ {1}) ∪ {i}) +O(δ).

Let T ′
2 and W ′

2 be the partitions of S2 using (I \ {1}) ∪ {i} as the index set. Since 1 ∈ I ,
we have T1 \ {(x1, y1)} = T ′

2 \ {(xi, yi)} = T̂ for some T̂ of size |I| − 1. Let H1 and H ′
2 de-

note the candidate sets constructed during the execution of ARelabel(T1,W1) and ARelabel(T
′
2,W

′
2).

For each possible labeling T̂ c of T̂X , define P1(c) =
{
f ∈ H1 : errT̂ c(f) = 0

}
and P ′

2(c) ={
f ∈ H ′

2 : errT̂ c(f) = 0
}

, i.e., the sets consisting of hypotheses in H1 and H ′
2 that agree with c

on T̂X . Since the label set is {0, 1}, we have 1 ≤ |P1(c)|, |P ′
2(c)| ≤ 2.
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We next pick arbitrary h1 ∈ P1(c) and h′2 ∈ P ′
2(c) and compare their scores. Suppose

q(T1◦W1, h1) is minimized by f1. Note that W1 and W ′
2 are neighboring datasets (since W1 \

{(xi, yi)} = W ′
2 \ {(x′1, y′1)}), and h1 and h′2 agree on T̂X , we have

q(T ′
2◦W ′

2, h
′
2) = min

f∈C

{
dis(T ′

2)X
(h′2, f) + errW ′

2
(f)
}

≤ dis(T ′
2)X

(h′2, f1) + errW ′
2
(f1)

≤ dis(T1)X (h1, f1) +
1

|T1|
+ errW1(f1) +

1

|W1|

= q(T1◦W1, h1) +
1

|T1|
+

1

|W1|
.

Since |T1| ≥ nε and |W1| ≤ n− nε, we have |W1|
|T1| ≤ 1−ε

ε . Thus,

exp(−ε · q(T ′
2◦W ′

2, h
′
2)/2∆) ≥ exp

(
−ε ·

(
q(T1◦W1, h1) +

1

|T1|
+

1

|W1|

)
/2∆

)
= exp(−ε · q(T1◦W1, h1)/2∆) · exp

(
−ε

2
·
(
|W1|
|T1|

+
|W1|
|W1|

))
≥ exp(−ε · q(T1◦W1, h1)/2∆) · exp

(
−ε

2
·
(
1− ε

ε
+ 1

))
= exp(−ε · q(T1◦W1, h1)/2∆) · exp(−1/2).

By symmetry (because the above analysis only relies on the facts that W1 and W ′
2 are neighbor-

ing and h1 and h′2 agree on T̂X ), we have

exp(−ε · q(T1◦W1, h1)/2∆) ≥ exp(−ε · q(T ′
2◦W ′

2, h
′
2)/2∆) · exp(−1/2).

Then, the fact that 1 ≤ |P1(c)|, |P ′
2(c)| ≤ 2 gives

∑
h1∈P1(c)

exp(−ε · q(T1◦W1, h1)/2∆) ≥ 1

2

∑
h′
2∈P ′

2(c)

exp(−ε · q(T ′
2◦W ′

2, h
′
2)/2∆) · exp(−1/2).

Summing over all hypotheses in H1, we get∑
f∈H1

exp(−ε · q(T1◦W1, f)/2∆) =
∑
T̂ c

∑
h1∈P1(c)

exp(−ε · q(T1◦W1, h1)/2∆)

≥
∑
T̂ c

1

2

∑
h′
2∈P ′

2(c)

exp(−ε · q(T ′
2◦W ′

2, h
′
2)/2∆) · exp(−1/2)

=
1

2
√
e

∑
f∈H′

2

exp(−ε · q(T ′
2◦W ′

2, f)/2∆).

Note that (T1)
h1 and (T ′

2)
h′
2 are neighboring datasets (since h1 and h′2 agree on T̂X ). Then by

the fact that A is (1, δ)-differentially private, we have
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Pr[ARelabel(T1,W1) = (T1)
h1 ] · Pr[A((T1)

h1) ∈ O]

=
exp(−ε · q(T1◦W1, h1)/2∆)∑

f∈H1
exp(−ε · q(T1◦W1, f)/2∆)

· Pr[A((T1)
h1) ∈ O]

≤ 2e · exp(−ε · q(T ′
2◦W ′

2, h
′
2)/2∆)∑

f∈H′
2
exp(−ε · q(T ′

2◦W ′
2, f)/2∆)

· (e · Pr[A((T ′
2)

h′
2) ∈ O] + δ)

= 2e · Pr[ARelabel(T
′
2,W

′
2) = (T ′

2)
h′
2 ] · (e · Pr[A((T ′

2)
h′
2) ∈ O] + δ).

We can then bound p1(I) as follows:

p1(I) = Pr[A(ARelabel(T1,W1)) ∈ O]

=
∑
T̂ c

∑
h1∈P1(c)

Pr[ARelabel(T1,W1) = (T1)
h1 ] · Pr[A((T1)

h1) ∈ O]

≤
∑
T̂ c

2
∑

h′
2∈P ′

2(c)

2e · Pr[ARelabel(T
′
2,W

′
2) = (T ′

2)
h′
2 ] · (e · Pr[A((T ′

2)
h′
2) ∈ O] + δ)

= 4e ·
(
e · Pr[A(ARelabel(T

′
2,W

′
2)) ∈ O] + δ

)
= e2+2 ln 2p2((I \ {1}) ∪ {i}) + 4eδ.

Note that the summation
∑

I:1∈I
∑

i∈[n]\I p2((I\{1})∪{i}) actually counts every p2(I) (where
1 /∈ I) exactly |I| times. Thus,

∑
I:1∈I

p1(I) =
1

n− |I|
∑
I:1∈I

∑
i∈[n]\I

p1(I)

≤ 1

n− |I|
∑
I:1∈I

∑
i∈[n]\I

[
e2+2 ln 2p2((I \ {1}) ∪ {i}) + 4eδ

]
=

|I|
n− |I|

∑
I:1/∈I

e2+2 ln 2p2(I) + 4eδ ·
(
n− 1

|I| − 1

)
= O(ε)

∑
I:1/∈I

p2(I) +O(δ) ·
(
n− 1

|I| − 1

)
,

where in the last line we use the fact that

|I|
n− |I|

=
⌈εn⌉

n− ⌈εn⌉
≤ 2εn

n− 2εn
≤ 6ε
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assuming εn ≥ 1 and ε ≤ 1/3. This implies that

Pr[AAgnostic(S1) ∈ O] =
1(
n
|I|
) (∑

I:1/∈I

p1(I) +
∑
I:1∈I

p1(I)

)

≤ 1(
n
|I|
) (eε ∑

I:1/∈I

p2(I) +O(ε)
∑
I:1/∈I

p2(I) +O(δ) ·
(
n− 1

|I| − 1

))

≤ (eε +O(ε)) · 1(
n
|I|
)∑

I

p2(I) +O(δ) · |I|
n

≤ eO(ε) Pr[AAgnostic(S2) ∈ O] +O(εδ).

Appendix C. Proof of Claim 16

We use the following technical lemma (Anthony and Bartlett, 1999) in bounding the sample com-
plexity incurred by the exponential mechanism.

Lemma 22 Let d ≥ 1 and α, β ∈ (0, 1). Then if n ≥ 2d ln(2/α)+2 ln(1/β)
α , we have

nα ≥ d ln
(en
d

)
+ ln

(
1

β

)
.

Proof [Proof of Claim 16] Define the following three events:

• E1: For every c ∈ C, it holds that |errD(c)− errW (c)| ≤ α/9.

• E2: The exponential mechanism chooses an h ∈ H such that

q(T◦W,h) ≤ min
f∈H

q(T◦W, f) + α/9.

• E3: For any h1, h2 ∈ C such that disTX (h1, h2) ≤ α/3, it holds that disDX (h1, h2) ≤ 2α/3.

We first show that T will be relabeled by some h such that errD(h) ≤ infc∈C errD(c) + α if
the above events happen. Let η = infc∈C errD(c). Let f0 ∈ C be some concept that minimizes
the empirical error on W , i.e., errW (f0) = minc∈C errW (c). Then E1 implies that errW (f0) ≤
infc∈C errW (c) ≤ infc∈C errD(c) + α/9 = η + α/9. Since every labeling in ΠC(TX ) is labeled by
some h ∈ H , there exists some h0 ∈ H that agrees with f0 on TX . Thus,

q(T◦W,h0) = min
f∈C

{disTX (h0, f) + errW (f)}

≤ disTX (h0, f0) + errW (f0)

≤ η + α/9.
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Then, event E2 ensures that the exponential mechanism outputs some h ∈ H such that

q(T◦W,h) ≤ min
f∈H

q(T◦W, f) + α/9

≤ q(T◦W,h0) + α/9

≤ η + 2α/9.

Suppose q(T◦W,h) = disTX (h, f) + errW (f) for some f ∈ C. Event E1 ensures that

errD(f) ≤ errW (f) + α/9 ≤ q(T◦W,h) + α/9 ≤ η + α/3.

Moreover, since errD(f) ≥ η, we have

disTX (h, f) = q(T◦W,h)− errW (f)

≤ q(T◦W,h)− (errD(f)− α/9)

≤ q(T◦W,h)− η + α/9

≤ η + 2α/9− η + α/9

= α/3.

Event E3 then ensures that disDX (h, f) ≤ 2α/3. By the triangle inequality, we obtain

errD(h) ≤ errD(f) + disDX (h, f) ≤ η + α/3 + 2α/3 = η + α.

To complete the proof, we now show E1∩E2∩E3 happens with probability 1−β. By Lemma 8,
E1 happens with probability 1− β/3 given that |W | ≥ C · VC(C)+ln(1/β)

α2 for some constant C.

We then consider E2. By Sauer’s Lemma (Lemma 6), we have |H| ≤
(

e|T |
VC(C)

)VC(C)
. Then by

Lemma 11, with probability 1− β/3, the exponential mechanism selects some h such that

q(T◦W,h) ≤ min
f∈H

q(T◦W, f) +
2

|W |ε
ln(|H|/β)

≤ min
f∈H

q(T◦W, f) +
12

|T |

(
VC(C) ln

(
e|T |
VC(C)

)
+ ln(1/β)

)
≤ min

f∈H
q(T◦W, f) + α/9,

where in the second inequality we use |W | ≥ |T |
6ε and in the last inequality we apply Lemma 22,

which requires |T | ≥ C ′ · VC(C) ln(1/α)+ln(1/β)
α . This means E2 happens with probability 1− β/3.

Finally, Lemma 7 implies that event E3 happens with probability 1 − β/3 given that |T | ≥
C ′′ · VC(C) ln(1/α)+ln(1/β)

α . Therefore, we have Pr[E1 ∩ E2 ∩ E3] ≥ 1− β by the union bound.

Appendix D. Proof of Lemma 17

To prove Lemma 17, we follow the proof strategy of Alon et al. (2020). We first construct an
auxiliary algorithm (AAuxiliary) and prove the following claim, which allows us to employ the gen-
eralization property of DP. The proof is analogous to part of the proof of Lemma 15.
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Claim 23 Suppose A is (1, δ)-differentially private. For any public V and W , AAuxiliary(U, V,W )
is (2 + 2 ln 2, 4eδ)-differentially private with respect to U .

Proof Let U1 and U2 be two neighboring datasets and O be any set of the outputs of AAuxiliary.
Then T1 = U1◦V and T2 = U2◦V are also neighboring datasets. Therefore, there is some T̂
of size |T1| − 1 such that T1 \ {(x1, y1)} = T2 \ {(x′1, y′1)} for data points (x1, y1) ∈ T1 and
(x′1, y

′
1) ∈ T2. Let Ht be the candidate set constructed during the execution of ARelabel(Tt,W ),

where t ∈ {1, 2}. For each possible labeling T̂ c of T̂X , let Pt(c) be the set of hypotheses added to
Ht in the execution of ARelabel(Tt,W ). Pick arbitrary h1 ∈ P1(c) and h2 ∈ P2(c) and suppose
q(T1◦W,h1) is minimized by f1, we have

q(T2◦W,h2) = min
f∈C

{
dis(T2)X (h2, f) + errW (f)

}
≤ dis(T2)X (h2, f1) + errW (f1)

≤ dis(T1)X (h1, f1) +
1

|T1|
+ errW (f1)

= q(T1◦W,h1) +
1

|T1|
.

Since |T1| ≥ εn and |W | ≤ n− εn, we have |W |
|T1| ≤

1−ε
ε . Thus,

exp(−ε · q(T2◦W,h2)/2∆) ≥ exp

(
−ε ·

(
q(T1◦W,h1) +

1

|T1|

)
/2∆

)
= exp(−ε · q(T1◦W,h1)/2∆) · exp

(
−ε|W |
2|T1|

)
≥ exp(−ε · q(T1◦W,h1)/2∆) · exp

(
−1− ε

2

)
≥ 1√

e
· exp(−ε · q(T1◦W,h1)/2∆).

By symmetry, we also have

exp(−ε · q(T1◦W,h1)/2∆) ≥ 1√
e
· exp(−ε · q(T2◦W,h2)/2∆).

The fact that 1 ≤ |P1(c)|, |P2(c)| ≤ 2 gives∑
h1∈P1(c)

exp(−ε · q(T1◦W,h1)/2∆) ≥ 1

2
√
e

∑
h2∈P2(c)

exp(−ε · q(T2◦W,h2)/2∆).

Therefore,∑
f∈H1

exp(−ε · q(T1◦W, f)/2∆) =
∑
T̂ c

∑
h1∈P1(c)

exp(−ε · q(T1◦W,h1)/2∆)

≥
∑
T̂ c

1

2

∑
h2∈P2(c)

exp(−ε · q(T2◦W,h2)/2∆) · exp(−1/2)

=
1

2
√
e

∑
f∈H2

exp(−ε · q(T2◦W, f)/2∆).
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Since h1 and h2 agree on T̂X , (T1)
h1 and (T2)

h2 are neighboring datasets. Moreover, note
that h1 and h2 agree on VX because VX is just part of T̂X . Therefore, AAuxiliary(U1, V,W )
and AAuxiliary(U2, V,W ) will select the same h̄ from V h1 = V h2 . By the fact that A is (1, δ)-
differentially private, we obtain

Pr[ARelabel(T1,W ) = (T1)
h1 ] · Pr[A((T1)

h1)⊕ h̄ ∈ O]

=
exp(−ε · q(T1◦W,h1)/2∆)∑

f∈H1
exp(−ε · q(T1◦W, f)/2∆)

· Pr[A((T1)
h1)⊕ h̄ ∈ O]

≤ 2e · exp(−ε · q(T2◦W,h2)/2∆)∑
f∈H2

exp(−ε · q(T2◦W, f)/2∆)
· (e · Pr[A((T2)

h2)⊕ h̄ ∈ O] + δ)

= 2e · Pr[ARelabel(T2,W ) = (T2)
h2 ] · (e · Pr[A((T2)

h2)⊕ h̄ ∈ O] + δ).

Let h̄ = h̄(V h) denote the selection rule of h̄. Summing over all labelings gives

Pr[AAuxiliary(U1, V,W ) ∈ O]

=
∑
T̂ c

∑
h1∈P1(c)

Pr[ARelabel(T1,W ) = (T1)
h1 ] · Pr[A((T1)

h1)⊕ h̄(V h1) ∈ O]

≤
∑
T̂ c

2
∑

h2∈P2(c)

2e · Pr[ARelabel(T2,W ) = (T2)
h2 ] · (e · Pr[A((T2)

h2)⊕ h̄(V h2) ∈ O] + δ)

= 4e · (e · Pr[AAuxiliary(U2, V,W ) ∈ O] + δ)

= e2+2 ln 2 Pr[AAuxiliary(U2, V,W ) ∈ O] + 4eδ.

Proof [Proof of Lemma 17] Recall that

n = O

(
m

ε
+

VC(C) log(1/α) + log(1/β)

αε
+

VC(C) + log(1/β)

α2

)
.

Moreover, assuming ε ≤ 1/3 and εn ≥ 1, we have

|W |
|T |

=
n− ⌈εn⌉
⌈εn⌉

≥ n− 2εn

2εn
≥ 1

6ε
.

Therefore, it is not hard to verify that the conditions in Claim 16 are fulfilled. Thus, with probability
1− β, T will be relabeled by some h with errD(h) ≤ infc∈C errD(c) + α.

Since A is an (α, β)-PAC empirical learner, the final output hypothesis g = A(T h) satisfies
errTh(g) ≤ α with probability 1 − β. This is equivalent to disTX (h, g) ≤ α. Suppose we choose
|U | = |V | = |T |/2 in AAuxiliary. Note that h and h̄ agree on VX , the realizable generalization
property (Lemma 7) implies that disDX (h, h̄) ≤ α with probability 1 − β. Applying Lemma 7
again (over TX ), we have disTX (h, h̄) ≤ 2α with probability 1− β. Therefore,

disUX (g, h̄) ≤ disTX (g, h̄) ≤ disTX (g, h) + disTX (h, h̄) ≤ 3α.

We then bound the generalization disagreement between g and h̄ using the generalization prop-
erty of DP. By Claim 23, AAuxiliary is (O(1), O(δ))-differentially private with respect to U . There-
fore, it is also (O(1), O(δ + β/|U |))-differentially private. Then by Lemma 12 and the fact that
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|U | = |T |/2 ≥ C ln(1/β)/α for some large constant C, we have

disDX (g, h̄) ≤ O

(
disUX (g, h̄) +

1

|U |
log

(
1

δ|U |+ β

))
≤ O

(
α+

1

|U |
log

(
1

β

))
≤ O(α)

with probability 1−O(δ|U |+ β).
Putting all things together, the union bound ensures that with probability 1 − O(δ|U | + β) =

1−O(εδn+ β), we have

errD(g) ≤ errD(h) + disDX (h, g)

≤ inf
c∈C

errD(c) + α+ disDX (h, h̄) + disDX (g, h̄)

≤ inf
c∈C

errD(c) +O(α).

Appendix E. Discussion on the Computational Complexity

The relabeling procedure in our transformation has two main steps:

1. Constructing a candidate that contains all the labeling.

2. Running the exponential mechanism.

By Sauer’s Lemma, the size of the candidate set is O(nVC(C)), where n is the sample size. If
we do not require the time complexity to be polynomial in VC(C) (i.e., we treat VC(C) as a fixed
constant), step 2 can be done with a polynomial number of calls of an ERM oracle. Although step
1 requires enumerating 2n labelings for general classes, it can be done efficiently for classes with
certain structures (e.g., point functions, thresholds, and axis-aligned rectangles). In these cases, the
reduction is efficient. In summary, the transformation is inefficient in general, but can be made
efficient for special classes.

We remark that there are classes (e.g., halfspaces) that are (computationally) easy to learn in
the realizable setting but hard to learn in the agnostic setting under computational or cryptographic
assumptions (Feldman et al., 2009). Since our algorithm is a reduction from an agnostic learner to a
realizable one, we cannot hope that it will be generally efficient given these hardness results. Hence,
we focus on information-theoretic bounds in this work.
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