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ABSTRACT
Web companies typically run latency-critical long-running
services and resource-intensive, throughput-hungry batch
jobs in a shared cluster for improved utilization and reduced
cost. Despite many recent studies on workload consolidation,
the production practice remains largely unknown. This paper
describes our efforts to efficiently consolidate the two types
of workloads in Alibaba clusters to support the company’s
e-commerce businesses.
At the cluster level, the host and GPU memory are the

bottleneck resources that limit the scale of consolidation.
Our system proactively reclaims the idle host memory pages
of service jobs and dynamically relinquishes their unused
host and GPU memory following the predictable diurnal
pattern of user traffic, a technique termed tidal scaling. Our
system further performs node-level micro-management to
ensure that the increased workload consolidation does not
result in harmful resource contention. We briefly share our
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experience in handling the surging traffic with flash-crowd
customers during the seasonal shopping festivals (e.g., No-
vember 11) using these “good” practices. We also discuss the
limitations of our current solution (the “bad”) and some prac-
tical engineering constraints (the “ugly”) that make many
prior research solutions inapplicable to our system.
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1 INTRODUCTION
Alibaba Group [22] is a web giant with businesses in e-
commerce, cloud computing, digital economy, etc. Like other
IT companies, Alibaba runs two types of workloads in large
clusters to support its businesses: (1) latency-critical (LC) ser-
vices deployed in long-running containers (e.g., web search,
e-commerce, machine learning (ML) inference), and (2) resource-
intensive batch processing jobs that emphasize high through-
put over low latency (e.g., big data analytics andML training).
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Instead of running LC and batch workloads in separate clus-
ters, the common practice is to colocate them into shared
clusters (i.e., workload consolidation) for improved utilization
and reduced cost [47, 49]. Yet, our operational experience in
Alibaba clusters highlights the following challenges.
Stable memory footprints of diurnally changing LC
services. Most of the LC services running in our clusters are
to support the company’s e-commerce business whose traffic
exhibits a clear diurnal pattern with a large peak-to-valley
ratio. This results in the diurnally changing CPU and GPU
utilization of LC services. The underutilized computing re-
sources can then be used to run batch jobs at night. However,
the host and GPU memory footprints of LC services remain
at a high level even at night, leaving only a limited amount
of memory for the colocated batch jobs.
Frequent micro-scale utilization fluctuations. Frequent
jitters in CPU and memory bandwidth utilization are widely
observed in our applications. In the context of workload con-
solidation, the fluctuating resource utilization of one service
not only undermines its own performance, but could also
interfere with the other colocating jobs.
Surging traffic brought by large seasonal sales. Alibaba
hosts several large-scale seasonal shopping festivals (SSF)
every year, with the largest one on November 11. Timed
promotions are offered during the shopping festival to at-
tract more customers to place orders online. This can create
flash crowd traffic in a few minutes with peak load orders of
magnitude higher than the usual time.
Improving resource efficiency by means of auto-scaling

and workload consolidation is a hot topic that has been
extensively studied in recent years [26, 27, 32, 44, 51, 55, 59].
Yet, these studies cannot be applied to our system:
Practical issues that limit the design options. Our sys-
tem must be generally applicable to the diverse applica-
tions running in Alibaba clusters, which are developed based
on different technology stacks for a range of computing
tasks. The applications are also evolving rapidly to support
fast-growing businesses. These constraints preclude most
profiling-based, application-specific solutions [3, 31, 37, 39,
50].
Making fast and quality scheduling decisions at scale.
In our clusters, a large portion of jobs has complex placement
constraints [1, 54], making scheduling an NP-hard problem.
Nevertheless, we still require the scheduler to make high-
quality decisions for a large number of jobs in sub-seconds.
Existing works solve the constrained scheduling problem
using integer linear programming [20, 48], feedback con-
trol [32], and learning-based approaches [3, 12, 14, 31, 37, 39,
41, 50, 56]. However, none of them can handle the scheduling
problem at our scale, especially during SSFs when the flash
crowd traffic arrives within a few minutes.

Despite the challenges above, Alibaba’s business scenario
has many predictable events and patterns that can be ex-
ploited for improved resource planning and scheduling, such
as the diurnal pattern of resource utilization in the usual
time and the arrival of flash crowd traffic in SSFs.
In this paper, we describe the key techniques we devel-

oped to address the aforementioned challenges, and share
our experiences in achieving high resource utilization while
maintaining good service quality at scale in our clusters. This
paper is organized as follows:
In §2, we briefly introduce the LC and batch workloads

running in Alibaba’s clusters to support its e-commerce busi-
nesses, as well as the cluster management system.

In §3, we show that the user traffic of LC services follows
a diurnal pattern with a large peak-to-valley ratio. We then
describe how to exploit this pattern to overcommit the idle
compute resources to batch jobs at night, and more impor-
tantly, how we address the resource bottleneck on the main
and GPU memory in overcommitment by means of proactive
memory reclamation and tidal scaling.

In §4, we illustrate how the load jitters commonly observed
in our clusters may harm the applications’ performance in
terms of two key resources: CPU and memory bandwidth.
Accordingly, we present two solutions deployed to address
these problems: the shared CPU pool with burstable CPU
quota and memory bandwidth isolation using Intel’s Dy-
namic Resource Control (DRC) available on IceLake proces-
sors [59].
In §5, we briefly explain workload scheduling in SSFs,

a special but important business scenario, and its unique
challenges. We then describe how we use the previously
developed techniques to address those challenges. We briefly
survey related work in §6 and conclude the paper in §7.

2 BACKGROUND
In this section, we give an overview of Alibaba’s workloads
and its cluster management system. We also explain our
principles for designing and optimizing our infrastructure.

2.1 Workloads in Alibaba’s Clusters
As one of the largest IT companies in the world, Alibaba
Group has built dozens of large clusters (data centers) around
the globe, where the number of machines in each cluster
ranges from a few hundred to more than 10k. There are
hundreds of thousands of machines in total, with tens of
millions of CPU cores and tens of thousands of GPUs. These
clusters run millions of service instances. Fig. 1 gives an
overview of Alibaba’s businesses and infrastructure. There
are mainly two types of workloads running in Alibaba’s
clusters:
1) Latency-critical (LC) services. These services run in

long-lived containers and provide user-facing services for
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Figure 1: An overview
of Alibaba’s businesses
and infrastructure.

Figure 2: Illustration of
Alibaba’s cluster manage-
ment system.

Alibaba’s businesses, including e-commerce, web search, pro-
motion, advertisements, autonomous driving, logistics, maps,
entertainment, etc. We deploy LC services typically as mi-
croservices, and develop user-facing applications mainly
based on Java and SpringBoot.

2) Throughput-hungry batch processing jobs. These are data-
parallel jobs that emphasize high throughput over low la-
tency. Examples include MapReduce and Spark query jobs
for big data processing, and distributed machine learning.

Both LC services and batch jobs have complex placement
constraints. These constraints may specify a fixed set of CPU
cores allocated to an instance, limit the number of instances
of an application on each machine, and disallow an instance
to run on multiple CPU cores at different sockets. Our mea-
surement shows that around 70% of application instances
can meet their placement constraints on only 20% of the
cluster nodes. LC services and batch jobs are often colocated
on the same machines for improved utilization and reduced
cost. Our applications are rapidly evolving, driven by the
fast-changing market.

2.2 Alibaba’s Cluster Management System
Overview. We use Alibaba’s cluster management system
to manage the compute resources in a cluster, including
CPUs, host memory, GPUs, self-designed accelerators, etc.
The system is developed based on Kubernetes [18], with
many customized features and optimizations. Similar to Ku-
bernetes, an instance of an application runs in clusters as
a set of containers (aka, a pod). Specifically, there are two
types of containers running in our clusters: Runc container, a
conventional container based on Linux’s cgroup and names-
pace, and Kata container [19], a secure container running
in a lightweight virtual machine. The system encompasses
all of Alibaba’s core businesses and provides the following
services: 1) workload scheduling, 2) auto-configuration for
instances’ resource specifications (e.g., memory size, number
of CPU cores, etc.), 3) load balancing, 4) performance moni-
toring, 5) managing applications’ Service-Level Objectives
(SLOs), and 6) resource provisioning with diverse SLOs.

Systemarchitecture. Fig. 2 shows an architectural overview
of Alibaba’s cluster management system. Similar to Google’s
Borg [47, 49], our system is based on a master-slave architec-
ture. Each cluster runs a few replicas of the master with three
main components, a scheduler, a scaler, and an SLO controller.
They handle the requests submitted by users and manage
the status of all objects in the cluster (e.g., pods, nodes, etc.).
Each computing node runs a local agent, Kubelet, which is
in charge of 1) collecting and reporting the status, resource
usage, and heartbeats of pods running on the node, and 2)
forwarding master’s requests (e.g., launching a pod on the
node).
Scheduler. Similar to Kubernetes, the scheduler matches
and places pods to a node based on their resource demands,
label constraints, and other specifications. It supports both
online scheduling (sequentially placing each pod following
its arrival order) and offline orchestration of a large number
of instances (§5.2).
Scaler. The scaler elastically adjusts the number of instance
replicas and/or the resource quota of running applications
based on relevant metrics (e.g., resource utilization, latency)
or some pre-specified plans (§3.3 and §5.2).
SLO manager. The SLO manager ensures that each applica-
tion can meet its SLOs without using more resources than
allocated. It dynamically adjusts each application’s OS pa-
rameters (e.g., CFS quota), and evicts pods on demand (e.g.,
when the machine runs out of memory), which we will ex-
plain in detail in §3.2, §4.1, §4.2, and §5.3.

2.3 Design Principles
The goal of workload management is to reduce the resource
provisioning cost without violating the performance SLOs of
applications. In the context of Alibaba’s scenario, a practical
solution must follow the following design principles:
Transparent to applications. Our clusters run a large num-
ber of applications developed by dozens of business units.
Optimizations intrusive to applications (e.g., change of code)
are difficult to adopt in practice. Furthermore, given the
frequent updates of applications, establishing an accurate
performance profile for each application becomes elusive –
in fact, many LC applications have no clear SLOs, and their
performance cannot be easily measured. Therefore, optimiza-
tions of workload management must be made transparent
to applications.
Generally applicable. Applications running in our clusters
are built atop a variety of technology stacks. Therefore, any
optimization used in the cluster management system should
not target a specific application, but generally apply to a
range of services and frameworks.
Following these principles, our system performs macro-

andmicro-management at the cluster and node levels, respec-
tively, which we explain in detail in the following sections.
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(a) The 7-day trace of an LC ser-
vice’s QPS (normalized by the
peak QPS in the 7-day window).

(b) The diurnal inequality of
CPU and GPU utilization of LC
services with seasonality > 0.95.

Figure 3: Illustration of diurnal pattern in LC services.

3 CLUSTER-WIDE
MACRO-MANAGEMENT

In this section, we show through workload analysis that LC
services have diurnally changing loads during the off-season
(no SSF). However, their memory footprints stay relatively
stable, making memory the bottleneck resource that limits
the scale of workload consolidation with batch jobs. We
present our solutions that address this problem with cluster-
wide macro-management and evaluate their effectiveness in
production clusters.

3.1 The Problem of Overcommitment
Diurnally changing LC services. To illustrate the diurnal
pattern of LC services, we refer to Fig. 3a, which shows the re-
quest load (queries per second or QPS) of a core e-commerce
service in a 7-day trace. We measure a large peak-to-valley
ratio of over 10x for this service. Accordingly, its CPU utiliza-
tion also changes diurnally following the same pattern. To
demonstrate the prevalence of this observation, we measure
the diurnal inequality1 and seasonality2 of the CPU and GPU
utilization of all instances of LC service in a cluster. Around
62% of CPU instances and 21% of GPU instances have a sea-
sonality larger than 0.95. For those instances, the median
values of diurnal inequality of CPU and GPU utilization are
around 27% and 45%, respectively (Fig. 3b).

The prevalent diurnal pattern and the large peak-to-valley
difference suggest significant utilization benefits by means
of overcommitting the underutilized compute resources of
LC services to batch jobs at night. Borrowing the ideas from
Borg [49], we estimate the future CPU and memory uti-
lization (i.e., resource reservation) of each LC instance and
overcommit the remaining idle resources to batch jobs.

1The diurnal inequality is defined as the peak-to-valley difference, i.e., (the
maximum utilization in the daytime) - (the minimum utilization at night). A
larger value indicates more underutilized resources at night.
2The seasonality [52] of a time series 𝑌𝑡 is measured by 1 − 𝑉𝑎𝑟 (𝐸𝑡 )

𝑉𝑎𝑟 (𝐸𝑡 +𝑆𝑡 ) ,
where 𝑆𝑡 and 𝐸𝑡 are the seasonal component and the remainder component
after the seasonality decomposition of 𝑌𝑡 respectively. Its value is within
[0, 1], and a larger value indicates a stronger seasonal temporal pattern.

(a) Host Memory (b) GPU Memory

Figure 4: 7-day utilization ( 𝑈𝑠𝑎𝑔𝑒

𝑅𝑒𝑞𝑢𝑒𝑠𝑡
, %) of host memory

and GPU memory of LC services.

(a) The amount of idle CPU,
GPU, host memory and GPU
memory, normalized by the aver-
age amount of corresponding re-
source requested by batch jobs.

(b) Distribution of (Requested
memory / # requested CPU cores)
of LC services (LS) and batch jobs
(BE), and (memory capacity / # of
CPU cores) of machines (Node).3

Figure 5: Host memory and GPU memory are the bot-
tlenecks of overcommitment. The box represents the
25th to 75th percentile, and the line in the middle of the
box represents the median. The whiskers extend to 1.5
times the interquartile range.

The memory bottleneck. Unlike CPUs and GPUs, the host
and GPU memory footprints of LC services stay largely sta-
ble (Fig. 4): in our clusters, almost all LC services hold a
constantly large amount of host memory (GPU memory)
throughout a day. More than 90% of the available host mem-
ory space requested by LC services is occupied. As a result,
there is no significant temporal variation in resource reserva-
tion of the host memory (and GPU memory) of LC services.
The explanations for this phenomenon are: 1) the majority
of Alibaba’s LC services are written in Java (§2.1), where
JVM tends to reserve a large amount of memory capacity
for data caching; and 2) a portion of the GPU LC services
always occupy a fixed amount of GPU memory regardless
of how heavy the load is.

We estimate the overcommitable space of CPU, host mem-
ory, GPU, and GPU memory during the day and night by
( 𝑇ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜 𝑓 𝑖𝑑𝑙𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜 𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑏𝑦 𝑏𝑎𝑡𝑐ℎ 𝑗𝑜𝑏𝑠
), and de-

pict the results in Fig. 5a. The overcommitable space of
the CPU and GPU has a large gap between day and night,
whereas the host memory and GPU memory do not. More-
over, Fig. 5a shows that, compared to the host memory, the
CPU can be overcommitted to 3–4x more batch jobs during
3Although machines are heterogeneous in Alibaba’s clusters, they generally
have the same memory–CPU ratio (e.g., 128 GiB : 20 Cores).
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both the day and night. This is because batch jobs usually
demand more memory than LC services. In particular, we
measure the requested amount of host memory normalized
by the requested number of CPU cores for LC services and
batch jobs, as well as the total capacity of host memory
per CPU core of all machines. The results are depicted in
Fig. 5b. Compared to LC services, batch jobs request 5–10x
more memory, far exceeding the memory-CPU ratio of the
machine. This makes memory a severe bottleneck when colo-
cating the two types of workloads.
Fine-grained vertical scaling is insufficient. A simple
solution to address the memory bottleneck is vertical scal-
ing: it reduces the allocation quotas of the host and GPU
memory for LC services at night and increases them to the
normal level in the daytime. However, unlike CPUs, mem-
ory is non-elastic, in that the host and GPU memory, once
allocated, cannot be safely relinquished without interrupting
the application execution.
Horizontal scaling cannot be directly applied. An al-
ternative solution is horizontal scaling, which dynamically
reduces the number of LC instances at night and increases it
during the daytime. However, our experience suggests that
frequently scaling LC instances up and down results in in-
creasingly fragmented resources, especially when there are
complex placement constraints.

3.2 Memory Reclamation
Motivation. Our LC services are mainly written in Java
and occupy a large number of memory pages that are in-
frequently accessed (as described in §3.1). Those cold mem-
ory pages should be timely reclaimed to make room for
batch jobs. Although directly overcommitting more memory
to batch jobs can trigger the Linux kernel to reclaim more
pages from LC services, this is undesirable as it makes the
system frequently undergo memory pressure and indiscrim-
inately reclaim memory pages from running applications,
significantly increasing the page fault rate and harming the
application performance. Borrowing the ideas from Lagar-
Cavilla et al. [29] and Corbet [9], our system keeps track of
the idleness of each page frame and proactively reclaims all
inactive pages.
Tracking memory idleness. Following Google’s kstaled
[30], we define the age of a memory page frame as the time
elapsed since its last access. An older age indicates that the
corresponding page frame is less frequently accessed by
processes. We added a module, kidled [24], into the Linux
kernel to periodically mark the age of reclaimable pages
(i.e., swappable anonymous pages and clean file pages). Each
memory cgroup maintains a histogram to count the number
of pages within different age intervals. We collect a one-
week trace of the age of reclaimable memory occupied by

(a) Swappable Anonymous Page (b) Clean File Page

Figure 6: The distribution of reclaimable idle memory
(the amount of reclaimablememory / the totalmemory
usage) of LC services running on each machine in a
cluster by the age (last access time) of memory pages.
The box and the whiskers have the same meaning as
in Fig. 5.

LC services in a production cluster, and depict their distri-
bution in Fig. 6. For anonymous pages (file pages), in the
median, around half of the reclaimable pages have an age
older than 48 (3) hours, indicating a significant number of
inactive pages.
Proactive memory reclamation. We implemented a ker-
nel module, kreclaimd, to proactively reclaim idle pages
at regular intervals. Specifically, it periodically reclaims the
page cache with an age older than 𝑇 minutes. Our system
reclaims swappable anonymous pages and clean file pages of
all running LC services and batch jobs: it swaps anonymous
pages to the swap space of a non-volatile storage device
(which is cheaper but slower than DRAM) and directly drops
the clean file pages.
Determining the reclamation threshold. Dynamically
tuning the reclamation threshold in the production environ-
ment is risky as it may harm the system’s stability. There-
fore, we select a group of representative, memory-sensitive
workloads and apply memory reclamation with different
thresholds. Specifically, we measure the page fault rate, disk
read cost4, and application response time when swappable
anonymous pages and clean file pages are reclaimed with
different thresholds. The experimental result, depicted in
Fig. 7, shows that as the reclamation threshold decreases,
the page fault rate increases by 15.3×, while the amount of
reclaimable anonymous page and file page increase from
14.7% to 29.8%, and from 2.2% to 12.6%, respectively (Fig. 6).
Furthermore, compared with the reclamation of clean file
pages (which does not require swapping memory pages back
to the disk), reclaiming swappable anonymous pages signifi-
cantly increases the reading cost, causing a more negative
impact on running applications.
Our experiment also suggests that aggressive, dynamic

thresholds only lead to limited benefits. As enabling dynamic

4Disk read cost = (Averaged disk read latency) × (Averaged disk read operation
count per second).
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Figure 7: Reclaiming the
anonymous and clean
file pages with different
thresholds. Results are
normalized by the base-
line (no reclamation).

Figure 8: The anonymous
page and file page uti-
lization (usage / memory
limit) of all LC instances
in a cluster before and af-
ter memory reclamation.

threshold requires extensive workload profiling and monitor-
ing, its performance gains cannot justify the overhead and
risks. Therefore, we choose to set static reclamation thresh-
olds, and to reclaim clean file pages more aggressively. In
practice, our system only reclaims swappable anonymous
pages with an age older than 6 hours, and clean file pages
with an age older than 1.5 hours.
Detecting memory pressure. While memory reclamation
enables the colocation of more batch jobs, the increasedmem-
ory pressure may harm the LC services. It is hence necessary
to accurately detect memory pressure and quickly react to
it. When the memory pressure occurs, the system evicts and
reschedules batch jobs to avoid OOM (out-of-memory). In
addition to memory utilization, we use another kernel met-
ric, memory pressure stall information (PSI) [10] of the root
cgroup, which measures the amount of time a process waits
on the slow path of memory allocation. Intuitively, when
the host machine is running out of memory, its memory
utilization is high, and its processes stall when applying new
memory pages. Therefore, we use the combination of mem-
ory PSI and memory utilization to detect when applications
stall at the allocation of new memory pages.
Evaluation. We deployed the memory reclamation on a
cluster consisting of more than 3000 machines. Fig. 8 com-
pares the memory utilization distributions of LC services
before and after the reclamation. In the median, the utiliza-
tion of anonymous pages and file pages was reduced from
74% to 67%, and from 13% to 4%, respectively.

Fig. 9 compares the distribution of the CPI (cycles per in-
struction, indicating the application performance [58]) of
all LC services and the average response time of around
1000 memory-sensitive LC services before and after memory
reclamation. We observe no noticeable change in CPI (Fig. 9a).

(a) Cycles per instruction (CPI) of
all LC services, before and after
memory reclamation.

(b) Average response time (RT) of
memory-sensitive LC instances
(normalized by the longest RT).

Figure 9: CPI and the average response time (RT) of LC
services, before and after memory reclamation.

Besides, the average response time5 slightly increased by
1.26% (Fig. 9b). These results confirm that memory reclama-
tion has a negligible negative impact on LC services.

3.3 Tidal Scaling
While memory reclamation reduces the memory footprints
of LC services, it is still insufficient as 1) it only applies to
the host memory but not GPU memory, and 2) the resulting
memory utilization still has no clear diurnal pattern, limiting
the space for resource overcommitment at night. We further
propose tidal scaling to address these problems.
Bimodal instance. In our cluster, LC services are deployed
as bimodal instances with two states: running and dormant.
An instance serves user requests only when it is running.
When turning to the dormant mode, the instance is sus-
pended and relinquishes all the allocated resources. A dor-
mant instance can be quickly activated into the running state
by executing the service processes in its container; similarly,
a running instance can be set to the dormant mode by killing
all its running processes. For each LC service with a diurnally
changing load, tidal scaling deploys a number of bimodal
instances on clusters. The instance number is decided by
the service capacity as well as the operator’s experience,
which is usually maintained the same as before without tidal
scaling.
Scaling policy. Tidal scaling uses a similar scaling policy
to that of horizontal scaling. Specifically, the controller dy-
namically adjusts the number of running instances based
on the overall resource utilization of each service, so as to
approach the target utilization. The target utilization is de-
termined based on the average resource utilization of the
corresponding LC services before tidal scaling is enabled.
Unlike horizontal scaling, tidal scaling does not make sched-
uling decisions but simply activates the dormant instances

5Ourmonitoring system only records the average response time per instance
at a second-level granularity, so we cannot calculate a precise tail latency
(e.g., P95 latency per request) but can only calculate the exact average
latency by averaging these values.
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(a) Percentage of active instances
when tidal scaling is enabled.

(b) Service RT (normalized by
each application’s daily average).

Figure 10: Deployment result of tidal scaling.

(a) CPU utilization (usage / re-
quest, %) of LC services.

(b) GPU utilization (usage / re-
quest, %) of GPU LC services.

(c) Host memory utilization (us-
age / limit, %) of LC services.

(d) GPU memory utilization (us-
age / limit, %) of GPU LC services.

Figure 11: Comparison of resource utilization with and
without tidal scaling.

that are already deployed on the machines following the
offline optimized placement scheme.
Evaluation. We evaluate tidal scaling through comparison
studies on 10 representative LC services(of which services 2
to 9 demand GPUs) in a production cluster. Fig. 10 depicts the
percentage of active instances and their response time (RT).
We also compare the resource utilization of these LC services
in 24 hours with and without tidal scaling in Fig. 11. For all
10 services, tidal scaling awakens all their dormant instances
during the peak time (e.g., from 17:00 to 1:00 for Apps. 0
and 1) and suspends some running instances in the off-peak
time. The tidal scaler dynamically adjusts the number of
active instances of these LC services (Fig. 10a), controlling
their average RT at around the daily average (Fig. 10b). As
a result, no diurnal utilization pattern is observed in CPUs
and GPUs (Figs. 11a and 11b). In the off-peak time, the tidal
scaler puts some running instances into dormancy. We hence
observe a significant drop in both the host and GPU memory
utilization in Figs. 11c and 11d.

3.4 Open Challenges
Proactive reclamation of idle GPU memory. Although
we have added a memory idleness tracking module into the
Linux kernel and implemented proactive reclamation of idle
memory pages, we currently lack an infrastructure-level in-
strumentation tool for proactive GPU memory reclamation.
Many deep learning frameworks already provide interfaces
to proactively release GPU memory. Yet, they require labori-
ous modifications of the application’s source code, which is
impractical in our system.
Proactive reclamation of idle memory in Kata contain-
ers. Currently, idle memory pages can be reclaimed in Runc
containers, but not in Kata containers. The reason is that
Runc containers share the host Linux kernel, and the host
kernel’s kidled and kreclaimd can recognize and reclaim
the idle memory pages of cgroups belonging to these con-
tainers. In contrast, Kata containers run in separated guest
kernels, and their memory usage is opaque to the host ker-
nel. Although Kata containers support memory ballooning,
there is no way to proactively track and reclaim idle mem-
ory pages. In a cluster with more than 5k nodes, there are
around 3k Kata containers (all being batch jobs) running
at any given time, occupying around 24% memory capacity.
Proactively reclaiming the idle memory of Kata containers
can thus produce huge benefits.
Warm-up latency. While tidal scaling can quickly start up
a dormant instance, some applications undergo a warm-up
period, during which the user requests experience a signifi-
cant slowdown or even timeout. The warm-up latency varies
dramatically from one application to another. It remains
open how this problem can be addressed efficiently for re-
duced system hiccups and improved user experience. We
currently workaround this problem by predicting the ser-
vice’s resource utilization, and based on which we activate
instances in advance.

4 NODE-LEVEL MICRO-MANAGEMENT
In addition to cluster-wide macro-management, node-level
micro-management is also needed as we observe frequent
resource variations of cluster applications which are often
unpredictable and large in magnitude. In this section, we
illustrate this phenomenon on CPU and memory bandwidth
that harms the performance of LC services and present our
solution to it.

4.1 CPU Jitters
At Alibaba, engineers set CPU quotas for applications based
on the CPU utilization traces, which are collected by the
monitoring system as the result of smooth downsampling
at one-second intervals. However, the second-level trace
cannot reflect the CPU jitters that occurred at a finer time
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(a) The CPU usage trace of a
bursty LC service in different
time scales.

(b) The CPU throttling rate of 50
instances of an LC service with
bursty CPU usage in 24 hours.

Figure 12: An illustration of CPU jitters.

scale. Specifically, code hotspots, memory garbage collection,
and other program behaviors cause some applications to
have tiny CPU load spikes, each lasting no more than 100
milliseconds. Fig. 12a shows the CPU utilization traces of a
CPU-bursty LC instance collected in 1 s and 50 ms intervals.
CPU load spikes in millisecond intervals. The Linux
kernel’s Completely Fair Scheduler (CFS) [36] controls the
amount of CPU time allocated to normal processes in each
cgroup for fair scheduling, thus preventing processes from
overusing CPU time. The CFS controller manages the limits
of any given cgroup in an accounting period of cfs_period_us.
In each accounting period, once the process has used up the
quota of CPU time (cfs_quota_us), it is throttled until the
next accounting period begins. Although this mechanism
works well for workloads with stable CPU demand, it be-
comes problematic for bursty workloads. These workloads
use far less CPU time than their quota in most periods, but
occasionally a burst of work arrives which requires more
CPU time than the quota permits. The application’s CPU
usage is thus suppressed, causing performance degradation.

The CPU load spikes usually have a temporal pattern that
correlates with the application’s CPU usage and its traffic
load. To see this, we refer to Fig. 12b, which shows the dis-
tribution of CPU throttling rate (measured by the number of
throttled CFS periods per second) of 50 instances of an LC
service with bursty CPU usage in 24 hours. All 50 instances
have diurnally changing CPU throttling rates. For these in-
stances, allocating CPU quotas based on the maximum load
spike, though avoiding performance degradation caused by
CPU throttling, could waste a lot of CPU cycles in most time
periods.
Shared CPU pool for CPU-bursty applications. To ad-
dress the aforementioned performance issues, CPU-bursty
processes should be allowed to borrow the idle CPU time
from the other colocating processes upon the arrival of their
load spikes. However, CPU-bursty hyper-threads running
on paired logical cores (mapped to the same physical core)
could contend for resources at the micro-architecture level,

affecting the other non-bursty threads. To minimize this in-
terference, we set up a shared CPU pool on each node for
CPU-bursty applications. Specifically, we classify LC applica-
tions into two categories: exclusive and shared. Applications
in the exclusive class are sensitive to CPU contention and
need to run exclusively on physical cores, whereas those in
the shared class are either CPU-insensitive or CPU-bursty,
and can only run on CPU cores in the shared pool. We scale
up cfs_quota_us for shared-class applications to allow them
to borrow CPU time slices from idle CPU resources in the
pool.
Management of the shared CPU pool. Note that CPU-
bursty hyper-threads colocated on the same physical core
can also interfere with each other when their logical CPU
utilization is high. To minimize such interference, the utiliza-
tion of the shared CPU pool should be kept below 45% based
on our experience, i.e.,𝑈 < 𝑈𝐻 = 45%.6

We use two strategies in this regard: 1) at the cluster level,
the scheduler places shared-class LC instances (pods) evenly
on different machines based on the principle of load balanc-
ing and ensures that 𝑈 < 𝑈𝐻 ; and 2) at the node level, we
use the AIMD (Additively Increase and Multiplicatively De-
crease) algorithm, borrowed from TCP congestion control,
which evenly increases the CFS quota of all shared-class pods
under the constraint that𝑈 < 𝑈𝐻 and the average utilization
of any shared-class pod should be maintained below its orig-
inal CPU limit. This algorithm is executed every 5 seconds.
If a pod was throttled in the last period, its CFS quota in-
creases linearly. If the average utilization of the shared CPU
pool in the last period exceeds the threshold 𝑈 > 𝑈𝐻 , or the
average CPU utilization of the pod in the last period exceeds
its original CFS quota (overusing the quota), the algorithm
reduces its quota by half until the utilization of the shared
pool drops below𝑈𝐻 .
Burstable CFS controller. To further alleviate the impact
of CPU throttles for bursty workloads, we add a token bucket
mechanism to the CFS controller for each cgroup [6]. It al-
lows the processes running in each cgroup to carry over
some of their unused quotas from one CFS period to the
next. For each cgroup, the controller exposes a configurable
parameter, cfs_burst_us, which sets the maximum amount
of time that can be accumulated in the bucket.

We demonstrate the efficacy of our CFS controller through
microbenchmark experiments. We run Shore, an on-disk
transactional database provided by Tailbench [28] with a
CPU-bursty workload, and depict the CPU utilization trace in
Fig. 13a. Compared with the original CFS controller without
a token bucket (bucket size set to 0), our controller (bucket

6We ran various benchmarks on two logical cores mapped to the same
physical core. Extensive experiments show that when the utilization is
below 45%, the interference between the two logical cores is negligible.
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(a) The CPU utilization with
bucket size set to 4×cfs_quota
(4x) and zero (0x), where
cfs_quota is set to Limit. A "★"
indicates a CPU throttle.

(b) Peak throughput (𝑄𝑃𝑆𝑀𝑎𝑥 )
and the average CPU usage
attained with different bucket
sizes.

Figure 13: Running Shore with our burstable CFS con-
troller with varying bucket sizes.

size set to 4× cfs_quota) allows the bursty workload to
use spared quota carried over from previous periods when
needed, dramatically reducing CPU throttles. We also eval-
uate the peak throughput (i.e., the maximum QPS without
CPU throttle and queuing delay) and the corresponding CPU
utilization with different bucket sizes in Fig. 13b. As the CFS
bucket size increases, the peak throughput grows logarith-
mically. Accordingly, the CPU utilization also improves but
never exceeds the quota limit.
Parameter tuning. Although configuring a larger CFS bucket
size 𝐵 reduces CFS throttles for bursty workloads, it risks
violating the utilization constraint of the shared pool: when
multiple running instances have CPU load spikes arriving
at the same time, the short-term average utilization of the
shared CPU pool can be significantly higher than𝑈𝐻 . There-
fore, it is necessary to configure a “right” bucket size. To do
so, we collected millisecond-level CPU utilization traces of
bursty workloads running in production clusters and per-
formed a trace-driven simulation to experiment with differ-
ent bucket sizes. The simulation generates mocked appli-
cations’ requests and consumes the CPU time slices based
on a simple queuing model. It uses the following metrics to
evaluate the short-term utilization of the shared pool and
the resulting performance:

1) 𝐷𝑒𝑙𝑎𝑦𝐴𝑣𝑔: The average request queuing delay of all ap-
plications, which measures their average performance.

2) 𝐷𝑒𝑙𝑎𝑦𝑀𝑎𝑥 : The average of the maximum queuing delay
of each application, which measures the worst performance.
3)𝑈𝑀𝑎𝑥 : The maximum average utilization of the shared

CPU pool for 5 consecutive CFS periods, which is used to
measure the extent to which the utilization constraint of the
shared CPU pool is violated.
In our simulation, we run 20 bursty applications (the av-

erage number of applications running in the shared CPU
pool per machine is also set around this value). Each ap-
plication is allocated the same CFS quota. Given the target
average utilization 𝑈 of the shared CPU pool, the average

(a)𝑈𝑀𝑎𝑥 (b) 𝐷𝑒𝑙𝑎𝑦𝐴𝑣𝑔 (c) 𝐷𝑒𝑙𝑎𝑦𝑀𝑎𝑥

Figure 14: 𝑈𝑀𝑎𝑥 , 𝐷𝑒𝑙𝑎𝑦𝐴𝑣𝑔 and 𝐷𝑒𝑙𝑎𝑦𝑀𝑎𝑥 (Y-axis) under
different shared CPU pool utilization (%, X-axis) and
CFS bucket size 𝐵. "𝑘 × 𝑄𝑢𝑜𝑡𝑎" denotes that the CFS
bucket size 𝐵 = 𝑘×cfs_quota_us of each pod.

CPU utilization of each application follows a normal distri-
bution N(𝑈 , 0.25 ×𝑈 ). Fig. 14 shows the simulation results.
As expected, configuring a larger CFS bucket size can signif-
icantly reduce the request queuing delay (smaller 𝐷𝑒𝑙𝑎𝑦𝐴𝑣𝑔
and 𝐷𝑒𝑙𝑎𝑦𝑀𝑎𝑥 as shown in Figs. 14b and 14c). When the av-
erage utilization of the shared CPU pool is within [35, 55]%,
setting a large bucket size slightly increases the peak uti-
lization of the shared pool (𝑈𝑀𝑎𝑥 ) by up to 3.8% (Fig. 14a),
which is negligible. We therefore set the bucket size of each
running LC instance to 10× cfs_quota_us to reduce CPU
throttles as much as possible.
Production deployment. We deployed the shared CPU
pool and the burstable CFS controller on a cluster with over
160k running LC instances labeled as ‘shared’. We set the
CFS bucket size at 10×cfs_quota_us. Fig. 15 shows the de-
ployment results. Before the deployment of our solution,
around 73.4% of ‘shared’ LC instances were bursty and being
throttled during peak time. After the deployment, only 0.12%
of ‘shared’ LC instances were throttled. This improvement is
mostly due to the efficient management of the shared CPU
pool, with which only 0.75% of ‘shared’ instances needed to
borrow time slices from the burstable CFS bucket. Fig. 15a
further compares the average response time (RT) of the five
most bursty applications with and without our solution. We
observe a 10–35% reduction in the average RT enabled by
our approach. Also, Fig. 15b shows that our solution success-
fully keeps the utilization of the shared CPU pool of 99% of
machines below the threshold value𝑈𝐻 = 45%.

4.2 Variations on Memory Bandwidth
In addition to CPU jitters, variations in memory bandwidth
are frequently observed, especially in batch jobs with differ-
ent computing phases. Fig. 16 shows the memory bandwidth
usage (estimated by the number of L3 cache misses per sec-
ond) trace of three batch jobs in 30 minutes.
Excessive memory bandwidth utilization of batch jobs.
In our clusters, around 12% of the machines have memory
access latency 1.5-8x longer than the average (∼130 ns). All
these machines have high memory bandwidth utilization. In
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(a) Average RT of 5 bursty LC
services (A - E) after the deploy-
ment. Each application’s RT is
normalized by its average before
the deployment (Baseline).

(b) Utilization distribution of
the sharedCPUpool on eachma-
chine (the CPU cores used by all
shared LC services / the capacity
of the shared CPU pool, %).

Figure 15: Deployment results of the shared CPU pool
with the burstable CFS controller.

Figure 16: L3 cache miss
trace of 3 instances of dif-
ferent batch jobs (normal-
ized by the maximum).

Figure 17: Area plot of
estimated memory band-
width usage of different
workloads in a cluster.

addition, Fig. 17 shows the distribution of the total memory
bandwidth utilization on each machine and the usage (ap-
proximated by the average number of L3 cache misses per
second) of batch, LC, and system applications in a one-day
trace, where the X-axis is the total memory bandwidth usage
of a host machine, and Y-axis breaks down the usage into
different applications in percentage. It is clear from the figure
that the high memory bandwidth utilization of a machine is
mainly contributed by the running batch jobs.
Memory bandwidth control using Intel’s DRC. Effi-
ciently and accurately controlling memory bandwidth con-
sumption is technically challenging. Existing mechanisms,
such as Intel’s Memory Bandwidth Allocation (MBA) [23]
and AMD’s Quality of Service Extensions [17], provide in-
direct and approximate control over memory bandwidth
available per core, which is inflexible and may result in un-
desirable system performance. In collaboration with Alibaba,
Intel introduced a new dynamic resource control (DRC) mod-
ule to the latest IceLake server processor architecture [59]
for autonomous memory bandwidth management based on
a PID feedback control algorithm.

DRC automatically throttles the memory requests of low-
priority tasks when their memory read request rate exceeds

(a) Mem. b/w
utilization (%).

(b) Mem. access
latency (ns).

(c) CPI of LC ser-
vices.

(d) IPS of batch
jobs.

Figure 18: Performance comparison between MBA and
DRC in a production cluster.

a pre-specified threshold 𝑃 . This threshold can be automat-
ically tuned using existing techniques [59], but it requires
heavy profiling of applications, which is not applicable in
our clusters given the vast amount and rapidly evolving LC
services (§2.3). We therefore use a simple heuristic to tune 𝑃
based on the observed memory bandwidth utilization𝑈 and
memory access latency 𝐿 per socket. In our experience, when
𝑈 ≤ 20% or 𝐿 ≤ 200 ns, setting 𝑃 = 120 allows batch jobs to
fully utilize memory bandwidth for improved throughput.
For higher memory bandwidth utilization and longer access
latency, i.e.,𝑈 > 20% and 𝐿 > 200 ns, batch jobs could inter-
fere with the colocating LC services, and we linearly scale
down 𝑃 , with the minimum value being 20 when𝑈 ≥ 60%.
Production deployment. We have recently deployed the
DRC-based memory bandwidth control with the aforemen-
tioned threshold tuning heuristic in a production cluster, and
share our operational experience as follows. Originally, the
cluster management system suppressed the memory band-
width contention from batch jobs using Intel’s MBA. Specifi-
cally, given that the overall memory bandwidth utilization
always exceeded 40% in the cluster without any bandwidth
regulation, we set the parameter of MBA to 10%, the min-
imum value, to guarantee the performance of LC services.
This means that batch jobs can only use up to 10% of the
memory bandwidth capacity when colocated with LC ser-
vices. Fig. 18 compares the memory bandwidth utilization
and the performance of LC services and batch jobs before
and after the deployment of the DRC-based solution. Over-
all, the performance of LC services, measured by cycles per
instruction (CPI) [58], sees no noticeable changes (Fig. 18c).
Despite a slight increase in median memory access latency
from 100ns to around 140ns (Fig. 18b), the median memory
bandwidth utilization doubles from around 15% to near 30%
(Fig. 18a), and the throughput of batch jobs, measured by the
number of instructions executed per second (IPS), also sees
an order-of-magnitude improvement (Fig. 18d). In summary,
the DRC-based solution significantly outperforms MBA even
with a simple heuristic tuning algorithm.
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4.3 Open Challenges
Side effects of burstable CFS controller. Our burstable
CFS controller is not without problems. On the one hand, it
provides more agile, fine-grained CFS quota management,
which can reduce throttles in the presence of more tiny CPU
spikes. On the other hand, it is a kernel feature not controlled
by the SLO manager. Compared to CPU quota management
in user space, it brings more uncertainties when the CPU
utilization of the shared pool is too high.
Batch job scheduling made aware of memory band-
width contention. Although DRC can alleviate the interfer-
ence on LC services caused by the excessive memory band-
width usage of batch jobs, it inevitably harms the throughput
of the latter when both LC services and batch jobs have high
utilization of memory bandwidth. The scheduling of batch
jobs should hence be aware of such contention. For example,
the scheduler may reschedule those batch jobs with high
memory bandwidth usage to some other nodes with less
contention on memory bandwidth.
Adaptive fine-tuning of DRC’s parameter. Our current
system uses a simple heuristic to tune parameter 𝑃 of DRC.
This can be improved with an adaptive, application-agnostic
algorithm that automatically tunes the best parameter with-
out heavy profiling or prior knowledge, which we leave for
future work.

5 HANDLING SEASONAL SHOPPING
FESTIVALS: A CASE STUDY

Alibaba’s e-commerce platform hosts a number of Seasonal
Shopping Festivals (SSFs) around the year. Among all SSFs,
the largest one is on November 11. On that day, user-facing
services see flash crowd traffic roaring in just a few seconds.
Compared to the off-season, the peak load can be orders
of magnitude higher, as illustrated in Fig. 19. This creates
an extreme load pressure on our system. In this section, we
describe how we address this challenge through judicious
capacity planning and macro- and micro-management of
cluster resources. Due to the space constraint, our descrip-
tions are given at a high level.

5.1 Extreme, yet Predictable Load in SSFs
To attract customers to place orders, merchants usually hold
flash sales (e.g., offering first-come, first-served limited free
order opportunities) and issue coupons at the beginning of an
SSF (e.g., 0:00, November 11), resulting in the instantaneous
flash crowd traffic at that moment. When a promotion starts,
user traffic spikes instantly in a few seconds and falls back
afterward in minutes. As all the sales events are scheduled
in advance, the peak traffic of all e-commerce services has
predictable start and end times. Fig. 20 shows how the QPS

Figure 19: CDF of peak
QPS / daily average of e-
commerce services in an
SSF. Peak QPS can be or-
ders of magnitude higher
than the daily average.

Figure 20: The QPS (nor-
malized by the peak) of
100 e-commerce services
at the beginning of an SSF,
where the peak traffic ar-
rived at the 15th minute.

of 100 e-commerce services surged and then dropped in an
SSF held on November 11, 2021.

5.2 Capacity Planning and Resource
Macro-management

As mentioned in §3.1, horizontal scaling is too slow to handle
the surging flash crowd and cannot make quality scheduling
decisions at our scale. Leveraging the predictable nature of
the SSF traffic, we developed a solution consisting of four
steps as follows: 1) predict the peak load and estimate the
required service capacity; 2) reserve resources for the serv-
ing instances in advance by suspending and postponing the
execution of non-critical batch jobs; 3) offline compute the
optimal placement of the scale-up service instances and place
them onto the corresponding nodes as dormant instances in
advance; 4) activate dormant instances and warm them up
at the scheduled time before the SSF starts.
Capacity planning. For each SSF, Alibaba predicts the peak
load (the number of transactions per second or𝑇𝑃𝑆𝑀𝑎𝑥 ) and
the required capacity for each user-facing service based on
the historical data and load testing results. This is usually
done a few months before the SSF. During the SSF, exceeding
requests beyond the planned peak 𝑇𝑃𝑆𝑀𝑎𝑥 , if any, will be
dropped automatically to maintain the system stability.
Offline instance orchestration and placement. Based
on the planned capacity for the SSF, the system scales up the
corresponding user-facing services and places all the scale-up
instances in the cluster as dormant instances, similar to tidal
scaling (§3.3). The optimal instance placement is computed
offline by solving a complex bin-packing problem. The entire
process is known as offline orchestration.
Resource reservation. Based on the offline orchestration
plan, the system needs to reserve sufficient resources so that
the dormant scale-up instances can be quickly activated and
provisioned when the SSF begins. To minimize the resource
provisioning cost, we choose not to add more compute re-
sources to the cluster but to postpone the execution of non-
critical batch jobs and use the relinquished resources to run
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(a) CDF of the average
response time (ms) of
e-commerce applica-
tions during the SSF
and the off-season
(daily).

(b) Completion de-
lay (completion time
- deadline) of batch
jobs submitted on the
SSF day and oneweek
later (+1 Wk).

(c) CDF of the peak
CPU utilization (#
used cores / # re-
quested cores) of LC
applications during
the SSF.

Figure 21: The performance of e-commerce applica-
tions and the peak CPU utilization on Nov. 11, 2021.

LC instances during the SSF. As an SSF lasts for one day, the
completion time of the suspended batch jobs is expected to
be delayed by 24 hours. The scheduler also stops scheduling
newly arrived batch jobs to the clusters. To provide more
CPU resources to LC services, we reduce the cfs_quota_us
of all running batch jobs to throttle their CPU usage.
Activating and warming up dormant LC instances. The
dormant scale-up instances are activated and warmed up at
the scheduled time before the SSF starts (usually hours before
the SSF). To avoid delaying the batch jobs for a long time,
once the SSF ends, all the scale-up LC instances are instantly
terminated and their relinquished resources are given back
to the previously suspended batch jobs for resumed execu-
tion. Newly submitted batch jobs are also accepted by the
scheduler and can run on clusters.
Performance of LC services during the SSF. To demon-
strate the effectiveness of our solution, we depict in Fig. 21a
the distribution of the average response time (RT) of e-commerce
applications during the off-season and an SSF on November
11, 2021. We observe no significant difference between the
distributions of the average RTs during the SSF and the off-
season, confirming that our approach can effectively handle
the extreme load pressure created by the SSF.
Impact on batch jobs. We also evaluate the impact of de-
layed execution on batch jobs during the SSF. In our clusters,
each batch job specifies a desired deadline for its completion.
We measure the completion delay of a batch job as the differ-
ence between its completion time and the specified deadline.
We measure the completion delays of the batch jobs sub-
mitted on the SSF day and those submitted one week later
(off-season), and depict their distributions in Fig. 21b. Note
that for the former jobs, their deadlines were extended by 24
hours as they were suspended during the SSF. Fig. 21b shows
that their completion delays follow the same distribution as
those submitted in daily time.
Imbalanced peak CPU load during the SSF. Our current
solution is not without a problem. One issue we observed

(a) CPU utilization. (b) Memory utilization.

Figure 22: Resource utilization of different classes of ap-
plications (transaction-related services (Trans.), other
LC services (LC) and batch jobs (best-effort orBE)) at dif-
ferent time moments: one day before the SSF (Before),
during the peak traffic of the SSF (On), and 3 hours
after the SSF (After) in four production clusters.

is the uneven peak CPU utilization of different LC services
during the SSF, ranging from close to 0% to 190%, as shown in
Fig. 21c. About 75% of e-commerce applications have a peak
CPU usage lower than 59%. This indicates that the peak CPU
pressure created by the flash crowd traffic is non-uniform
across applications. As mentioned in §2.2, our businesses
rapidly evolve and the LC applications are mainly deployed
as microservices, making it challenging to accurately esti-
mate the required service capacity in the SSF.
Cluster resource utilization. Fig. 22 depicts the average
utilization of CPU and memory for different classes of appli-
cations in four production clusters at three time moments,
one day before the SSF (Nov. 10, 2021), during the SSF with
peak traffic (Nov. 11, 2021), and 3 hours after the SSF (Nov.
12, 2021). We observe a severely underutilized CPU despite
the close to 100% allocation ratio of both CPU and memory
(not shown in the figure). The reasons are two-fold: 1) our ca-
pacity planning algorithm overestimated the required CPU
quota for a large number of LC applications (Fig. 21c); 2)
although we delayed the execution of non-critical batch jobs
and reduced their CPU usages during the SSF, we did not
proactively reclaim more memory pages from the remaining
running jobs, thus making memory a bottleneck in the SSF.

5.3 Handling Resource Usage Jitters
We next examine the effectiveness of our node-level micro-
management solutions (§4) in the SSF scenario.
Shared CPU pool in the SSF. Like in the off-season peri-
ods, the shared CPU pool (§4.1) plays an important role in
handling CPU jitters in the SSF. The surging traffic during
the SSF can significantly increase the CPU utilization of LC
applications. Take an SSF held in June 2022 as an example,
in the clusters where the shared CPU pools were not con-
figured, the percentage of CPU-throttled LC instances grew



Workload Consolidation in Alibaba Clusters: The Good, the Bad, and the Ugly SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Figure 23: The maximum
(Max), P99, P95, and aver-
age (Avg) shared pool uti-
lization in a cluster of ma-
chines during an SSF in
Jun. 2022. Peak traffic ar-
rived at the 15th minute.

Figure 24: The memory
bandwidth utilization of
LC services and batch
jobs on a machine dur-
ing an SSF in Jun. 2022.
Peak traffic arrived at
the 15th minute.

from 10% (daily average) to 25.85% upon the arrival of the
flash crowd traffic in the SSF. This is not the case in the clus-
ters where the shared CPU pool is enabled. Fig. 23 shows the
maximum (Max), the 99th and 95th percentile (P99 and P95),
and the average (Avg) CPU utilization of the share pools on
a cluster of machines upon the arrival of the peak traffic in
this SSF. Across all machines, the shared pool utilization was
maintained below 𝑈𝐻 = 45%. Only 1.74% of LC instances
experienced CPU throttles during the SSF (not shown in the
figure), which was far less than that in the clusters where
the shared CPU pools were not enabled (25.85%).
DRC-basedmemory bandwidth control. While non-critical
batch jobs are suspended during SSFs, the critical ones are
still running, which consume a small amount of CPUs and
memory bandwidth. Fig. 24 shows how the memory band-
width utilization of LC services and batch jobs on a ma-
chine (DRC enabled) changed during the aforementioned
SSF in June 2022. When the peak traffic arrived (at the 15th
minute), LC services’ utilization ramped up, at which point
DRC immediately reduced the memory bandwidth limit set
to the batch jobs and ensured that the overall memory band-
width utilization remained at around 40%. This is expected
because our DRC management algorithm prevents the mem-
ory bandwidth utilization from exceeding 60%, which would
cause bandwidth contention among the colocated applica-
tions (§4.2).

5.4 Discussion and Open Challenges
More accurate capacity planning. During SSFs, appli-
cations have diverse peak-to-normal load ratios, as shown
in Fig. 19, demanding highly divergent capacity increases.
However, our current capacity planning algorithm is coarse-
grained, leading to an uneven distribution of CPU utilization
of applications (Fig. 21c). More accurate capacity estima-
tions are hence desired to enable fine-grained planning for
improved resource efficiency and service quality in SSFs.

Memory reclamation for postponed batch jobs. Proac-
tively reclaiming more idle memory pages from running
batch jobs can improve resource utilization during SSFs. Be-
fore the arrival of SSF, we should configure a larger memory
reclamation threshold to aggressively reclaimmore idlemem-
ory pages of batch jobs. Moreover, as a large number of batch
jobs are running in Kata containers, proactively reclaiming
Kata containers’ idle memory (discussed in §3.4) can also
improve the resource utilization in SSFs.
Potential bottlenecks. Ideally, the utilization of each node’s
shared CPU pool should strictly stay below 45%. But the un-
balanced utilization distribution (Fig. 15b) leads to around 1%
shared pools approaching 25% when the peak traffic arrived
in the SSF (Fig. 23). Memory bandwidth is also a potential
bottleneck: referring to Fig. 24, the memory bandwidth uti-
lization of the LC applications running on a machine reached
around 25% when the peak traffic arrived. To ensure that the
memory access latency remained low, DRC kept the overall
memory bandwidth utilization below 45% during this period.
How far are we away from the optimum CPU utiliza-
tion? Without considering the limitations brought by the
shared CPU pool and memory bandwidth, we estimate that
the maximum achievable CPU utilization in SSFs is around
48% in the aforementioned four production clusters. Despite
a potentially large improvement space of CPU utilization in
SSFs, we believe that the current utilization level meets our
business expectations. We therefore leave it as a future work
to further improve CPU utilization without compromising
the service quality.
Can batch jobs experience less delay? Although we cur-
rently do not have a mature solution to further improve
resource utilization during SSFs, we can temporarily (within
a few hours) loan some idle resources from the other non-
core clusters located in different geographical regions to run
the queued batch jobs for reduced completion delay. We have
validated the feasibility of this workaround in an SSF held
in summer 2022: the delays of the batch jobs were reduced
from one day to 1–1.5 hours.

6 RELATEDWORK
Memory reclamation and overcommitment. Proactive
memory reclamation offers an effective solution to address
the memory bottleneck in large clusters. In Google’s clusters,
infrequently used memory pages are evicted to far mem-
ory [29], where the reclamation parameters are auto-tuned
using reinforcement learning. This approach requires op-
erators to estimate the maximum page miss ratio that is
tolerable to each application, and does not address how to
overcommit memory to low-priority tasks. Meta’s TMO [53]
periodically reclaims cold memory pages based on the PSI
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metric [10]. Compared to our approach, TMO does not dif-
ferentiate high-priority LC services from low-priority batch
jobs, and does not allow the latter to loan idle resources from
the former.

As for resource overcommitment, in [4], Google proposes
a clairvoyant overcommitment policy based on the predicted
future resource usage. This approach does not solve our
problem: given the consistently high memory footprints of
LC instances, there is little space to overcommit the other
underutilized resources to batch jobs at night, which we
address with tidal scaling. Prior works also studied how
to detect and eliminate memory pressure in the context of
overcommitment. Notably, OA Killer [8] detects memory
pressure and evicts the low-priority jobs in the Linux kernel
to achieve a low eviction latency.When the availablememory
space becomes small, resource deflation [45] compresses the
memory pages of low-priority jobs to avoid out-of-memory
errors. Compared to these works, we report our operational
experiences of memory reclamation and overcommitment
in production clusters running e-commerce workloads.
Auto-scaling. Auto-scaling plays a key role in workload
consolidation, which can be broadly categorized into two ap-
proaches. The first is horizontal scaling, which automatically
adjusts the number of instance replicas in response to the
load changes. Facebook’s Twine [46] and Microsoft’s SEAG-
ULL [40] make horizontal scaling decisions based on the
prediction of future resource demands. However, horizontal
scaling is too slow to handle the surging traffic volumes in
SSFs, and cannot make quality placement decisions quickly
at our scale. The second auto-scaling approach is vertical
scaling, which dynamically adjusts an instance’s resource
allocation to reduce resource slack, OOMs, and CPU throt-
tles. For example, Amazon EC2 Auto-scaling [2] and Netflix’s
Scryer [38] vertically scale the VM instances based on the
estimation of future traffic load. Google’s Autopilot [43] uses
reinforcement learning to right-size a container instance.
However, vertical scalers cannot handle large-scale diurnal
traffic variations, load spikes in SSFs, frequent, micro-scale
CPU bursts, or memory bandwidth contentions.
QoS management with shared resources. Managing ap-
plications’ QoS by reducing contention on shared resources
in the context of colocation has been an active research
topic in recent years. Some cluster schedulers predict the
interference caused by colocation, and then adjust resource
allocations at runtime or disallow resource sharing [5, 11,
13, 15, 16, 25, 35, 56–58, 60]. Another approach is to leverage
OS- and hardware-level fine-grained resource partitioning to
eliminate interference [7, 26, 27, 32, 44, 51, 55, 59]. However,
these approaches cannot manage bursty CPU load spikes in
CFS periods. Apart from Intel’s DRC [59], there is no hard-
ware solution to dynamically partition memory bandwidth
between the colocated applications.

Constraint-aware scheduling. Container placement in
production clusters needs to meet a number of constraints
such as hardware requirements, fault tolerance, resource
contentions, and incremental deployment [1, 21]. Existing
works address this problem using integer linear program-
ming [20, 48], feedback control [32], and learning-based ap-
proaches [3, 12, 14, 31, 37, 39, 41, 50, 56]. Many of these
works avoid harmful interference by preventing the contend-
ing jobs from being colocated [12, 14, 33, 34, 37, 39, 41, 42].
However, they do not consider scheduling CPU-bursty work-
loads and minimizing their interference, nor do they explore
how to rapidly scale up services when there is a large volume
of traffic surging in a short period of time.

7 CONCLUSION
This paper documents the operational practice of workload
consolidation in Alibaba’s clusters for reduced cost and un-
compromised service performance. A number of macro- and
micro-management techniques have been developed. At the
cluster level, the consistently high memory footprints of LC
services limit the idle resources from being utilized by the
collocated batch jobs. Our system addresses this problem
by proactively reclaiming the cold memory pages of LC ser-
vices and diurnally awakening/suspending the LC instances
with tidal scaling. At the node level, frequent fluctuations
of resource usage harm the collocated LC and batch work-
loads. Our system uses a shared CPU pool together with a
burstable, throttle-aware CFS scheduler to handle frequent
CPU jitters of LC instances. It also uses the newly introduced
DRCmodule to control the contention of memory bandwidth.
We have also shared our operational experiences in handling
the extreme load pressure created by the flash crowd traffic
during seasonal shopping festivals.
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