
Dynamic Cloud Resource Reservation
via Cloud Brokerage

Wei Wang*, Di Niu+, Baochun Li*, Ben Liang*
* Department of Electrical and Computer Engineering, University of Toronto
+ Department of Electrical and Computer Engineering, University of Alberta

July 10, 2013

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Growing Cloud Computing Costs

Drastic increase in enterprise spending on Infrastructure-as-a-
Service (IaaS) clouds

41.7% annual growth rate by 2016 [CloudTimes’12]
IaaS cloud will be the fastest-growing segment among all cloud
services

2

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Tradeoffs in Cloud Pricing Options

On-demand instances

No commitment
Pay-as-you-go

Reserved instances

Reservation fee + discounted price
Suitable for long-term usage commitment

3

12-10-03 7:55 PMAmazon EC2 Pricing

Page 1 of 9http://aws.amazon.com/ec2/pricing/

Region: US East (N. Virginia)

Amazon EC2 Pricing

Pay only for what you use. There is no minimum fee. Estimate your monthly bill using AWS Simple Monthly Calculator.
The prices listed are based on the Region in which your instance is running. For a detailed comparison between On-
Demand Instances, Reserved Instances and Spot Instances, see Amazon EC2 Instance Purchasing Options.

Free Tier*

As part of AWS’s Free Usage Tier, new AWS customers can get started with Amazon EC2 for free. Upon sign-up,
new AWS customers receive the following EC2 services each month for one year:

750 hours of EC2 running Linux/Unix Micro instance usage

750 hours of EC2 running Microsoft Windows Server Micro instance usage

750 hours of Elastic Load Balancing plus 15 GB data processing

30 GB of Amazon EBS Standard volume storage plus 2 million IOs and 1 GB snapshot storage

15 GB of bandwidth out aggregated across all AWS services

1 GB of Regional Data Transfer

On-Demand Instances

On-Demand Instances let you pay for compute capacity by the hour with no long-term commitments. This frees you
from the costs and complexities of planning, purchasing, and maintaining hardware and transforms what are
commonly large fixed costs into much smaller variable costs.

The pricing below includes the cost to run private and public AMIs on the specified operating system (“Windows Usage”
prices apply to Windows Server® 2003 R2, 2008 and 2008 R2). Amazon also provides you with additional instances
for Amazon EC2 running Microsoft Windows with SQL Server, Amazon EC2 running SUSE Linux Enterprise Server,
Amazon EC2 running Red Hat Enterprise Linux and Amazon EC2 running IBM that are priced differently.

Linux/UNIX Usage Windows Usage

Standard On-Demand Instances

Small (Default) $0.080 per Hour $0.115 per Hour

Medium $0.160 per Hour $0.230 per Hour

Large $0.320 per Hour $0.460 per Hour

Extra Large $0.640 per Hour $0.920 per Hour

Micro On-Demand Instances

Micro $0.020 per Hour $0.020 per Hour

High-Memory On-Demand Instances

Extra Large $0.450 per Hour $0.570 per Hour

Double Extra Large $0.900 per Hour $1.140 per Hour

Quadruple Extra Large $1.800 per Hour $2.280 per Hour

Amazon EC2 Details

EC2 Overview

EC2 FAQs

EC2 Pricing

Amazon EC2 SLA

EC2 Instance Types

EC2 Instance Purchasing
Options

Reserved Instances

Spot Instances

Windows Instances

Amazon EC2 Features

Elastic Block Store

Amazon CloudWatch

Auto Scaling

Elastic Load Balancing

High Performance
Computing

VM Import/Export

AWS Management Console

Documentation

Release Notes

Developer Tools

Sample Code & Libraries

Developer Tools

Articles & Tutorials

Amazon Machine Images
(AMIs)

Public Data Sets on AWS

Community Forum

Related Resources

Amazon Web Services

AWS Product InformationAWS Products & Solutions Developers Support

Sign Up My Account / Console English

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

On-demand v.s. Reservation

4

Pros Cons

On-demand 1. Flexible
2. Fits sporadic workload

Expensive for long-
term usage

Reservation Cost efficient for long-
term usage

1. Long-term usage
commitment
2. Expensive for
sporadic workload

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

User’s Problem

Hard to choose among different pricing options

Lacks sufficient expertise

Cost savings due to the reservation option are not always
possible

Depends on the user’s own demand pattern
Must be long-term and heavy usage

5

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Can we go beyond the
limitation of demand

pattern of a single user and
lower the cost?

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

A Cloud Brokerage Service

A cloud broker reserves a large pool of instances

Users purchase instances from the broker in an “on-demand”
fashion

7

the bet that one user’s wasted idle time in the billing cycle
can be “recycled” to serve other users. It is through these
mechanisms that the broker reduces the expenses for cloud
users, while turning profits for itself.

However, a major challenge in operating such a broker
is the decision on how many instances the broker should
reserve, how many instances it should launch on demand,
and when to reserve, as the demands change dynamically
over time. To solve this challenge, we formulate the prob-
lem of dynamic instance reservation given user demand data,
and derive the optimal reservation strategy via dynamic pro-
gramming. Unfortunately, such dynamic programming is
computationally prohibitive. We propose two efficient ap-
proximate algorithms that we prove to offer worst-case cost
guarantees. We also propose an effective online algorithm
that makes reservation decisions without having access to
future demand information.

We conduct large-scale simulations driven by 180 GB of
Google cluster usage traces [7] involving 933 cloud users’
workload in a recent month. We empirically evaluate the
aggregate and individual cost savings brought forth by the
broker, under the proposed reservation strategies. Our re-
sults suggest that the broker is the most beneficial for users
with medium demand fluctuations, reducing their total ex-
penses by more than 40%. As for general users, 70% of
them receive discounts more than 25%. This amounts to a
total saving of over $100K for all the users tested in one
month. Such cost savings are more significant in IaaS clouds
adopting longer reservation periods or longer billing cycles.

The remainder of this paper is organized as follows. We
propose our cloud broker in Sec. 2, and formulate the dy-
namic resource reservation problem in Sec. 3. We use dy-
namic programming to characterize the optimal solutions in
Sec. 4 and point out the related complexity issues. In Sec. 5,
we propose efficient approximate solutions to the reserva-
tion problem. The empirical evaluations based on real-world
traces are presented in Sec. 6. We discuss related work in
Sec. 7 and conclude the paper in Sec. 8.

2. A PROFITABLE CLOUD BROKER
Most IaaS clouds provide users with multiple purchasing

options, including on-demand instances, reserved instances,
and other instance types [1, 3, 5, 6, 9, 12]. On-demand in-
stances allow users to pay a fixed rate in every billing cy-
cle (e.g., an hour) with no commitment. For example, if
the hourly rate of an on-demand instance is p, an instance
that has run for n hours is charged n · p. As another pur-
chasing option, a reserved instance allows a user to pay a
one-time fee to reserve an instance for a certain amount of
time, with reservation pricing policies subtly different across
cloud providers. In most cases, the cost of a reserved in-
stance is fixed. For example, in [3, 5, 6, 9, 12, 20], the cost
of a reserved instance is equal to the reservation fee. As an-
other example, in Amazon EC2 [1], the cost of a Heavy Uti-
lization Reserved Instance is a reservation fee plus a heavily

Broker

User

User

User

IaaS Cloud
Providers

Reserved/On-demand
Instances

"On-demand"
Instances

. . .
. . .

Broker cost User cost

Figure 1: The proposed cloud broker. Solid arrows show the
direction of instance provisioning; dashed arrows show the
direction of money flow.

User 1 User 1

User 2

Billing cycle (an instance-hour)

User 1 User 1User 2

Without broker

With broker

Instance 1

Instance 2

Figure 2: The broker can time-multiplex partial usage from
different users in the same instance-hour. In this case, serv-
ing two users only takes one instance-hour, instead of two.

discounted hourly rate charged over the entire reservation
period, no matter whether it is used or not. EC2 also of-
fers other reservation options (e.g., Light/Medium Utiliza-
tion Reserved Instances), with cost dependent on the actual
usage time of the reserved instance. Throughout the pa-
per, we limit our discussions to reservations with fixed costs,
which represent the most common cases in IaaS clouds.

We propose a profitable cloud broker that can save ex-
penses for cloud users. As illustrated in Fig. 1, the broker
reserves a large pool of instances from the cloud providers
to serve a major part of incoming user demand, while accom-
modating request bursts by launching on-demand instances.
The broker pays IaaS clouds to retrieve instances while col-
lecting revenue from users through its own pricing policy.
From the perspective of users, their behavior resembles launch-
ing instances “on demand” provided by the broker, yet at a
lower price. The broker can reduce the total service cost and
reward the savings to users mainly through demand aggre-
gation, with the following benefits:

Better exploiting reservation options: The broker ag-
gregates the demand from a large number of users for ser-
vice, smoothing out individual bursts in the aggregated de-
mand curve, which is more stable and suitable for service
through reservation. In contrast, individual users usually
have bursty and sporadic demands, which are not friendly
to the reservation option.

Reducing wasted cost due to partial usage: Partial us-
age of a billing cycle always incurs a full-cycle charge, mak-
ing users pay for more than what they use. As illustrated
in Fig. 2, without the broker, Users 1 and 2 each have to
purchase one instance-hour, and pay the hourly rate even
if they only use the hour partially. In contrast, the broker
can use a single instance-hour to serve both users by time-
multiplexing their usage, reducing the total service cost by
one half. Such a benefit can be realized at the broker by

2

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Why cloud broker?

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Better Exploiting Reservation Options

Statistical multiplexing increases the utilization of reserved
instances

Aggregating all users’ demands smoothes out the “bursts”
A "at demand curve is more friendly to reserved instances
The “true cost” of reserved instance is reduced due to the increased
instance utilization

9

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Reducing Wasted Cost Due to Partial Usage

Alleviate the pricing inefficiency of on-demand instances

Partial usage is counted as a full billing cycle
The broker can time-multiplex partial usage

10

the bet that one user’s wasted idle time in the billing cycle
can be “recycled” to serve other users. It is through these
mechanisms that the broker reduces the expenses for cloud
users, while turning profits for itself.

However, a major challenge in operating such a broker
is the decision on how many instances the broker should
reserve, how many instances it should launch on demand,
and when to reserve, as the demands change dynamically
over time. To solve this challenge, we formulate the prob-
lem of dynamic instance reservation given user demand data,
and derive the optimal reservation strategy via dynamic pro-
gramming. Unfortunately, such dynamic programming is
computationally prohibitive. We propose two efficient ap-
proximate algorithms that we prove to offer worst-case cost
guarantees. We also propose an effective online algorithm
that makes reservation decisions without having access to
future demand information.

We conduct large-scale simulations driven by 180 GB of
Google cluster usage traces [7] involving 933 cloud users’
workload in a recent month. We empirically evaluate the
aggregate and individual cost savings brought forth by the
broker, under the proposed reservation strategies. Our re-
sults suggest that the broker is the most beneficial for users
with medium demand fluctuations, reducing their total ex-
penses by more than 40%. As for general users, 70% of
them receive discounts more than 25%. This amounts to a
total saving of over $100K for all the users tested in one
month. Such cost savings are more significant in IaaS clouds
adopting longer reservation periods or longer billing cycles.

The remainder of this paper is organized as follows. We
propose our cloud broker in Sec. 2, and formulate the dy-
namic resource reservation problem in Sec. 3. We use dy-
namic programming to characterize the optimal solutions in
Sec. 4 and point out the related complexity issues. In Sec. 5,
we propose efficient approximate solutions to the reserva-
tion problem. The empirical evaluations based on real-world
traces are presented in Sec. 6. We discuss related work in
Sec. 7 and conclude the paper in Sec. 8.

2. A PROFITABLE CLOUD BROKER
Most IaaS clouds provide users with multiple purchasing

options, including on-demand instances, reserved instances,
and other instance types [1, 3, 5, 6, 9, 12]. On-demand in-
stances allow users to pay a fixed rate in every billing cy-
cle (e.g., an hour) with no commitment. For example, if
the hourly rate of an on-demand instance is p, an instance
that has run for n hours is charged n · p. As another pur-
chasing option, a reserved instance allows a user to pay a
one-time fee to reserve an instance for a certain amount of
time, with reservation pricing policies subtly different across
cloud providers. In most cases, the cost of a reserved in-
stance is fixed. For example, in [3, 5, 6, 9, 12, 20], the cost
of a reserved instance is equal to the reservation fee. As an-
other example, in Amazon EC2 [1], the cost of a Heavy Uti-
lization Reserved Instance is a reservation fee plus a heavily

Broker

User

User

User

IaaS Cloud
Providers

Reserved/On-demand
Instances

"On-demand"
Instances

. . .
. . .

Broker cost User cost

Figure 1: The proposed cloud broker. Solid arrows show the
direction of instance provisioning; dashed arrows show the
direction of money flow.

User 1 User 1

User 2

Billing cycle (an instance-hour)

User 1 User 1User 2

Without broker

With broker

Instance 1

Instance 2

Figure 2: The broker can time-multiplex partial usage from
different users in the same instance-hour. In this case, serv-
ing two users only takes one instance-hour, instead of two.

discounted hourly rate charged over the entire reservation
period, no matter whether it is used or not. EC2 also of-
fers other reservation options (e.g., Light/Medium Utiliza-
tion Reserved Instances), with cost dependent on the actual
usage time of the reserved instance. Throughout the pa-
per, we limit our discussions to reservations with fixed costs,
which represent the most common cases in IaaS clouds.

We propose a profitable cloud broker that can save ex-
penses for cloud users. As illustrated in Fig. 1, the broker
reserves a large pool of instances from the cloud providers
to serve a major part of incoming user demand, while accom-
modating request bursts by launching on-demand instances.
The broker pays IaaS clouds to retrieve instances while col-
lecting revenue from users through its own pricing policy.
From the perspective of users, their behavior resembles launch-
ing instances “on demand” provided by the broker, yet at a
lower price. The broker can reduce the total service cost and
reward the savings to users mainly through demand aggre-
gation, with the following benefits:

Better exploiting reservation options: The broker ag-
gregates the demand from a large number of users for ser-
vice, smoothing out individual bursts in the aggregated de-
mand curve, which is more stable and suitable for service
through reservation. In contrast, individual users usually
have bursty and sporadic demands, which are not friendly
to the reservation option.

Reducing wasted cost due to partial usage: Partial us-
age of a billing cycle always incurs a full-cycle charge, mak-
ing users pay for more than what they use. As illustrated
in Fig. 2, without the broker, Users 1 and 2 each have to
purchase one instance-hour, and pay the hourly rate even
if they only use the hour partially. In contrast, the broker
can use a single instance-hour to serve both users by time-
multiplexing their usage, reducing the total service cost by
one half. Such a benefit can be realized at the broker by

2

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Enjoying Volume Discounts

Most IaaS clouds offer signi#cant volume discounts

Amazon provides 20% or even higher volume discounts in EC2
The sheer volume of the aggregated demand makes cloud broker
easily qualify for such discounts

11

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

A Win-Win Solution

Users receive a lower price when trading with the broker

No upfront payment for reservation
No money wasted on idled reservation instances

Broker makes pro#t by leveraging the wholesale (reservation)
model

A signi#cant price gap between on-demand and reserved instances
Aggregate demand is more amenable to the reservation option

12

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

How many instances
should a broker reserve?

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

On-demand and Reserved Pricing

On-demand instances

Fixed hourly rate p

Reserved instances

Upfront reservation fee:
Reservation period:

Instances reserved at time t:

of reserved instances that are effective at time t

14

�

⌧

rt

scheduling the aggregated user demands to the pooled in-
stances. It is worth noting that such a benefit is conditioned
on whether switching users on an instance incurs additional
cost charged by the cloud, which we will further discuss in
Sec. 6.6.

Enjoying volume discounts: Most IaaS clouds offer sig-
nificant volume discounts to those who have purchased a
large number of instances. For example, Amazon provides
20% or even higher volume discounts in EC2 [1]. Due to the
sheer volume of the aggregated demand, the cloud broker
can easily qualify for such discounts, which further reduces
the cost of serving all the users.

The main technical challenge to operate such a brokerage
service is how to serve the aggregated user demands at the
minimum cost, by dynamically and efficiently making in-
stance reservation decisions based on the huge demand data
collected from users. This will be the theme of the following
sections.

3. DYNAMIC RESOURCE RESERVATION
In this section, we formulate the broker’s optimal instance

reservation problem to satisfy given demands, with an ob-
jective of cost minimization. The broker asks cloud users to
submit their demand estimates over a certain horizon, based
on which dynamic reservation decisions are made. Note that
even if a user trades directly with cloud providers, it needs to
estimate its future demand to decide how many instances to
reserve at a particular time. In the case where users are un-
able to estimate demand at all, we propose an online reserva-
tion strategy in Sec. 5.3 to make decisions based on history.

Suppose cloud users submit to the broker their demand
estimates up to time T into the future (in terms of billing
cycles). The broker aggregate all the demands. Suppose it
requires dt instances in total to accommodate all the requests
at time t, t = 1, 2, . . . , T . The broker makes a decision to
reserve rt instances at time t, with rt � 0. Each reserved
instance will be effective from t to t + ⌧ � 1, with ⌧ being
the reservation period.

At time t, the number of reserved instances that remain
effective is nt =

Pt
i=t�⌧+1 ri. Note that these nt reserved

instances may not be sufficient to accommodate the aggre-
gate demand dt. The broker thus needs to launch (dt�nt)

+

additional on-demand instances at time t, where X+
:=

max{0, X}.
Let � denote the one-time reservation fee for each re-

served instance, and p denote the price of running an on-
demand instance per billing cycle. Hence, the total cost to
accommodate all the demands d1, . . . , dT is

PT
t=1 rt� +

PT
t=1(dt � nt)

+p , (1)

where the first term is the total cost of reservations and the
second is the cost of all on-demand instances. The broker’s
problem is to make dynamic reservation decisions r1, . . . , rT

4

0
1
2
3

Stage

of

 re
se

rv
at

io
ns

1 1 1
2 2 2

2

3 3
3

3
1 2 3 4 5 6 7

4 4 4 4
5 108 9

1

Figure 3: State illustration. The reservation period is ⌧ = 4.
All four reservations are highlighted as the shaded area. At
stage 2, s2 = (2, 2, 2, 1).

to minimize its total cost, i.e.,

min

{r1,...,rT }
cost =

PT
t=1 rt� +

PT
t=1(dt � nt)

+p . (2)

Problem (2) is integer programming. In general, complex
combinatorial methods are needed to solve it.

4. DYNAMIC PROGRAMMING:
THE OPTIMALITY AND LIMITATIONS

In this section, we resort to dynamic programming to char-
acterize the optimal solution to problem (2). Using a set
of recursive Bellman equations, the original combinatorial
optimization problem can be decomposed into a number of
subproblems, each of which can be solved efficiently. How-
ever, we also point out that computing such a dynamic pro-
gramming is practically infeasible, and is highly inefficient
to handle a large amount of data.

4.1 Dynamic Programming Formulation
We start by defining stages and states. The decision prob-

lem (2) consists of T stages, each representing a billing cy-
cle. A state at stage t is denoted by a ⌧ -tuple st := (t, x1, . . . , x⌧�1),
where xi denotes the number of instances that are reserved
no later than t and remain effective at stage t + i, for i =

1, . . . , ⌧ � 1. Here, we use a ⌧ -tuple to represent a state be-
cause no instance reserved before or at stage t will remain
effective after stage t + ⌧ � 1. And it is easy to check that
x1 � · · · � x⌧�1. For example, in Fig. 3, three instances are
reserved at stage 1, 2, and 3, respectively, with a reservation
period ⌧ = 4. We see that at stage 2, s2 = (2, 2, 2, 1), where
the second element is 2 because two instances are reserved
no later than stage 2 and remain effective at stage 3.

We note that given state st�1 := (t � 1, y1, . . . , y⌧�1) at
the previous stage, the current state st := (t, x1, . . . , x⌧�1)

is independent of the states st�2, st�3, In fact, st can be
characterized by st�1, with state transition equations:

xi = yi+1 + x⌧�1, i = 1, . . . , ⌧ � 2. (3)

To see the rationale behind (3), let us consider a state st in
Fig. 4. At stage t + ⌧ � 1, there are x⌧�1 reservations that
remain effective. Clearly, all these reservations are made at
stage t (because the reservations made before stage t have
all expired at t + ⌧ � 1), i.e., rt = x⌧�1, rt being the

3

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Dynamic Resource Reservation

Cloud users submit demand predictions to the broker

Broker reserves instances based on the aggregate demand

Total cost = Reservation cost + On-demand cost

where,

15

scheduling the aggregated user demands to the pooled in-
stances. It is worth noting that such a benefit is conditioned
on whether switching users on an instance incurs additional
cost charged by the cloud, which we will further discuss in
Sec. 6.6.

Enjoying volume discounts: Most IaaS clouds offer sig-
nificant volume discounts to those who have purchased a
large number of instances. For example, Amazon provides
20% or even higher volume discounts in EC2 [1]. Due to the
sheer volume of the aggregated demand, the cloud broker
can easily qualify for such discounts, which further reduces
the cost of serving all the users.

The main technical challenge to operate such a brokerage
service is how to serve the aggregated user demands at the
minimum cost, by dynamically and efficiently making in-
stance reservation decisions based on the huge demand data
collected from users. This will be the theme of the following
sections.

3. DYNAMIC RESOURCE RESERVATION
In this section, we formulate the broker’s optimal instance

reservation problem to satisfy given demands, with an ob-
jective of cost minimization. The broker asks cloud users to
submit their demand estimates over a certain horizon, based
on which dynamic reservation decisions are made. Note that
even if a user trades directly with cloud providers, it needs to
estimate its future demand to decide how many instances to
reserve at a particular time. In the case where users are un-
able to estimate demand at all, we propose an online reserva-
tion strategy in Sec. 5.3 to make decisions based on history.

Suppose cloud users submit to the broker their demand
estimates up to time T into the future (in terms of billing
cycles). The broker aggregate all the demands. Suppose it
requires dt instances in total to accommodate all the requests
at time t, t = 1, 2, . . . , T . The broker makes a decision to
reserve rt instances at time t, with rt � 0. Each reserved
instance will be effective from t to t + ⌧ � 1, with ⌧ being
the reservation period.

At time t, the number of reserved instances that remain
effective is nt =

Pt
i=t�⌧+1 ri. Note that these nt reserved

instances may not be sufficient to accommodate the aggre-
gate demand dt. The broker thus needs to launch (dt�nt)

+

additional on-demand instances at time t, where X+
:=

max{0, X}.
Let � denote the one-time reservation fee for each re-

served instance, and p denote the price of running an on-
demand instance per billing cycle. Hence, the total cost to
accommodate all the demands d1, . . . , dT is

PT
t=1 rt� +

PT
t=1(dt � nt)

+p , (1)

where the first term is the total cost of reservations and the
second is the cost of all on-demand instances. The broker’s
problem is to make dynamic reservation decisions r1, . . . , rT

4

0
1
2
3

Stage

of

 re
se

rv
at

io
ns

1 1 1
2 2 2

2

3 3
3

3
1 2 3 4 5 6 7

4 4 4 4
5 108 9

1

Figure 3: State illustration. The reservation period is ⌧ = 4.
All four reservations are highlighted as the shaded area. At
stage 2, s2 = (2, 2, 2, 1).

to minimize its total cost, i.e.,

min

{r1,...,rT }
cost =

PT
t=1 rt� +

PT
t=1(dt � nt)

+p . (2)

Problem (2) is integer programming. In general, complex
combinatorial methods are needed to solve it.

4. DYNAMIC PROGRAMMING:
THE OPTIMALITY AND LIMITATIONS

In this section, we resort to dynamic programming to char-
acterize the optimal solution to problem (2). Using a set
of recursive Bellman equations, the original combinatorial
optimization problem can be decomposed into a number of
subproblems, each of which can be solved efficiently. How-
ever, we also point out that computing such a dynamic pro-
gramming is practically infeasible, and is highly inefficient
to handle a large amount of data.

4.1 Dynamic Programming Formulation
We start by defining stages and states. The decision prob-

lem (2) consists of T stages, each representing a billing cy-
cle. A state at stage t is denoted by a ⌧ -tuple st := (t, x1, . . . , x⌧�1),
where xi denotes the number of instances that are reserved
no later than t and remain effective at stage t + i, for i =

1, . . . , ⌧ � 1. Here, we use a ⌧ -tuple to represent a state be-
cause no instance reserved before or at stage t will remain
effective after stage t + ⌧ � 1. And it is easy to check that
x1 � · · · � x⌧�1. For example, in Fig. 3, three instances are
reserved at stage 1, 2, and 3, respectively, with a reservation
period ⌧ = 4. We see that at stage 2, s2 = (2, 2, 2, 1), where
the second element is 2 because two instances are reserved
no later than stage 2 and remain effective at stage 3.

We note that given state st�1 := (t � 1, y1, . . . , y⌧�1) at
the previous stage, the current state st := (t, x1, . . . , x⌧�1)

is independent of the states st�2, st�3, In fact, st can be
characterized by st�1, with state transition equations:

xi = yi+1 + x⌧�1, i = 1, . . . , ⌧ � 2. (3)

To see the rationale behind (3), let us consider a state st in
Fig. 4. At stage t + ⌧ � 1, there are x⌧�1 reservations that
remain effective. Clearly, all these reservations are made at
stage t (because the reservations made before stage t have
all expired at t + ⌧ � 1), i.e., rt = x⌧�1, rt being the

3

scheduling the aggregated user demands to the pooled in-
stances. It is worth noting that such a benefit is conditioned
on whether switching users on an instance incurs additional
cost charged by the cloud, which we will further discuss in
Sec. 6.6.

Enjoying volume discounts: Most IaaS clouds offer sig-
nificant volume discounts to those who have purchased a
large number of instances. For example, Amazon provides
20% or even higher volume discounts in EC2 [1]. Due to the
sheer volume of the aggregated demand, the cloud broker
can easily qualify for such discounts, which further reduces
the cost of serving all the users.

The main technical challenge to operate such a brokerage
service is how to serve the aggregated user demands at the
minimum cost, by dynamically and efficiently making in-
stance reservation decisions based on the huge demand data
collected from users. This will be the theme of the following
sections.

3. DYNAMIC RESOURCE RESERVATION
In this section, we formulate the broker’s optimal instance

reservation problem to satisfy given demands, with an ob-
jective of cost minimization. The broker asks cloud users to
submit their demand estimates over a certain horizon, based
on which dynamic reservation decisions are made. Note that
even if a user trades directly with cloud providers, it needs to
estimate its future demand to decide how many instances to
reserve at a particular time. In the case where users are un-
able to estimate demand at all, we propose an online reserva-
tion strategy in Sec. 5.3 to make decisions based on history.

Suppose cloud users submit to the broker their demand
estimates up to time T into the future (in terms of billing
cycles). The broker aggregate all the demands. Suppose it
requires dt instances in total to accommodate all the requests
at time t, t = 1, 2, . . . , T . The broker makes a decision to
reserve rt instances at time t, with rt � 0. Each reserved
instance will be effective from t to t + ⌧ � 1, with ⌧ being
the reservation period.

At time t, the number of reserved instances that remain
effective is nt =

Pt
i=t�⌧+1 ri. Note that these nt reserved

instances may not be sufficient to accommodate the aggre-
gate demand dt. The broker thus needs to launch (dt�nt)

+

additional on-demand instances at time t, where X+
:=

max{0, X}.
Let � denote the one-time reservation fee for each re-

served instance, and p denote the price of running an on-
demand instance per billing cycle. Hence, the total cost to
accommodate all the demands d1, . . . , dT is

PT
t=1 rt� +

PT
t=1(dt � nt)

+p , (1)

where the first term is the total cost of reservations and the
second is the cost of all on-demand instances. The broker’s
problem is to make dynamic reservation decisions r1, . . . , rT

4

0
1
2
3

Stage

of

 re
se

rv
at

io
ns

1 1 1
2 2 2

2

3 3
3

3
1 2 3 4 5 6 7

4 4 4 4
5 108 9

1

Figure 3: State illustration. The reservation period is ⌧ = 4.
All four reservations are highlighted as the shaded area. At
stage 2, s2 = (2, 2, 2, 1).

to minimize its total cost, i.e.,

min

{r1,...,rT }
cost =

PT
t=1 rt� +

PT
t=1(dt � nt)

+p . (2)

Problem (2) is integer programming. In general, complex
combinatorial methods are needed to solve it.

4. DYNAMIC PROGRAMMING:
THE OPTIMALITY AND LIMITATIONS

In this section, we resort to dynamic programming to char-
acterize the optimal solution to problem (2). Using a set
of recursive Bellman equations, the original combinatorial
optimization problem can be decomposed into a number of
subproblems, each of which can be solved efficiently. How-
ever, we also point out that computing such a dynamic pro-
gramming is practically infeasible, and is highly inefficient
to handle a large amount of data.

4.1 Dynamic Programming Formulation
We start by defining stages and states. The decision prob-

lem (2) consists of T stages, each representing a billing cy-
cle. A state at stage t is denoted by a ⌧ -tuple st := (t, x1, . . . , x⌧�1),
where xi denotes the number of instances that are reserved
no later than t and remain effective at stage t + i, for i =

1, . . . , ⌧ � 1. Here, we use a ⌧ -tuple to represent a state be-
cause no instance reserved before or at stage t will remain
effective after stage t + ⌧ � 1. And it is easy to check that
x1 � · · · � x⌧�1. For example, in Fig. 3, three instances are
reserved at stage 1, 2, and 3, respectively, with a reservation
period ⌧ = 4. We see that at stage 2, s2 = (2, 2, 2, 1), where
the second element is 2 because two instances are reserved
no later than stage 2 and remain effective at stage 3.

We note that given state st�1 := (t � 1, y1, . . . , y⌧�1) at
the previous stage, the current state st := (t, x1, . . . , x⌧�1)

is independent of the states st�2, st�3, In fact, st can be
characterized by st�1, with state transition equations:

xi = yi+1 + x⌧�1, i = 1, . . . , ⌧ � 2. (3)

To see the rationale behind (3), let us consider a state st in
Fig. 4. At stage t + ⌧ � 1, there are x⌧�1 reservations that
remain effective. Clearly, all these reservations are made at
stage t (because the reservations made before stage t have
all expired at t + ⌧ � 1), i.e., rt = x⌧�1, rt being the

3

of reserved instances that are effective at t

scheduling the aggregated user demands to the pooled in-
stances. It is worth noting that such a benefit is conditioned
on whether switching users on an instance incurs additional
cost charged by the cloud, which we will further discuss in
Sec. 6.6.

Enjoying volume discounts: Most IaaS clouds offer sig-
nificant volume discounts to those who have purchased a
large number of instances. For example, Amazon provides
20% or even higher volume discounts in EC2 [1]. Due to the
sheer volume of the aggregated demand, the cloud broker
can easily qualify for such discounts, which further reduces
the cost of serving all the users.

The main technical challenge to operate such a brokerage
service is how to serve the aggregated user demands at the
minimum cost, by dynamically and efficiently making in-
stance reservation decisions based on the huge demand data
collected from users. This will be the theme of the following
sections.

3. DYNAMIC RESOURCE RESERVATION
In this section, we formulate the broker’s optimal instance

reservation problem to satisfy given demands, with an ob-
jective of cost minimization. The broker asks cloud users to
submit their demand estimates over a certain horizon, based
on which dynamic reservation decisions are made. Note that
even if a user trades directly with cloud providers, it needs to
estimate its future demand to decide how many instances to
reserve at a particular time. In the case where users are un-
able to estimate demand at all, we propose an online reserva-
tion strategy in Sec. 5.3 to make decisions based on history.

Suppose cloud users submit to the broker their demand
estimates up to time T into the future (in terms of billing
cycles). The broker aggregate all the demands. Suppose it
requires dt instances in total to accommodate all the requests
at time t, t = 1, 2, . . . , T . The broker makes a decision to
reserve rt instances at time t, with rt � 0. Each reserved
instance will be effective from t to t + ⌧ � 1, with ⌧ being
the reservation period.

At time t, the number of reserved instances that remain
effective is nt =

Pt
i=t�⌧+1 ri. Note that these nt reserved

instances may not be sufficient to accommodate the aggre-
gate demand dt. The broker thus needs to launch (dt�nt)

+

additional on-demand instances at time t, where X+
:=

max{0, X}.
Let � denote the one-time reservation fee for each re-

served instance, and p denote the price of running an on-
demand instance per billing cycle. Hence, the total cost to
accommodate all the demands d1, . . . , dT is

PT
t=1 rt� +

PT
t=1(dt � nt)

+p , (1)

where the first term is the total cost of reservations and the
second is the cost of all on-demand instances. The broker’s
problem is to make dynamic reservation decisions r1, . . . , rT

4

0
1
2
3

Stage

of

 re
se

rv
at

io
ns

1 1 1
2 2 2

2

3 3
3

3
1 2 3 4 5 6 7

4 4 4 4
5 108 9

1

Figure 3: State illustration. The reservation period is ⌧ = 4.
All four reservations are highlighted as the shaded area. At
stage 2, s2 = (2, 2, 2, 1).

to minimize its total cost, i.e.,

min

{r1,...,rT }
cost =

PT
t=1 rt� +

PT
t=1(dt � nt)

+p . (2)

Problem (2) is integer programming. In general, complex
combinatorial methods are needed to solve it.

4. DYNAMIC PROGRAMMING:
THE OPTIMALITY AND LIMITATIONS

In this section, we resort to dynamic programming to char-
acterize the optimal solution to problem (2). Using a set
of recursive Bellman equations, the original combinatorial
optimization problem can be decomposed into a number of
subproblems, each of which can be solved efficiently. How-
ever, we also point out that computing such a dynamic pro-
gramming is practically infeasible, and is highly inefficient
to handle a large amount of data.

4.1 Dynamic Programming Formulation
We start by defining stages and states. The decision prob-

lem (2) consists of T stages, each representing a billing cy-
cle. A state at stage t is denoted by a ⌧ -tuple st := (t, x1, . . . , x⌧�1),
where xi denotes the number of instances that are reserved
no later than t and remain effective at stage t + i, for i =

1, . . . , ⌧ � 1. Here, we use a ⌧ -tuple to represent a state be-
cause no instance reserved before or at stage t will remain
effective after stage t + ⌧ � 1. And it is easy to check that
x1 � · · · � x⌧�1. For example, in Fig. 3, three instances are
reserved at stage 1, 2, and 3, respectively, with a reservation
period ⌧ = 4. We see that at stage 2, s2 = (2, 2, 2, 1), where
the second element is 2 because two instances are reserved
no later than stage 2 and remain effective at stage 3.

We note that given state st�1 := (t � 1, y1, . . . , y⌧�1) at
the previous stage, the current state st := (t, x1, . . . , x⌧�1)

is independent of the states st�2, st�3, In fact, st can be
characterized by st�1, with state transition equations:

xi = yi+1 + x⌧�1, i = 1, . . . , ⌧ � 2. (3)

To see the rationale behind (3), let us consider a state st in
Fig. 4. At stage t + ⌧ � 1, there are x⌧�1 reservations that
remain effective. Clearly, all these reservations are made at
stage t (because the reservations made before stage t have
all expired at t + ⌧ � 1), i.e., rt = x⌧�1, rt being the

3

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The Cost Minimization Problem

Make dynamic reservation decisions to
accommodate demands

This is an integer program!

16

scheduling the aggregated user demands to the pooled in-
stances. It is worth noting that such a benefit is conditioned
on whether switching users on an instance incurs additional
cost charged by the cloud, which we will further discuss in
Sec. 6.6.

Enjoying volume discounts: Most IaaS clouds offer sig-
nificant volume discounts to those who have purchased a
large number of instances. For example, Amazon provides
20% or even higher volume discounts in EC2 [1]. Due to the
sheer volume of the aggregated demand, the cloud broker
can easily qualify for such discounts, which further reduces
the cost of serving all the users.

The main technical challenge to operate such a brokerage
service is how to serve the aggregated user demands at the
minimum cost, by dynamically and efficiently making in-
stance reservation decisions based on the huge demand data
collected from users. This will be the theme of the following
sections.

3. DYNAMIC RESOURCE RESERVATION
In this section, we formulate the broker’s optimal instance

reservation problem to satisfy given demands, with an ob-
jective of cost minimization. The broker asks cloud users to
submit their demand estimates over a certain horizon, based
on which dynamic reservation decisions are made. Note that
even if a user trades directly with cloud providers, it needs to
estimate its future demand to decide how many instances to
reserve at a particular time. In the case where users are un-
able to estimate demand at all, we propose an online reserva-
tion strategy in Sec. 5.3 to make decisions based on history.

Suppose cloud users submit to the broker their demand
estimates up to time T into the future (in terms of billing
cycles). The broker aggregate all the demands. Suppose it
requires dt instances in total to accommodate all the requests
at time t, t = 1, 2, . . . , T . The broker makes a decision to
reserve rt instances at time t, with rt � 0. Each reserved
instance will be effective from t to t + ⌧ � 1, with ⌧ being
the reservation period.

At time t, the number of reserved instances that remain
effective is nt =

Pt
i=t�⌧+1 ri. Note that these nt reserved

instances may not be sufficient to accommodate the aggre-
gate demand dt. The broker thus needs to launch (dt�nt)

+

additional on-demand instances at time t, where X+
:=

max{0, X}.
Let � denote the one-time reservation fee for each re-

served instance, and p denote the price of running an on-
demand instance per billing cycle. Hence, the total cost to
accommodate all the demands d1, . . . , dT is

PT
t=1 rt� +

PT
t=1(dt � nt)

+p , (1)

where the first term is the total cost of reservations and the
second is the cost of all on-demand instances. The broker’s
problem is to make dynamic reservation decisions r1, . . . , rT

4

0
1
2
3

Stage

of

 re
se

rv
at

io
ns

1 1 1
2 2 2

2

3 3
3

3
1 2 3 4 5 6 7

4 4 4 4
5 108 9

1

Figure 3: State illustration. The reservation period is ⌧ = 4.
All four reservations are highlighted as the shaded area. At
stage 2, s2 = (2, 2, 2, 1).

to minimize its total cost, i.e.,

min

{r1,...,rT }
cost =

PT
t=1 rt� +

PT
t=1(dt � nt)

+p . (2)

Problem (2) is integer programming. In general, complex
combinatorial methods are needed to solve it.

4. DYNAMIC PROGRAMMING:
THE OPTIMALITY AND LIMITATIONS

In this section, we resort to dynamic programming to char-
acterize the optimal solution to problem (2). Using a set
of recursive Bellman equations, the original combinatorial
optimization problem can be decomposed into a number of
subproblems, each of which can be solved efficiently. How-
ever, we also point out that computing such a dynamic pro-
gramming is practically infeasible, and is highly inefficient
to handle a large amount of data.

4.1 Dynamic Programming Formulation
We start by defining stages and states. The decision prob-

lem (2) consists of T stages, each representing a billing cy-
cle. A state at stage t is denoted by a ⌧ -tuple st := (t, x1, . . . , x⌧�1),
where xi denotes the number of instances that are reserved
no later than t and remain effective at stage t + i, for i =

1, . . . , ⌧ � 1. Here, we use a ⌧ -tuple to represent a state be-
cause no instance reserved before or at stage t will remain
effective after stage t + ⌧ � 1. And it is easy to check that
x1 � · · · � x⌧�1. For example, in Fig. 3, three instances are
reserved at stage 1, 2, and 3, respectively, with a reservation
period ⌧ = 4. We see that at stage 2, s2 = (2, 2, 2, 1), where
the second element is 2 because two instances are reserved
no later than stage 2 and remain effective at stage 3.

We note that given state st�1 := (t � 1, y1, . . . , y⌧�1) at
the previous stage, the current state st := (t, x1, . . . , x⌧�1)

is independent of the states st�2, st�3, In fact, st can be
characterized by st�1, with state transition equations:

xi = yi+1 + x⌧�1, i = 1, . . . , ⌧ � 2. (3)

To see the rationale behind (3), let us consider a state st in
Fig. 4. At stage t + ⌧ � 1, there are x⌧�1 reservations that
remain effective. Clearly, all these reservations are made at
stage t (because the reservations made before stage t have
all expired at t + ⌧ � 1), i.e., rt = x⌧�1, rt being the

3

scheduling the aggregated user demands to the pooled in-
stances. It is worth noting that such a benefit is conditioned
on whether switching users on an instance incurs additional
cost charged by the cloud, which we will further discuss in
Sec. 6.6.

Enjoying volume discounts: Most IaaS clouds offer sig-
nificant volume discounts to those who have purchased a
large number of instances. For example, Amazon provides
20% or even higher volume discounts in EC2 [1]. Due to the
sheer volume of the aggregated demand, the cloud broker
can easily qualify for such discounts, which further reduces
the cost of serving all the users.

The main technical challenge to operate such a brokerage
service is how to serve the aggregated user demands at the
minimum cost, by dynamically and efficiently making in-
stance reservation decisions based on the huge demand data
collected from users. This will be the theme of the following
sections.

3. DYNAMIC RESOURCE RESERVATION
In this section, we formulate the broker’s optimal instance

reservation problem to satisfy given demands, with an ob-
jective of cost minimization. The broker asks cloud users to
submit their demand estimates over a certain horizon, based
on which dynamic reservation decisions are made. Note that
even if a user trades directly with cloud providers, it needs to
estimate its future demand to decide how many instances to
reserve at a particular time. In the case where users are un-
able to estimate demand at all, we propose an online reserva-
tion strategy in Sec. 5.3 to make decisions based on history.

Suppose cloud users submit to the broker their demand
estimates up to time T into the future (in terms of billing
cycles). The broker aggregate all the demands. Suppose it
requires dt instances in total to accommodate all the requests
at time t, t = 1, 2, . . . , T . The broker makes a decision to
reserve rt instances at time t, with rt � 0. Each reserved
instance will be effective from t to t + ⌧ � 1, with ⌧ being
the reservation period.

At time t, the number of reserved instances that remain
effective is nt =

Pt
i=t�⌧+1 ri. Note that these nt reserved

instances may not be sufficient to accommodate the aggre-
gate demand dt. The broker thus needs to launch (dt�nt)

+

additional on-demand instances at time t, where X+
:=

max{0, X}.
Let � denote the one-time reservation fee for each re-

served instance, and p denote the price of running an on-
demand instance per billing cycle. Hence, the total cost to
accommodate all the demands d1, . . . , dT is

PT
t=1 rt� +

PT
t=1(dt � nt)

+p , (1)

where the first term is the total cost of reservations and the
second is the cost of all on-demand instances. The broker’s
problem is to make dynamic reservation decisions r1, . . . , rT

4

0
1
2
3

Stage

of

 re
se

rv
at

io
ns

1 1 1
2 2 2

2

3 3
3

3
1 2 3 4 5 6 7

4 4 4 4
5 108 9

1

Figure 3: State illustration. The reservation period is ⌧ = 4.
All four reservations are highlighted as the shaded area. At
stage 2, s2 = (2, 2, 2, 1).

to minimize its total cost, i.e.,

min

{r1,...,rT }
cost =

PT
t=1 rt� +

PT
t=1(dt � nt)

+p . (2)

Problem (2) is integer programming. In general, complex
combinatorial methods are needed to solve it.

4. DYNAMIC PROGRAMMING:
THE OPTIMALITY AND LIMITATIONS

In this section, we resort to dynamic programming to char-
acterize the optimal solution to problem (2). Using a set
of recursive Bellman equations, the original combinatorial
optimization problem can be decomposed into a number of
subproblems, each of which can be solved efficiently. How-
ever, we also point out that computing such a dynamic pro-
gramming is practically infeasible, and is highly inefficient
to handle a large amount of data.

4.1 Dynamic Programming Formulation
We start by defining stages and states. The decision prob-

lem (2) consists of T stages, each representing a billing cy-
cle. A state at stage t is denoted by a ⌧ -tuple st := (t, x1, . . . , x⌧�1),
where xi denotes the number of instances that are reserved
no later than t and remain effective at stage t + i, for i =

1, . . . , ⌧ � 1. Here, we use a ⌧ -tuple to represent a state be-
cause no instance reserved before or at stage t will remain
effective after stage t + ⌧ � 1. And it is easy to check that
x1 � · · · � x⌧�1. For example, in Fig. 3, three instances are
reserved at stage 1, 2, and 3, respectively, with a reservation
period ⌧ = 4. We see that at stage 2, s2 = (2, 2, 2, 1), where
the second element is 2 because two instances are reserved
no later than stage 2 and remain effective at stage 3.

We note that given state st�1 := (t � 1, y1, . . . , y⌧�1) at
the previous stage, the current state st := (t, x1, . . . , x⌧�1)

is independent of the states st�2, st�3, In fact, st can be
characterized by st�1, with state transition equations:

xi = yi+1 + x⌧�1, i = 1, . . . , ⌧ � 2. (3)

To see the rationale behind (3), let us consider a state st in
Fig. 4. At stage t + ⌧ � 1, there are x⌧�1 reservations that
remain effective. Clearly, all these reservations are made at
stage t (because the reservations made before stage t have
all expired at t + ⌧ � 1), i.e., rt = x⌧�1, rt being the

3

scheduling the aggregated user demands to the pooled in-
stances. It is worth noting that such a benefit is conditioned
on whether switching users on an instance incurs additional
cost charged by the cloud, which we will further discuss in
Sec. 6.6.

Enjoying volume discounts: Most IaaS clouds offer sig-
nificant volume discounts to those who have purchased a
large number of instances. For example, Amazon provides
20% or even higher volume discounts in EC2 [1]. Due to the
sheer volume of the aggregated demand, the cloud broker
can easily qualify for such discounts, which further reduces
the cost of serving all the users.

The main technical challenge to operate such a brokerage
service is how to serve the aggregated user demands at the
minimum cost, by dynamically and efficiently making in-
stance reservation decisions based on the huge demand data
collected from users. This will be the theme of the following
sections.

3. DYNAMIC RESOURCE RESERVATION
In this section, we formulate the broker’s optimal instance

reservation problem to satisfy given demands, with an ob-
jective of cost minimization. The broker asks cloud users to
submit their demand estimates over a certain horizon, based
on which dynamic reservation decisions are made. Note that
even if a user trades directly with cloud providers, it needs to
estimate its future demand to decide how many instances to
reserve at a particular time. In the case where users are un-
able to estimate demand at all, we propose an online reserva-
tion strategy in Sec. 5.3 to make decisions based on history.

Suppose cloud users submit to the broker their demand
estimates up to time T into the future (in terms of billing
cycles). The broker aggregate all the demands. Suppose it
requires dt instances in total to accommodate all the requests
at time t, t = 1, 2, . . . , T . The broker makes a decision to
reserve rt instances at time t, with rt � 0. Each reserved
instance will be effective from t to t + ⌧ � 1, with ⌧ being
the reservation period.

At time t, the number of reserved instances that remain
effective is nt =

Pt
i=t�⌧+1 ri. Note that these nt reserved

instances may not be sufficient to accommodate the aggre-
gate demand dt. The broker thus needs to launch (dt�nt)

+

additional on-demand instances at time t, where X+
:=

max{0, X}.
Let � denote the one-time reservation fee for each re-

served instance, and p denote the price of running an on-
demand instance per billing cycle. Hence, the total cost to
accommodate all the demands d1, . . . , dT is

PT
t=1 rt� +

PT
t=1(dt � nt)

+p , (1)

where the first term is the total cost of reservations and the
second is the cost of all on-demand instances. The broker’s
problem is to make dynamic reservation decisions r1, . . . , rT

4

0
1
2
3

Stage

of

 re
se

rv
at

io
ns

1 1 1
2 2 2

2

3 3
3

3
1 2 3 4 5 6 7

4 4 4 4
5 108 9

1

Figure 3: State illustration. The reservation period is ⌧ = 4.
All four reservations are highlighted as the shaded area. At
stage 2, s2 = (2, 2, 2, 1).

to minimize its total cost, i.e.,

min

{r1,...,rT }
cost =

PT
t=1 rt� +

PT
t=1(dt � nt)

+p . (2)

Problem (2) is integer programming. In general, complex
combinatorial methods are needed to solve it.

4. DYNAMIC PROGRAMMING:
THE OPTIMALITY AND LIMITATIONS

In this section, we resort to dynamic programming to char-
acterize the optimal solution to problem (2). Using a set
of recursive Bellman equations, the original combinatorial
optimization problem can be decomposed into a number of
subproblems, each of which can be solved efficiently. How-
ever, we also point out that computing such a dynamic pro-
gramming is practically infeasible, and is highly inefficient
to handle a large amount of data.

4.1 Dynamic Programming Formulation
We start by defining stages and states. The decision prob-

lem (2) consists of T stages, each representing a billing cy-
cle. A state at stage t is denoted by a ⌧ -tuple st := (t, x1, . . . , x⌧�1),
where xi denotes the number of instances that are reserved
no later than t and remain effective at stage t + i, for i =

1, . . . , ⌧ � 1. Here, we use a ⌧ -tuple to represent a state be-
cause no instance reserved before or at stage t will remain
effective after stage t + ⌧ � 1. And it is easy to check that
x1 � · · · � x⌧�1. For example, in Fig. 3, three instances are
reserved at stage 1, 2, and 3, respectively, with a reservation
period ⌧ = 4. We see that at stage 2, s2 = (2, 2, 2, 1), where
the second element is 2 because two instances are reserved
no later than stage 2 and remain effective at stage 3.

We note that given state st�1 := (t � 1, y1, . . . , y⌧�1) at
the previous stage, the current state st := (t, x1, . . . , x⌧�1)

is independent of the states st�2, st�3, In fact, st can be
characterized by st�1, with state transition equations:

xi = yi+1 + x⌧�1, i = 1, . . . , ⌧ � 2. (3)

To see the rationale behind (3), let us consider a state st in
Fig. 4. At stage t + ⌧ � 1, there are x⌧�1 reservations that
remain effective. Clearly, all these reservations are made at
stage t (because the reservations made before stage t have
all expired at t + ⌧ � 1), i.e., rt = x⌧�1, rt being the

3

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Optimal Solution:
Dynamic Programming

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The Curse of Dimensionality

High dimensional dynamic programming

High dimensional state:
 : # of instances that are reserved no later than t and remain
effective at t+i

Exponential time and space complexity

The curse of dimensionality

18

scheduling the aggregated user demands to the pooled in-
stances. It is worth noting that such a benefit is conditioned
on whether switching users on an instance incurs additional
cost charged by the cloud, which we will further discuss in
Sec. 6.6.

Enjoying volume discounts: Most IaaS clouds offer sig-
nificant volume discounts to those who have purchased a
large number of instances. For example, Amazon provides
20% or even higher volume discounts in EC2 [1]. Due to the
sheer volume of the aggregated demand, the cloud broker
can easily qualify for such discounts, which further reduces
the cost of serving all the users.

The main technical challenge to operate such a brokerage
service is how to serve the aggregated user demands at the
minimum cost, by dynamically and efficiently making in-
stance reservation decisions based on the huge demand data
collected from users. This will be the theme of the following
sections.

3. DYNAMIC RESOURCE RESERVATION
In this section, we formulate the broker’s optimal instance

reservation problem to satisfy given demands, with an ob-
jective of cost minimization. The broker asks cloud users to
submit their demand estimates over a certain horizon, based
on which dynamic reservation decisions are made. Note that
even if a user trades directly with cloud providers, it needs to
estimate its future demand to decide how many instances to
reserve at a particular time. In the case where users are un-
able to estimate demand at all, we propose an online reserva-
tion strategy in Sec. 5.3 to make decisions based on history.

Suppose cloud users submit to the broker their demand
estimates up to time T into the future (in terms of billing
cycles). The broker aggregate all the demands. Suppose it
requires dt instances in total to accommodate all the requests
at time t, t = 1, 2, . . . , T . The broker makes a decision to
reserve rt instances at time t, with rt � 0. Each reserved
instance will be effective from t to t + ⌧ � 1, with ⌧ being
the reservation period.

At time t, the number of reserved instances that remain
effective is nt =

Pt
i=t�⌧+1 ri. Note that these nt reserved

instances may not be sufficient to accommodate the aggre-
gate demand dt. The broker thus needs to launch (dt�nt)

+

additional on-demand instances at time t, where X+
:=

max{0, X}.
Let � denote the one-time reservation fee for each re-

served instance, and p denote the price of running an on-
demand instance per billing cycle. Hence, the total cost to
accommodate all the demands d1, . . . , dT is

PT
t=1 rt� +

PT
t=1(dt � nt)

+p , (1)

where the first term is the total cost of reservations and the
second is the cost of all on-demand instances. The broker’s
problem is to make dynamic reservation decisions r1, . . . , rT

4

0
1
2
3

Stage

of

 re
se

rv
at

io
ns

1 1 1
2 2 2

2

3 3
3

3
1 2 3 4 5 6 7

4 4 4 4
5 108 9

1

Figure 3: State illustration. The reservation period is ⌧ = 4.
All four reservations are highlighted as the shaded area. At
stage 2, s2 = (2, 2, 2, 1).

to minimize its total cost, i.e.,

min

{r1,...,rT }
cost =

PT
t=1 rt� +

PT
t=1(dt � nt)

+p . (2)

Problem (2) is integer programming. In general, complex
combinatorial methods are needed to solve it.

4. DYNAMIC PROGRAMMING:
THE OPTIMALITY AND LIMITATIONS

In this section, we resort to dynamic programming to char-
acterize the optimal solution to problem (2). Using a set
of recursive Bellman equations, the original combinatorial
optimization problem can be decomposed into a number of
subproblems, each of which can be solved efficiently. How-
ever, we also point out that computing such a dynamic pro-
gramming is practically infeasible, and is highly inefficient
to handle a large amount of data.

4.1 Dynamic Programming Formulation
We start by defining stages and states. The decision prob-

lem (2) consists of T stages, each representing a billing cy-
cle. A state at stage t is denoted by a ⌧ -tuple st := (t, x1, . . . , x⌧�1),
where xi denotes the number of instances that are reserved
no later than t and remain effective at stage t + i, for i =

1, . . . , ⌧ � 1. Here, we use a ⌧ -tuple to represent a state be-
cause no instance reserved before or at stage t will remain
effective after stage t + ⌧ � 1. And it is easy to check that
x1 � · · · � x⌧�1. For example, in Fig. 3, three instances are
reserved at stage 1, 2, and 3, respectively, with a reservation
period ⌧ = 4. We see that at stage 2, s2 = (2, 2, 2, 1), where
the second element is 2 because two instances are reserved
no later than stage 2 and remain effective at stage 3.

We note that given state st�1 := (t � 1, y1, . . . , y⌧�1) at
the previous stage, the current state st := (t, x1, . . . , x⌧�1)

is independent of the states st�2, st�3, In fact, st can be
characterized by st�1, with state transition equations:

xi = yi+1 + x⌧�1, i = 1, . . . , ⌧ � 2. (3)

To see the rationale behind (3), let us consider a state st in
Fig. 4. At stage t + ⌧ � 1, there are x⌧�1 reservations that
remain effective. Clearly, all these reservations are made at
stage t (because the reservations made before stage t have
all expired at t + ⌧ � 1), i.e., rt = x⌧�1, rt being the

3

scheduling the aggregated user demands to the pooled in-
stances. It is worth noting that such a benefit is conditioned
on whether switching users on an instance incurs additional
cost charged by the cloud, which we will further discuss in
Sec. 6.6.

Enjoying volume discounts: Most IaaS clouds offer sig-
nificant volume discounts to those who have purchased a
large number of instances. For example, Amazon provides
20% or even higher volume discounts in EC2 [1]. Due to the
sheer volume of the aggregated demand, the cloud broker
can easily qualify for such discounts, which further reduces
the cost of serving all the users.

The main technical challenge to operate such a brokerage
service is how to serve the aggregated user demands at the
minimum cost, by dynamically and efficiently making in-
stance reservation decisions based on the huge demand data
collected from users. This will be the theme of the following
sections.

3. DYNAMIC RESOURCE RESERVATION
In this section, we formulate the broker’s optimal instance

reservation problem to satisfy given demands, with an ob-
jective of cost minimization. The broker asks cloud users to
submit their demand estimates over a certain horizon, based
on which dynamic reservation decisions are made. Note that
even if a user trades directly with cloud providers, it needs to
estimate its future demand to decide how many instances to
reserve at a particular time. In the case where users are un-
able to estimate demand at all, we propose an online reserva-
tion strategy in Sec. 5.3 to make decisions based on history.

Suppose cloud users submit to the broker their demand
estimates up to time T into the future (in terms of billing
cycles). The broker aggregate all the demands. Suppose it
requires dt instances in total to accommodate all the requests
at time t, t = 1, 2, . . . , T . The broker makes a decision to
reserve rt instances at time t, with rt � 0. Each reserved
instance will be effective from t to t + ⌧ � 1, with ⌧ being
the reservation period.

At time t, the number of reserved instances that remain
effective is nt =

Pt
i=t�⌧+1 ri. Note that these nt reserved

instances may not be sufficient to accommodate the aggre-
gate demand dt. The broker thus needs to launch (dt�nt)

+

additional on-demand instances at time t, where X+
:=

max{0, X}.
Let � denote the one-time reservation fee for each re-

served instance, and p denote the price of running an on-
demand instance per billing cycle. Hence, the total cost to
accommodate all the demands d1, . . . , dT is

PT
t=1 rt� +

PT
t=1(dt � nt)

+p , (1)

where the first term is the total cost of reservations and the
second is the cost of all on-demand instances. The broker’s
problem is to make dynamic reservation decisions r1, . . . , rT

4

0
1
2
3

Stage

of

 re
se

rv
at

io
ns

1 1 1
2 2 2

2

3 3
3

3
1 2 3 4 5 6 7

4 4 4 4
5 108 9

1

Figure 3: State illustration. The reservation period is ⌧ = 4.
All four reservations are highlighted as the shaded area. At
stage 2, s2 = (2, 2, 2, 1).

to minimize its total cost, i.e.,

min

{r1,...,rT }
cost =

PT
t=1 rt� +

PT
t=1(dt � nt)

+p . (2)

Problem (2) is integer programming. In general, complex
combinatorial methods are needed to solve it.

4. DYNAMIC PROGRAMMING:
THE OPTIMALITY AND LIMITATIONS

In this section, we resort to dynamic programming to char-
acterize the optimal solution to problem (2). Using a set
of recursive Bellman equations, the original combinatorial
optimization problem can be decomposed into a number of
subproblems, each of which can be solved efficiently. How-
ever, we also point out that computing such a dynamic pro-
gramming is practically infeasible, and is highly inefficient
to handle a large amount of data.

4.1 Dynamic Programming Formulation
We start by defining stages and states. The decision prob-

lem (2) consists of T stages, each representing a billing cy-
cle. A state at stage t is denoted by a ⌧ -tuple st := (t, x1, . . . , x⌧�1),
where xi denotes the number of instances that are reserved
no later than t and remain effective at stage t + i, for i =

1, . . . , ⌧ � 1. Here, we use a ⌧ -tuple to represent a state be-
cause no instance reserved before or at stage t will remain
effective after stage t + ⌧ � 1. And it is easy to check that
x1 � · · · � x⌧�1. For example, in Fig. 3, three instances are
reserved at stage 1, 2, and 3, respectively, with a reservation
period ⌧ = 4. We see that at stage 2, s2 = (2, 2, 2, 1), where
the second element is 2 because two instances are reserved
no later than stage 2 and remain effective at stage 3.

We note that given state st�1 := (t � 1, y1, . . . , y⌧�1) at
the previous stage, the current state st := (t, x1, . . . , x⌧�1)

is independent of the states st�2, st�3, In fact, st can be
characterized by st�1, with state transition equations:

xi = yi+1 + x⌧�1, i = 1, . . . , ⌧ � 2. (3)

To see the rationale behind (3), let us consider a state st in
Fig. 4. At stage t + ⌧ � 1, there are x⌧�1 reservations that
remain effective. Clearly, all these reservations are made at
stage t (because the reservations made before stage t have
all expired at t + ⌧ � 1), i.e., rt = x⌧�1, rt being the

3

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Approximate Solution

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

A 2-Competitive Heuristic

Segment the demand into intervals each spanning one
reservation period

Make optimal instance reservation decisions per interval

20

⌧ Time

D
em
an
d

2⌧ 3⌧ 4⌧

Interval

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Optimal Instance Reservation within an Interval

Stratify demand into levels

For each level, decide if a reserved instance should be used

Example

On-demand rate: $1 per hour
Reservation: $2.5 for 6 hours

21

6

0
1
2
3
4
5

Time (hour)

D
em

an
d

1 2 3 4 5 6 7
L1
L2
L3
L4
L5

(a) T = 5, ⌧ = 6.

6

0
1
2
3
4
5

Time (hour)

D
em

an
d

Interval 1 Interval 2

1 2 43 65 87 9

(b) T = 8, ⌧ = 6.

Figure 6: The Periodic Decisions algorithm, with � = $2.5
and p = $1. The algorithm is (a) optimal when T ⌧ , (b)
not optimal when T > ⌧ .

P k
= {s(k)T , . . . , s(k)0 } from stage T to 0, using the cost es-

timates ˜V (k�1)
(st) from the previous iteration, and updates

the cost estimates of the visited nodes. Specifically, we start
from s(k)T := sT and proceed backwards. Suppose we are at
node s(k)t . The next node picked by the algorithm is

s(k)t�1 := argminst�1

�
˜V (k�1)

(st�1) + c(st�1, s
(k)
t)

.

In the meantime, we update the estimate of V (s(k)t) as

˜V (k)
(s(k)t) := minst�1

�
˜V (k�1)

(st�1) + c(st�1, s
(k)
t)

.

Then we move to the next node s(k)t�2 until stage 0 is reached.
For all nodes st that are not visited at iteration k, their es-
timates remain unchanged, i.e., ˜V (k)

(st) :=

˜V (k�1)
(st).

We keep running the above iterations until no estimate has
changed at an iteration.

It is known that ADP converges to the shortest path if the
initial estimates ˜V (0)

(st) are optimistic, i.e., they do not ex-
ceed the optimal solution V (st) [13]. However, if ˜V (0)

(st)
is too optimistic, e.g., ˜V (0)

(st) = 0, the convergence will
be extremely slow. We will propose a smart way to set
˜V (0)

(st) in Sec. 5.1, leveraging the approximate algorithms
proposed there. However, through extensive simulations, we
will show in Sec. 6.2 that although smart initial estimates
significantly accelerate ADP, as an iterative method, its con-
vergence speed is still not satisfactory to handle the large
amount of demand data in our problem.

5. APPROXIMATE ALGORITHMS
To overcome the prohibitive complexity of dynamic pro-

gramming, in this section, we develop approximate algo-
rithms to solve (2). These algorithms are highly efficient
and are proved to have worst-case performance guarantees.
Furthermore, we also propose an online reservation strategy
which can be applied when future demand data is not avail-
able.

5.1 A 2-Competitive Heuristic
First, we present a simple heuristic that in the worst case,

incurs twice the minimum cost, given any demands. We start
off by dividing the demands into levels. Let ¯d := maxt dt
be the peak demand. As shown in Fig. 6a, the total demands

Algorithm 1 Heuristic: Periodic Decisions

1. Segment T into intervals {Ii}, each with length ⌧ .
2. for all intervals Ii do
3. Reserve l instances at the beginning of this interval,

such that ui
l � �/p > ui

l+1, where ui
l :=

P
t2Ii

dlt is
the utilization of level l in interval i.

4. end for

are divided into ¯d = 5 levels, with level 1 being the bottom
(labeled as “L1” in Fig. 6a) and level ¯d being the top. Define
dlt as the demand at time t in level l, such that dlt = 1 if
dt � l, and dlt = 0 otherwise. For example, in Fig. 6a, level
3 has demands only at time 3 and 5 (i.e., d33 = d35 = 1).

We now consider a special case, when all given demands
are within a single reservation period, i.e., T ⌧ . In this
case, it is sufficient to make all the reservations at time 1,
since a reservation made anytime will remain effective for
the entire horizon T . The question becomes how many in-
stances to reserve at time 1.

Initially, we consider the first reserved instance that will
be used to serve demands in level 1. Define utilization u1

as the number of billing cycles where this reserved instance
will be used. It is easy to check u1 =

PT
t=1 d

1
t . The use of

this reserved instance will be well justified if the reservation
fee satisfies � pu1; otherwise, launching it on demand
would be more cost efficient.

Next, suppose l � 1 instances are already reserved in the
bottom l � 1 levels. We check if an instance should be
reserved in level l. Define utilization ul as the number of
billing cycles where the lth reserved instance will be used,
i.e.,

ul :=
PT

t=1 d
l
t, l > 0 . (7)

For convenience, we let u0 := +1 (for reasons to be clear).
Again, the broker will adopt the lth reserved instance only if
� pul. Noting that ul is non-increasing in l, we obtain a
very simple optimal algorithm: reserve l instances at time 1,
such that ul � �/p > ul+1.

Fig. 6a shows an example with � = $2.5 and p = $1.
To run the algorithm, we first plot the demand curve dt. We
find ul is the intersection area of a horizontal stripe in level
l with the area below dt, e.g., u3 = 2, as shown by the
shaded area. In this case, the optimal strategy is to reserve
2 instances in the bottom 2 levels, as u2 = 3 > 2.5 = �/p
while u3 = 2 < �/p.

When demands last for more than one reservation period,
i.e., T > ⌧ , a natural idea is to extend the above algorithm
by letting the broker make periodic decisions. We segment
the time axis into intervals, each with the same length ⌧ as
the reservation period. The broker makes decisions for each
⌧ -interval separately, only at the beginning of that interval,
by running the above algorithm. This leads to the Periodic
Decisions algorithm described in Algorithm 1. It is easy to
check that Algorithm 1 only costs O(

¯dT) time and O(T)
space.

5

Should reserve when
instance usage >= 3 hours

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Cost Performance

Per-interval reservation is 2-competitive

Incurs at most twice the optimal cost in the worst case

22

⌧ Time

D
em
an
d

2⌧ 3⌧ 4⌧

Interval

All reservations are made at the beginning of the interval

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

An Improved Greedy Algorithm

Do not segment demand into intervals

Stratify demands into levels

Make reservations top-down

At each level, apply dynamic programming

Strictly better than Per-Interval Reservation, and is also 2-
competitive

23

Unfortunately, Algorithm 1 is not optimal, as reservations
are placed only at the beginning of each interval, while in re-
ality, a reservation can be made at any time. For example, in
Fig. 6b, by running Algorithm 1, all instances are launched
on demand, incurring a cost of $11. However, the optimal
strategy is to reserve 2 instances at the beginning of time 6,
with a lower total cost of $10 = 2.5 ⇥ 2 + 5. We bound
the worst-case performance of Algorithm 1 in the following
theorem.

Proposition 2. Algorithm 1 is 2-competitive. That is, for
any demands, the cost incurred by Algorithm 1 is no more
than twice the minimum cost.

PROOF. Divide time into non-overlapping intervals {Ik},
each of length ⌧ . Let Ik := [lk, hk] be the kth interval from
lk = (k�1)⌧+1 to hk = k⌧ . We call a reservation interval-
based if instances are reserved only at the beginnings of in-
tervals. If rIt denotes the reservation decision of the interval-
based strategy, then rIt = 0, 8t 6= lk, k = 1, 2,

Given an arbitrary strategy, we construct the correspond-
ing interval-based strategy as follows. Suppose at time t, the
strategy reserves rt instances, which are effective in Rt =

[t, t+⌧�1]. The corresponding interval-based strategy then
reserves rt instances at the beginnings of all Ik such that
Ik \Rt 6= ;. For simplicity, let l0 := 0. We then have

rIt =

(Phk

i=lk�1+1 ri, t = lk ,
0, t 6= lk .

Denote by nt and nI
t the numbers of reserved instances that

remain effective at time t for the given strategy and the con-
structed interval-based strategy, respectively. Clearly, nI

t �
nt. Let c and cI be the costs of the given strategy and corre-
sponding interval-based strategy, respectively. We have

cI =

PT
t=1 r

I
t � +

PT
t=1(dt � nI

t)
+p

=

P
k

Phk

i=lk�1+1 ri� +

PT
t=1(dt � nI

t)
+p

 2

PT
t=1 rt� +

PT
t=1(dt � nt)

+p 2c ,

(8)

where the first inequality is due to nI
t � nt and the last in-

equality is due to the definition of the cost c (see (1)). Equa-
tion (8) indicates that the cost of the constructed interval-
based strategy is at most twice the original strategy.

We make an important observation, that Algorithm 1 in-
curs the minimum cost among all interval-based strategies,
i.e., c1 cI with c1 being the cost of Algorithm 1. By (8),
we have c1 cI 2c, meaning that Algorithm 1 incurs no
more than twice the cost of any strategy.

With the above performance guarantee, it is worth noting
that Algorithm 1 can be used to compute the initial estimates
for the aforementioned ADP algorithm and speed up its con-
vergence. Specifically, let Ht be the cost incurred by Algo-
rithm 1 for demands d1, . . . , dt up to time t. For each state
st := (t, x1, . . . , x⌧�1), we set its initial estimate to be

˜V (0)
(st) := max{Ht/2, �x1} . (9)

Algorithm 2 Greedy Reservation Strategy

1. Initialization: md̄
t := 0 for all t = 1, . . . , T .

2. for l = ¯d down to 1 do
3. Make optimal reservations in level l via dynamic pro-

gramming defined by (10), (11), and (12).
4. Update ml�1

t .
5. end for

Such an initial estimate is guaranteed to be optimistic, i.e.,
˜V (0)

(st) V (st) for all states st, so that the ADP will con-
verge to the optimality. To see this, we note that Ht/2
V (st), as Algorithm 1 incurs no more than twice the mini-
mum cost. Furthermore, by definition, at state st, at least x1

instances have been reserved, which implies �x1 V (st).
We will show in Sec. 6.2 that the initial estimate (9) signifi-
cantly accelerates ADP convergence.

5.2 An Improved Greedy Algorithm
Algorithm 1 divides problem (2) into reservation subprob-

lems, each solved in a separate level. But in each level,
the reservations are made only at the beginnings of the ⌧ -
intervals. A direct improvement of Algorithm 1 is to allow
arbitrary reservation time in each level: we still consider
from the bottom level up to the top, whereas in each level,
we solve an optimal reservation problem using dynamic pro-
gramming. Clearly, this strategy incurs less resource provi-
sioning cost than Algorithm 1 in each level due to the relax-
ation on reservation time. However, just like Algorithm 1,
such a strategy remains inefficient, since it ignores the de-
pendencies across different levels.

A simple fix can incorporate inter-level dependencies: in-
stead of reserving bottom-up, we start to make reservations
in the top level ¯d and proceed top-down. Every instance re-
served in level l that is not used at time t will be passed
over to the lower level l � 1, so that it can be used to serve
the demand at time t in level l � 1. We then step to level
l � 1 and make optimal reservations there, taking into ac-
count the “leftover” reserved instances passed over from the
upper level. Undoubtedly, the algorithm becomes more effi-
cient, since each level tries to utilize such “leftover” reserved
instances from upper levels. Note that this is not possible
for a bottom-up approach, where no “leftover” reserved in-
stances can be passed from a lower level up.

In each level of the above procedure, optimal reservations
can be efficiently made via dynamic programming. Suppose
before we make reservations in level l, ml

t reserved instances
are passed over from upper levels at time t, all of which can
be utilized. Let Vl(t) be the minimum cost of serving de-
mands dl1, . . . , dlt in level l up to time t . The Bellman equa-
tion is given by

Vl(t) = min{Vl(t� ⌧) + �, Vl(t� 1) + cl(t)}. (10)

which chooses the minimum between two options. The first
is to serve the demand dlt with an instance reserved in the

6

Time

D
em
an
d

L1
L2
L3
L4
L5
L6

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

When demand
predictions are

unavailable

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Online Algorithm

Make instance reservation decisions without future
information

The best that we can do [Wang et al. ICAC’13]

2-competitiveness for the deterministic online algorithm

25

Algorithm 3 Online Reservation Made at Time t

1. Let gi = (di � ni)
+ for all i = t� ⌧ + 1, . . . , t.

2. Run Algorithm 1 with gt�⌧+1, . . . , gt as the input de-
mands. Let x be its output.

3. Reserve rt = x instances at time t.
4. Update ni = ni + rt for all i = t� ⌧ + 1, . . . , t+ ⌧ � 1.

Algorithm 2 summarizes the greedy reservation strategy
above, which has time complexity O(

¯dT) and space complex-
ity O(T). As has been analyzed earlier in this subsection, in
each level, Algorithm 2 is more cost efficient than Algorithm 1,
leading to the following proposition:

Proposition 2: Algorithm 2 incurs a cost no more than
Algorithm 1, and is thus 2-competitive.

C. An Online Reservation Strategy
Previous algorithms apply to users who predict their future

demands. For those who cannot, we propose an online strategy
that reserves instances based only on history, without accessing
to any future information. Recall that nt is the number of
reserved instances that remain effective at time t. Our online
strategy makes a reservation decision rt at time t based on
the historical information gt�⌧+1, . . . , gt in the past reserva-
tion period, where gi := (di � ni)

+ for all i. We call gi
the reservation gap between demand di and the number of
reservations ni that remain effective at time i. Clearly, all these
gi reservation gaps have been filled by launching on-demand
instances at time i.

Now at time t, we review the reservation decision made at
time t � ⌧ + 1 (we set ri = 0 for all i 0) and calculate
how many more instances we should have reserved at time
t�⌧+1, if we knew that we would have to launch gi instances
on demand at time i = t � ⌧ + 1, . . . , t. These “should-
have-reserved” instances can be computed by Algorithm 1,
with outstanding gaps gt�⌧+1, . . . , gt as the input demands.
Suppose the found value is x, we then reserve rt = x
instances at the current time t. In the meantime, we update
the reservation history as if we had reserved x additional
instances at time t � ⌧ + 1, by setting ni := ni + x for all
i = t � ⌧ + 1, . . . , t, which will be used in computing the
next decision rt+1. Algorithm 3 details this process. Note that
initially (at time 0), we set di = ni = 0 for all i.

The computational complexity of the online reservation
strategy above is the same as Algorithm 1 at every time t.

V. PERFORMANCE EVALUATION

In this section, we conduct simulations driven by a large
volume of real-world traces to evaluate the performance of the
proposed brokerage service and reservation strategies, with an
extensive range of scenarios.

A. Dataset Description and Preprocessing
Workload traces in public clouds are often confidential: no

IaaS cloud has released its usage data so far. For this reason,
we use Google cluster-usage traces that were recently released

0 50 100 150 2000
200
400
600

Time (hour)

In

st
an

ce
s

User 863

0 50 100 150 2000
0.5

1
1.5

Time (hour)

In

st
an

ce
s

(k
)

User 48

0 50 100 150 2000
200
400
600

Time (hour)

In

st
an

ce
s

User 187

Fig. 6. The demand curves of three typical users.

0 50 100 150 200 250 300
0

50

100

150

200

250

Demand Mean

D
e
m

a
n
d
 S

td

y = 5x
y = xHigh

Medium

Low

Fig. 7. Demand statistics and the division of users into 3 groups according
to demand fluctuation level.

[6] in our evaluation. Although Google cluster is not a public
IaaS cloud, its usage traces reflect the computing demands of
Google engineers and services, which can represent demands
of public cloud users to some degree. The dataset contains
180 GB of resource demand/usage information of 933 users
over 29 days in May 2011, on a cluster of 12,583 physical
machines. In the Google traces, a user submits work in the
form of jobs. A job consists of several tasks, each of which
has a set of resource requirements on CPU, disk, memory, etc.

Instance Scheduling. We take such a dataset as input, and
ask the question: How many computing instances would each
user require if she were to run the same workload in a public
IaaS cloud? It is worth noting that in Google cluster, tasks
of different users may be scheduled onto the same machine,
whereas in IaaS clouds each user will run tasks only on her
own computing instances.

Therefore, we reschedule the tasks of each user onto in-
stances that are exclusively used by this user. We set the
instances to have the same computing capacity as Google
cluster machines (most Google cluster machines are of the
same computing capability, with 93% having the same CPU
cycles), which enables us to accurately estimate the task run
time by learning from the original traces.

For each user, we use a simple algorithm to schedule her
tasks onto available instances that have sufficient resources to
accommodate their resource requirements. Tasks that cannot

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Trace-Driven Simulations

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Dataset and Preprocessing

Google cluster-usage traces

900+ users’ usage traces on a 12K-node Google datacenter
We convert users’ computing demand data to IaaS instance demand
Users are classi#ed into 3 groups based on demand "uctuation level

Standard deviation vs. mean in hourly demand

27

current level l. The best strategy is to optimally serve de-
mands up to time t � ⌧ and reserve an instance at time
t � ⌧ + 1, incurring a cost of Vl(t � ⌧) + �. The second
option is to optimally satisfy demands up to t� 1 and serve
the demand at t using an on-demand instance, with a cost
cl(t) given by

cl(t) =

⇢
p, if dlt = 1 and ml

t = 0 ,
0, otherwise, (11)

which means that we pay p to launch an on-demand instance
only if there is demand at t, i.e., dlt = 1, yet no reserved
instance is left over from upper levels to use at t, i.e., ml

t =

0. Clearly, the boundary conditions are

Vl(t) = 0, t 0 . (12)

After reservations have been made in level l, we update
ml�1

t , the number of reserved instances to be passed to level
l� 1 at time t as follows: ml�1

t := ml
t + 1, if an instance is

reserved in level l but is not used at time t; ml�1
t := ml

t� 1,
if demand dlt is served using a reserved instance passed over
from upper levels; and ml�1

t = ml
t, otherwise.

Algorithm 2 summarizes the above greedy reservation strat-
egy, which has time complexity O(

¯dT) and space complex-
ity O(T). This is because solving the dynamic programming
in each level requires only O(T) time and O(T) space. As
has been analyzed earlier in this subsection, in each level,
Algorithm 2 is more cost efficient than Algorithm 1, leading
to the following proposition:

Proposition 3. Algorithm 2 incurs a cost no more than
Algorithm 1, and is thus 2-competitive.

5.3 An Online Reservation Strategy
Previous algorithms apply to the case that users submit

their future demands up to time T . In the case when no de-
mand estimate is available, we propose an online strategy
that makes reservation decisions based only on history. Re-
call that nt is the number of reserved instances that remain
effective at time t. At time t, the online algorithm makes a
reservation decision rt based on the historical information
gt�⌧+1, . . . , gt in the past reservation period, where

gi := (di � ni)
+, i = t� ⌧ + 1, . . . , t . (13)

We call gi the reservation gap between demand di and the
number of reservations ni that remain effective at time i.
Clearly, all these gi reservation gaps are filled by launching
on-demand instances at time i.

We now make a “regret” to calculate how many more in-
stances we should have reserved at time t�⌧+1, if we knew
that we would have to launch gi instances on demand at time
i = t � ⌧ + 1, . . . , t. Such a “regret” can be computed by
Algorithm 1, with outstanding gaps gt�⌧+1, . . . , gt as the in-
put demands. Suppose the found value is x, we then reserve
rt = x instances at the current time t. In the meantime, we
update the reservation history as if we had reserved x addi-
tional instances at time t � ⌧ + 1, by setting ni := ni + x

0 50 100 150 2000
200
400
600

Time (hour)

In

st
an

ce
s

User 863

0 50 100 150 2000
0.5

1
1.5

Time (hour)

In

st
an

ce
s

(k
)

User 48

0 50 100 150 2000
200
400
600

Time (hour)

In
st

an
ce

s

User 187

Figure 7: The demand curves of three typical users.

0 50 100 150 200 250 300
0

50

100

150

200

250

Demand Mean

D
e
m

a
n
d
 S

td

y = 5x
y = xHigh

Medium

Low

Figure 8: Demand statistics and the division of users into 3
groups according to demand fluctuation level.

for all i = t� ⌧ +1, . . . , t, which will be used in computing
the next decision rt+1.

Apparently, the computational complexity of the above
online reservation strategy is the same as Algorithm 1 at ev-
ery time t.

6. PERFORMANCE EVALUATION
In this section, we conduct simulations driven by a large

volume of real-world traces to evaluate the performance of
the proposed brokerage service and reservation strategies,
with an extensive range of scenarios.

6.1 Dataset Description and Preprocessing
Workload traces in public clouds are often confidential:

no IaaS cloud has released its usage data so far. For this rea-
son, we use Google cluster-usage traces that were recently
released [7] in our evaluation. Although Google cluster is
not a public IaaS cloud, its usage traces reflect the computing
demands of Google engineers and services, which can rep-
resent demands of public cloud users to some degree. The
dataset contains 180 GB of resource usage information of
933 users over 29 days in May 2011, on a cluster of 12,583
physical machines. In the Google traces, a user submits
work in the form of jobs. A job consists of several tasks,
each of which has a set of resource requirements on CPU,

7

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Demand Curve

28

current level l. The best strategy is to optimally serve de-
mands up to time t � ⌧ and reserve an instance at time
t � ⌧ + 1, incurring a cost of Vl(t � ⌧) + �. The second
option is to optimally satisfy demands up to t� 1 and serve
the demand at t using an on-demand instance, with a cost
cl(t) given by

cl(t) =

⇢
p, if dlt = 1 and ml

t = 0 ,
0, otherwise, (11)

which means that we pay p to launch an on-demand instance
only if there is demand at t, i.e., dlt = 1, yet no reserved
instance is left over from upper levels to use at t, i.e., ml

t =

0. Clearly, the boundary conditions are

Vl(t) = 0, t 0 . (12)

After reservations have been made in level l, we update
ml�1

t , the number of reserved instances to be passed to level
l� 1 at time t as follows: ml�1

t := ml
t + 1, if an instance is

reserved in level l but is not used at time t; ml�1
t := ml

t� 1,
if demand dlt is served using a reserved instance passed over
from upper levels; and ml�1

t = ml
t, otherwise.

Algorithm 2 summarizes the above greedy reservation strat-
egy, which has time complexity O(

¯dT) and space complex-
ity O(T). This is because solving the dynamic programming
in each level requires only O(T) time and O(T) space. As
has been analyzed earlier in this subsection, in each level,
Algorithm 2 is more cost efficient than Algorithm 1, leading
to the following proposition:

Proposition 3. Algorithm 2 incurs a cost no more than
Algorithm 1, and is thus 2-competitive.

5.3 An Online Reservation Strategy
Previous algorithms apply to the case that users submit

their future demands up to time T . In the case when no de-
mand estimate is available, we propose an online strategy
that makes reservation decisions based only on history. Re-
call that nt is the number of reserved instances that remain
effective at time t. At time t, the online algorithm makes a
reservation decision rt based on the historical information
gt�⌧+1, . . . , gt in the past reservation period, where

gi := (di � ni)
+, i = t� ⌧ + 1, . . . , t . (13)

We call gi the reservation gap between demand di and the
number of reservations ni that remain effective at time i.
Clearly, all these gi reservation gaps are filled by launching
on-demand instances at time i.

We now make a “regret” to calculate how many more in-
stances we should have reserved at time t�⌧+1, if we knew
that we would have to launch gi instances on demand at time
i = t � ⌧ + 1, . . . , t. Such a “regret” can be computed by
Algorithm 1, with outstanding gaps gt�⌧+1, . . . , gt as the in-
put demands. Suppose the found value is x, we then reserve
rt = x instances at the current time t. In the meantime, we
update the reservation history as if we had reserved x addi-
tional instances at time t � ⌧ + 1, by setting ni := ni + x

0 50 100 150 2000
200
400
600

Time (hour)

In
st

an
ce

s

User 863

0 50 100 150 2000
0.5

1
1.5

Time (hour)

In

st
an

ce
s

(k
)

User 48

0 50 100 150 2000
200
400
600

Time (hour)

In

st
an

ce
s

User 187

Figure 7: The demand curves of three typical users.

0 50 100 150 200 250 300
0

50

100

150

200

250

Demand Mean

D
e

m
a

n
d

 S
td

y = 5x
y = xHigh

Medium

Low

Figure 8: Demand statistics and the division of users into 3
groups according to demand fluctuation level.

for all i = t� ⌧ +1, . . . , t, which will be used in computing
the next decision rt+1.

Apparently, the computational complexity of the above
online reservation strategy is the same as Algorithm 1 at ev-
ery time t.

6. PERFORMANCE EVALUATION
In this section, we conduct simulations driven by a large

volume of real-world traces to evaluate the performance of
the proposed brokerage service and reservation strategies,
with an extensive range of scenarios.

6.1 Dataset Description and Preprocessing
Workload traces in public clouds are often confidential:

no IaaS cloud has released its usage data so far. For this rea-
son, we use Google cluster-usage traces that were recently
released [7] in our evaluation. Although Google cluster is
not a public IaaS cloud, its usage traces reflect the computing
demands of Google engineers and services, which can rep-
resent demands of public cloud users to some degree. The
dataset contains 180 GB of resource usage information of
933 users over 29 days in May 2011, on a cluster of 12,583
physical machines. In the Google traces, a user submits
work in the form of jobs. A job consists of several tasks,
each of which has a set of resource requirements on CPU,

7

Highly
"uctuated

Medium
"uctuation

Relatively
stable

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Aggregation Smoothes Out Demand Bursts

29

0 5 10 15 20 25 30
0

30

60

90

120

150

Demand Mean

D
e

m
a

n
d

 S
td

y = 1.774x

(a) Group 1: high fluctuation

0 20 40 60 80 100
0

50

100

150

200

Demand Mean

D
e
m

a
n
d
 S

td

y = 0.363x

(b) Group 2: medium fluctuation

0 200 400 600 800 1000
0

50

100

150

200

250

300

Demand Mean

D
e
m

a
n
d
 S

td

y = 0.058x

(c) Group 3: low fluctuation

0 200 400 600 800 1000
0

50

100

150

200

250

300

Demand Mean

D
e
m

a
n
d
 S

td

y = 0.061x

(d) All the users.

Figure 9: Aggregation suppresses the demand fluctuation of individual users. Each circle represents a user. The line indicates
the demand fluctuation level (the ratio between the demand standard deviation and mean) in the aggregate demand curve.

High Medium Low All
0

200

400

600

800

1000

Demand Fluctuation

W
a

st
e

d
 in

st
a

n
ce

−
h

o
u

rs
 (

k)

−16.5%

−30.5%

−5.6%

−23.4%

Before aggregation
After aggregation

Figure 10: Aggregation reduces the wasted instance-hours
due to partial usage.

disk, memory, etc.
Instance Scheduling. We take such a dataset as input,

and ask the question: How many computing instances would
each user require if she were to run the same workload in a
public IaaS cloud? It is worth noting that in Google cluster,
tasks of different users may be scheduled onto the same ma-
chine, whereas in IaaS clouds each user will run tasks only
on her own computing instances.

Therefore, we reschedule the tasks of each user onto in-
stances that are exclusively used by this user. We set the
instances to have the same computing capacity as Google
cluster machines (most Google cluster machines are of the
same computing capability, with 93% having the same CPU
cycles), which enables us to accurately estimate the task run
time by learning from the original traces.

For each user, we use a simple algorithm to schedule her
tasks onto available instances that have sufficient resources
to accommodate their resource requirements. Tasks that can-
not share the same machine (e.g., tasks of MapReduce) are
scheduled to different instances. (For simplicity, we ignore
other complicated task placement constraints such as on OS
versions and machine types.) Whenever the capacity of avail-
able instances is reached, a new instance will be launched.
In the end, we obtain a demand curve for each user, indi-
cating how many instances the user requires in each hour.
Fig. 7 illustrates the demand curves of three typical users in
the first 200 hours.

Pricing. Unless explicitly mentioned, we set the on-demand
hourly rate to $0.08, the same as Amazon EC2 small in-
stances [1]. Since our data only spans one month, we assume

each reservation is effective for one week, with a full-usage
discount of 50%: the reservation fee is equal to running an
on-demand instance for half a reservation period, which is a
general pricing policy in most IaaS clouds [1, 5, 6, 20].

Group Division. To further understand the demand statis-
tics of users, we calculate the demand mean and standard
deviation for each user and plot the results in Fig. 8. As has
been mentioned, to what extent a user can benefit from reser-
vations critically depends on its demand pattern: the more
fluctuated it is, the less is the benefit from using reserved in-
stances. We hence classify all 933 users into the following
three groups by the demand fluctuation level measured as the
ratio between the demand standard deviation and mean:

Group 1 (High Fluctuation): Users in this group have a
demand fluctuation level no smaller than 5. A typical user’s
demand is shown in the top graph of Fig. 7. There are 271
users in this group, represented by “o” in Fig. 8. These users
have small demands, with a mean less than 30 instances.

Group 2 (Medium Fluctuation): Users in this group have
a demand fluctuation level between 1 and 5. A typical user’s
demand is shown in the middle graph of Fig. 7. There are
286 users in this group, represented by “x” in Fig. 8. These
users demand a medium amount of instances, with a mean
less than 100.

Group 3 (Low Fluctuation): Users in this group have a
demand fluctuation level less than 1, represented by “+” in
Fig. 8. A typical user’s demand is shown in the bottom graph
of Fig. 7. Almost all big users with a mean demand greater
than 100 belong to this group.

Our evaluations are carried out for each group. We start
to quantify to what extent the aggregation smooths out de-
mand bursts of individual users. Fig. 9 presents the results,
with “o” being the statistics of individual users and the line
representing the fluctuation level of the aggregated demand.
We see from Fig. 9a and 9b that aggregating bursty users
(i.e., users in Group 1 and 2) results in a steadier curve, with
a fluctuation level much smaller than that of any individual
user. For users that already have steady demands, aggrega-
tion does not reduce fluctuation too much (see Fig. 9c). In
addition, Fig. 9d presents the result of aggregating all the
users. In all cases, the aggregated demand is stabler and
more suitable for service via reserved instances.

8

0 5 10 15 20 25 30
0

30

60

90

120

150

Demand Mean

D
e
m

a
n
d
 S

td

y = 1.774x

(a) Group 1: high fluctuation

0 20 40 60 80 100
0

50

100

150

200

Demand Mean

D
e
m

a
n
d
 S

td

y = 0.363x

(b) Group 2: medium fluctuation

0 200 400 600 800 1000
0

50

100

150

200

250

300

Demand Mean

D
e
m

a
n
d
 S

td

y = 0.058x

(c) Group 3: low fluctuation

0 200 400 600 800 1000
0

50

100

150

200

250

300

Demand Mean

D
e
m

a
n
d
 S

td
y = 0.061x

(d) All the users.

Figure 9: Aggregation suppresses the demand fluctuation of individual users. Each circle represents a user. The line indicates
the demand fluctuation level (the ratio between the demand standard deviation and mean) in the aggregate demand curve.

High Medium Low All
0

200

400

600

800

1000

Demand Fluctuation

W
a
st

e
d
 in

st
a
n
ce

−
h
o
u
rs

 (
k)

−16.5%

−30.5%

−5.6%

−23.4%

Before aggregation
After aggregation

Figure 10: Aggregation reduces the wasted instance-hours
due to partial usage.

disk, memory, etc.
Instance Scheduling. We take such a dataset as input,

and ask the question: How many computing instances would
each user require if she were to run the same workload in a
public IaaS cloud? It is worth noting that in Google cluster,
tasks of different users may be scheduled onto the same ma-
chine, whereas in IaaS clouds each user will run tasks only
on her own computing instances.

Therefore, we reschedule the tasks of each user onto in-
stances that are exclusively used by this user. We set the
instances to have the same computing capacity as Google
cluster machines (most Google cluster machines are of the
same computing capability, with 93% having the same CPU
cycles), which enables us to accurately estimate the task run
time by learning from the original traces.

For each user, we use a simple algorithm to schedule her
tasks onto available instances that have sufficient resources
to accommodate their resource requirements. Tasks that can-
not share the same machine (e.g., tasks of MapReduce) are
scheduled to different instances. (For simplicity, we ignore
other complicated task placement constraints such as on OS
versions and machine types.) Whenever the capacity of avail-
able instances is reached, a new instance will be launched.
In the end, we obtain a demand curve for each user, indi-
cating how many instances the user requires in each hour.
Fig. 7 illustrates the demand curves of three typical users in
the first 200 hours.

Pricing. Unless explicitly mentioned, we set the on-demand
hourly rate to $0.08, the same as Amazon EC2 small in-
stances [1]. Since our data only spans one month, we assume

each reservation is effective for one week, with a full-usage
discount of 50%: the reservation fee is equal to running an
on-demand instance for half a reservation period, which is a
general pricing policy in most IaaS clouds [1, 5, 6, 20].

Group Division. To further understand the demand statis-
tics of users, we calculate the demand mean and standard
deviation for each user and plot the results in Fig. 8. As has
been mentioned, to what extent a user can benefit from reser-
vations critically depends on its demand pattern: the more
fluctuated it is, the less is the benefit from using reserved in-
stances. We hence classify all 933 users into the following
three groups by the demand fluctuation level measured as the
ratio between the demand standard deviation and mean:

Group 1 (High Fluctuation): Users in this group have a
demand fluctuation level no smaller than 5. A typical user’s
demand is shown in the top graph of Fig. 7. There are 271
users in this group, represented by “o” in Fig. 8. These users
have small demands, with a mean less than 30 instances.

Group 2 (Medium Fluctuation): Users in this group have
a demand fluctuation level between 1 and 5. A typical user’s
demand is shown in the middle graph of Fig. 7. There are
286 users in this group, represented by “x” in Fig. 8. These
users demand a medium amount of instances, with a mean
less than 100.

Group 3 (Low Fluctuation): Users in this group have a
demand fluctuation level less than 1, represented by “+” in
Fig. 8. A typical user’s demand is shown in the bottom graph
of Fig. 7. Almost all big users with a mean demand greater
than 100 belong to this group.

Our evaluations are carried out for each group. We start
to quantify to what extent the aggregation smooths out de-
mand bursts of individual users. Fig. 9 presents the results,
with “o” being the statistics of individual users and the line
representing the fluctuation level of the aggregated demand.
We see from Fig. 9a and 9b that aggregating bursty users
(i.e., users in Group 1 and 2) results in a steadier curve, with
a fluctuation level much smaller than that of any individual
user. For users that already have steady demands, aggrega-
tion does not reduce fluctuation too much (see Fig. 9c). In
addition, Fig. 9d presents the result of aggregating all the
users. In all cases, the aggregated demand is stabler and
more suitable for service via reserved instances.

8

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The Reduction of Partial Usage

30

0 5 10 15 20 25 30
0

30

60

90

120

150

Demand Mean

D
e

m
a

n
d

 S
td

y = 1.774x

(a) Group 1: high fluctuation

0 20 40 60 80 100
0

50

100

150

200

Demand Mean

D
e
m

a
n
d
 S

td

y = 0.363x

(b) Group 2: medium fluctuation

0 200 400 600 800 1000
0

50

100

150

200

250

300

Demand Mean

D
e
m

a
n
d
 S

td

y = 0.058x

(c) Group 3: low fluctuation

0 200 400 600 800 1000
0

50

100

150

200

250

300

Demand Mean

D
e
m

a
n
d
 S

td

y = 0.061x

(d) All the users.

Figure 9: Aggregation suppresses the demand fluctuation of individual users. Each circle represents a user. The line indicates
the demand fluctuation level (the ratio between the demand standard deviation and mean) in the aggregate demand curve.

High Medium Low All
0

200

400

600

800

1000

Demand Fluctuation

W
a

st
e

d
 in

st
a

n
ce

−
h

o
u

rs
 (

k)

−16.5%

−30.5%

−5.6%

−23.4%

Before aggregation
After aggregation

Figure 10: Aggregation reduces the wasted instance-hours
due to partial usage.

disk, memory, etc.
Instance Scheduling. We take such a dataset as input,

and ask the question: How many computing instances would
each user require if she were to run the same workload in a
public IaaS cloud? It is worth noting that in Google cluster,
tasks of different users may be scheduled onto the same ma-
chine, whereas in IaaS clouds each user will run tasks only
on her own computing instances.

Therefore, we reschedule the tasks of each user onto in-
stances that are exclusively used by this user. We set the
instances to have the same computing capacity as Google
cluster machines (most Google cluster machines are of the
same computing capability, with 93% having the same CPU
cycles), which enables us to accurately estimate the task run
time by learning from the original traces.

For each user, we use a simple algorithm to schedule her
tasks onto available instances that have sufficient resources
to accommodate their resource requirements. Tasks that can-
not share the same machine (e.g., tasks of MapReduce) are
scheduled to different instances. (For simplicity, we ignore
other complicated task placement constraints such as on OS
versions and machine types.) Whenever the capacity of avail-
able instances is reached, a new instance will be launched.
In the end, we obtain a demand curve for each user, indi-
cating how many instances the user requires in each hour.
Fig. 7 illustrates the demand curves of three typical users in
the first 200 hours.

Pricing. Unless explicitly mentioned, we set the on-demand
hourly rate to $0.08, the same as Amazon EC2 small in-
stances [1]. Since our data only spans one month, we assume

each reservation is effective for one week, with a full-usage
discount of 50%: the reservation fee is equal to running an
on-demand instance for half a reservation period, which is a
general pricing policy in most IaaS clouds [1, 5, 6, 20].

Group Division. To further understand the demand statis-
tics of users, we calculate the demand mean and standard
deviation for each user and plot the results in Fig. 8. As has
been mentioned, to what extent a user can benefit from reser-
vations critically depends on its demand pattern: the more
fluctuated it is, the less is the benefit from using reserved in-
stances. We hence classify all 933 users into the following
three groups by the demand fluctuation level measured as the
ratio between the demand standard deviation and mean:

Group 1 (High Fluctuation): Users in this group have a
demand fluctuation level no smaller than 5. A typical user’s
demand is shown in the top graph of Fig. 7. There are 271
users in this group, represented by “o” in Fig. 8. These users
have small demands, with a mean less than 30 instances.

Group 2 (Medium Fluctuation): Users in this group have
a demand fluctuation level between 1 and 5. A typical user’s
demand is shown in the middle graph of Fig. 7. There are
286 users in this group, represented by “x” in Fig. 8. These
users demand a medium amount of instances, with a mean
less than 100.

Group 3 (Low Fluctuation): Users in this group have a
demand fluctuation level less than 1, represented by “+” in
Fig. 8. A typical user’s demand is shown in the bottom graph
of Fig. 7. Almost all big users with a mean demand greater
than 100 belong to this group.

Our evaluations are carried out for each group. We start
to quantify to what extent the aggregation smooths out de-
mand bursts of individual users. Fig. 9 presents the results,
with “o” being the statistics of individual users and the line
representing the fluctuation level of the aggregated demand.
We see from Fig. 9a and 9b that aggregating bursty users
(i.e., users in Group 1 and 2) results in a steadier curve, with
a fluctuation level much smaller than that of any individual
user. For users that already have steady demands, aggrega-
tion does not reduce fluctuation too much (see Fig. 9c). In
addition, Fig. 9d presents the result of aggregating all the
users. In all cases, the aggregated demand is stabler and
more suitable for service via reserved instances.

8

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Cost Savings Due to the Broker

31

Table 1: Comparisons in terms of cost and convergence.

Algorithm Cost ($) Converged Run time1 (sec)
ADP (g = 5000) 709,716 Yes 65
ADP (g = 3000) 718,483 No 388
ADP (g = 2000) 725,489 No 1645
ADP (g = 1000) 768,509 No 2732
Heuristic (g = 1) 702,305 N/A 1
Greedy (g = 1) 701,004 N/A 6

Another benefit of demand aggregation is that it reduces
the wasted instance-hours incurred by partial usage. To see
this, for each user, we count the total time during which it
is billed but does not run any workload, when this user pur-
chases directly from the cloud. In each group, we do the
same count for the aggregate demand and compare it with
the sum of the wasted instance-hours of all users in that
group. Fig. 10 plots the results. As expected, we observe
a reduction of wasted instance-hours in all four cases. Inter-
estingly, the waste reduction is the most significant for users
with medium fluctuation, instead of highly fluctuated users.
This is because we do not have a sufficient amount of highly
fluctuated demands to aggregate.

6.2 The Ineffectiveness of Conventional ADP
Before evaluating cost savings of the broker under differ-

ent reservation strategies, we first show the ineffectiveness
of conventional ADP algorithms to handle our problem. We
use two methods to speed up the convergence of ADP. First,
following (9), we use the Heuristic strategy (Algorithm 1)
as a good initial estimate. Second, we adopt coarse-grained
reservations. That is, every time any reservation is made,
we only reserve a number of instances that is a multiple of
a certain integer g, defined as the reservation granularity.
Although such a coarse-grained reservation strategy leads to
a sub-optimal solution when g > 1, it can accelerate the
convergence, as the strategy space is exponentially reduced.
The choice of granularity strikes a tradeoff between optimal-
ity and convergence speed.

However, even with the above acceleration, the conver-
gence remains intolerably slow. As shown in Fig. 11a, though
a good initial estimate reduces the convergence iterations
by an order compared with naively setting the initial esti-
mate to 0, convergence still takes over 90K iterations even
for an extremely coarse-grained reservation with g = 5000.
As shown in Fig. 11b, for more fine-grained reservations
(g=1000, 2000, or 3000), the ADP shows no sign of conver-
gence even after 200K iterations, where the achieved aggre-
gate cost remains higher than a more coarse-grained strategy
with g = 5000. Table 1 further compares ADP with the pro-
posed Heuristic and Greedy strategies. We see that conven-
tional ADP is inefficient in terms of both cost savings and
run time for the scale of our problem. Therefore, we will
focus on evaluating the proposed approximate algorithms.

1All the algorithms are run on a machine with 1.7GHz Intel Core
i5 and 4GB RAM.

0 5 10 15 20
700

800

900

1000

of Iterations (104)

A
g
g
re

g
a
te

 C
o
st

 (
k

$
)

g=5000 (init=heur)
g=5000 (init=0)
g=1000 (init=heur)
g=1000 (init=0)

(a) Impact of initial estimates.

0 5 10 15 20
700

750

800

850

900

of Iterations (104)

A
g
g
re

g
a
te

 C
o
st

 (
k

$
)

g=5000
g=3000
g=2000
g=1000

(b) Reservation granularities.

Figure 11: The convergence of ADP in different scenarios.

High Medium Low All
0

10

20

30

40

50

Demand Fluctuation

S
a

vi
n

g
 P

e
rc

e
n

ta
g

e
 (

%
)

Heuristic
Greedy
Online

Figure 12: Aggregate cost savings in different user groups
due to the brokerage service.

6.3 Aggregate Cost Savings
We now evaluate the aggregate cost savings offered by the

broker, under three different reservation strategies, namely,
the Heuristic (Algorithm 1), Greedy (Algorithm 2) and On-
line. Assuming a specific strategy is used, we compare the
total service cost if users are using the broker with the sum
of costs if each user individually makes reservations without
using the broker. Fig. 13 shows such comparisons in each
user group, while Fig. 12 shows the percentage of cost sav-
ings due to the use of a broker.

From Fig. 12, we see that the broker can bring a cost sav-
ing of close to 15% when it aggregates all the user demands.
In terms of absolute values, the saving is over $100K, as
shown in Fig. 13d. However, the broker’s benefit is different
in different user groups: cost saving is the highest for users
with medium demand fluctuation (40%), and the lowest for
users with low demand fluctuation (5%). This is because
when user demands are steady, they are heavily relying on
reserved instances, regardless of whether they use the bro-
kerage service or not. The broker thus brings little benefit,
as shown in Fig. 13c. In contrast, for fluctuated demands,
as shown in Fig. 13b, the broker can smooth out the demand
curve through aggregation, better exploiting discounts of re-
served instances. However, when users are highly fluctuated
with bursty demands, as shown in Fig. 13a, even the aggre-
gate demand curve is not smooth enough: these users can
only leverage a limited amount of reserved instances, lead-
ing to less reservation benefit than for users with medium
fluctuation. However, there is still 15 � 20% cost saving,
partly due to aggregation and the reduction of partial usage.

We now compare the costs of different reservation strate-

9

Heuristic Greedy Online
15

20

25

30

Algorithms

C
o
st

 (
k

$
)

W/O broker
W/ broker

(a) Group 1: high fluctuation

Heuristic Greedy Online
50

100

150

200

Algorithms

C
o
st

 (
k

$
)

W/O broker
W/ broker

(b) Group 2: medium fluctuation

Heuristic Greedy Online
200

400

600

800

1000

Algorithms

C
o
st

 (
k

$
)

W/O broker
W/ broker

(c) Group 3: low fluctuation

Heuristic Greedy Online
200

400

600

800

1000

1200

Algorithms

C
o
st

 (
k

$
)

W/O broker
W/ broker

(d) All the users

Figure 13: Aggregate service costs with and without broker in different user groups.

−10 0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Saving Percentage (%)

Heuristic
Greedy
Online

(a) Group 2: medium fluctuation

−10 0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Saving Percentage (%)

Heuristic
Greedy
Online

(b) All the users

Figure 14: CDF of price discounts for individual users due
to the brokerage service, under different algorithms.

gies. Fig. 13 verifies that Greedy is the best strategy while
Online is inferior due to the lack of future knowledge. How-
ever, as shown in Fig. 13a, the three strategies are similar
for highly fluctuated users, because for bursty demands, on-
demand instances are mainly used (especially without bro-
ker) and reservation strategies become less critical.

6.4 Individual Cost Savings
We next evaluate the price discount each individual user

can enjoy from the brokerage service. We consider a straight-
forward usage-based pricing scheme adopted by the broker.
That is, for each user, the broker calculates the area under
its demand curve to find out the instance-hours it has used.
The broker then lets users share the aggregate cost in propor-
tion to their instance-hours. In Fig. 14, we plot the CDF of
price discounts of individual users due to using the broker.
In Fig. 15, we plot the costs with and without the broker for
each individual user (represented by a circle), under Greedy
strategy, where such costs are the same if the circle is on the
straight line y = x. We do not plot for Group 3 (low fluctua-
tion) because the benefit of broker is less significant. In this
sense, users in Group 3 has less motivation to use the broker.
Furthermore, we do not plot for Group 1 (high fluctuation)
because all their cost saving percentages are observed to be
the same as the aggregate saving percentage. The reason
is that with highly bursty demands, users in Group 1 will
mainly use on-demand instances without the broker, lead-
ing to bills proportional to their usage. If these users choose
to use the broker, their costs are also proportional to their
usage. Therefore, the individual saving percentages are es-

0 2 4 6 8
0

2

4

6

8

Cost w/o Broker (k $)

C
o

st
 w

/
B

ro
ke

r
(k

 $
)

y = x→

(a) Group 2: medium fluctuation

0 2 4 6 8
0

2

4

6

8

Cost w/o Broker (k $)

C
o

st
 w

/
B

ro
ke

r
(k

 $
)

y = x→

(b) All the users

Figure 15: Cost without the broker vs. with the broker for
individual users, using Greedy strategy. Each circle is a user.

sentially the same as the aggregate saving percentage.
From Fig. 14a, we see that over 70% of users in Group

2 save more than 30%, while in Fig. 14b, we see that the
broker can bring more than 25% price discounts to 70% of
users if all users are aggregated. Several interesting phe-
nomena are noted from Fig. 14 and Fig. 15. First, there is
an upper limit on the price discount a user can get under
Greedy, which is about 50%. Second, with Online, a major-
ity (around 40� 50%) of users receive a discount of around
30%. Third, when the broker charges users based on usage,
only very few users (less than 5%) do not receive discounts
(with price discount below 0 or circles above the straight line
in Fig. 15). Since these users only contribute to a very small
portion of the entire demand (around 3%), the broker can
easily guarantee to charge them at most the same price as
charged by cloud providers, by compensating them with a
portion of the profit gained from service cost savings.

It is worth noting that the above usage-based billing is
only one of many possible pricing policies that the broker
can use. We adopt it here because it is easy to implement and
understand. Although it may cause the problem of compen-
sating overcharged users as mentioned above, it is not typ-
ically an issue in our simulations. We note that more com-
plicated pricing polices, such as charging based on users’
Shapley value [14], can resolve this problem with guaran-
teed discounts for everyone. The discussion of these policies
is out of the scope of this paper. As long as the cost saving is
achieved by the broker, there are rich methods to effectively
share the benefits among all participants (see Ch. 15 in [10]).

6.5 Reservation Periods and Billing Cycles

10

No volume
discount

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Conclusions

We propose a smart cloud brokerage service

Reserves a pool of instances to serve the aggregated demand
Leverages the price gap between the wholesale and retail model to
reap the pro#t while offering lower price to cloud users
Cloud users purchase instances from the broker as if instances were
offered on demand

Design and analyze three instance reservation algorithms for
the broker and evaluate them via trace-driven simulations

More detailed analysis of online algorithms are given in our follow-up
work [Wang et al. ICAC’13]

32

Wednesday, 7 August, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Thanks!
http://iqua.ece.toronto.edu/~weiwang/

Wednesday, 7 August, 13

http://iqua.ece.toronto.edu/~weiwang/
http://iqua.ece.toronto.edu/~weiwang/

