
COMP 6611B:
Topics on Cloud Computing and
Data Analytics Systems
Wei Wang
Department of Computer Science & Engineering
HKUST
Fall 2015

2

Above the Clouds

Utility Computing
‣ Applications and computing resources

delivered as a service over the Internet

‣ Pay-as-you-go

‣ Provided by the hardwares and system
softwares in the datacenters

3

Visions
‣ The illusion of infinite computing resources available on

demand

‣ The elimination of an up-front commitment by Cloud
users

‣ The ability to pay for use of computing resources on a
short-term basis as needed

4

5

‣ Pay-as-you-go model

‣ No upfront cost, no contract, no minimum usage
commitment

‣ Fixed hourly rate

‣ Billing cycle rounded to nearest hour: 1.5 h = 2 h

1 instance for 1000 h = 1000 instances for 1 h

6

Cloud Economics: does it
make sense?

7

Shall I move to the Cloud?
‣ Profit from cloud >= profit from in-house infrastructures

8

of scale. These factors, combined with statistical multiplexing to increase utilization compared a private cloud, meant
that cloud computing could offer services below the costs of a medium-sized datacenter and yet still make a good
profit.

Any application needs a model of computation, a model of storage, and a model of communication. The statistical
multiplexing necessary to achieve elasticity and the illusion of infinite capacity requires each of these resources to
be virtualized to hide the implementation of how they are multiplexed and shared. Our view is that different utility
computing offerings will be distinguished based on the level of abstraction presented to the programmer and the level
of management of the resources.

Amazon EC2 is at one end of the spectrum. An EC2 instance looks much like physical hardware, and users can
control nearly the entire software stack, from the kernel upwards. This low level makes it inherently difficult for
Amazon to offer automatic scalability and failover, because the semantics associated with replication and other state
management issues are highly application-dependent. At the other extreme of the spectrum are application domain-
specific platforms such as Google AppEngine. AppEngine is targeted exclusively at traditional web applications,
enforcing an application structure of clean separation between a stateless computation tier and a stateful storage tier.
AppEngine’s impressive automatic scaling and high-availability mechanisms, and the proprietary MegaStore data
storage available to AppEngine applications, all rely on these constraints. Applications for Microsoft’s Azure are
written using the .NET libraries, and compiled to the Common Language Runtime, a language-independent managed
environment. Thus, Azure is intermediate between application frameworks like AppEngine and hardware virtual
machines like EC2.

When is Utility Computing preferable to running a Private Cloud? A first case is when demand for a service varies
with time. Provisioning a data center for the peak load it must sustain a few days per month leads to underutilization
at other times, for example. Instead, Cloud Computing lets an organization pay by the hour for computing resources,
potentially leading to cost savings even if the hourly rate to rent a machine from a cloud provider is higher than the
rate to own one. A second case is when demand is unknown in advance. For example, a web startup will need to
support a spike in demand when it becomes popular, followed potentially by a reduction once some of the visitors turn
away. Finally, organizations that perform batch analytics can use the ”cost associativity” of cloud computing to finish
computations faster: using 1000 EC2 machines for 1 hour costs the same as using 1 machine for 1000 hours. For the
first case of a web business with varying demand over time and revenue proportional to user hours, we have captured
the tradeoff in the equation below.

UserHourscloud ⇥ (revenue� Costcloud) � UserHoursdatacenter ⇥ (revenue�
Costdatacenter

Utilization
) (1)

The left-hand side multiplies the net revenue per user-hour by the number of user-hours, giving the expected profit
from using Cloud Computing. The right-hand side performs the same calculation for a fixed-capacity datacenter
by factoring in the average utilization, including nonpeak workloads, of the datacenter. Whichever side is greater
represents the opportunity for higher profit.

Table 1 below previews our ranked list of critical obstacles to growth of Cloud Computing in Section 7. The first
three concern adoption, the next five affect growth, and the last two are policy and business obstacles. Each obstacle is
paired with an opportunity, ranging from product development to research projects, which can overcome that obstacle.

We predict Cloud Computing will grow, so developers should take it into account. All levels should aim at hori-
zontal scalability of virtual machines over the efficiency on a single VM. In addition

1. Applications Software needs to both scale down rapidly as well as scale up, which is a new requirement. Such
software also needs a pay-for-use licensing model to match needs of Cloud Computing.

2. Infrastructure Software needs to be aware that it is no longer running on bare metal but on VMs. Moreover, it
needs to have billing built in from the beginning.

3. Hardware Systems should be designed at the scale of a container (at least a dozen racks), which will be is
the minimum purchase size. Cost of operation will match performance and cost of purchase in importance,
rewarding energy proportionality such as by putting idle portions of the memory, disk, and network into low
power mode. Processors should work well with VMs, flash memory should be added to the memory hierarchy,
and LAN switches and WAN routers must improve in bandwidth and cost.

2 Cloud Computing: An Old Idea Whose Time Has (Finally) Come
Cloud Computing is a new term for a long-held dream of computing as a utility [35], which has recently emerged as
a commercial reality. Cloud Computing is likely to have the same impact on software that foundries have had on the

2

of scale. These factors, combined with statistical multiplexing to increase utilization compared a private cloud, meant
that cloud computing could offer services below the costs of a medium-sized datacenter and yet still make a good
profit.

Any application needs a model of computation, a model of storage, and a model of communication. The statistical
multiplexing necessary to achieve elasticity and the illusion of infinite capacity requires each of these resources to
be virtualized to hide the implementation of how they are multiplexed and shared. Our view is that different utility
computing offerings will be distinguished based on the level of abstraction presented to the programmer and the level
of management of the resources.

Amazon EC2 is at one end of the spectrum. An EC2 instance looks much like physical hardware, and users can
control nearly the entire software stack, from the kernel upwards. This low level makes it inherently difficult for
Amazon to offer automatic scalability and failover, because the semantics associated with replication and other state
management issues are highly application-dependent. At the other extreme of the spectrum are application domain-
specific platforms such as Google AppEngine. AppEngine is targeted exclusively at traditional web applications,
enforcing an application structure of clean separation between a stateless computation tier and a stateful storage tier.
AppEngine’s impressive automatic scaling and high-availability mechanisms, and the proprietary MegaStore data
storage available to AppEngine applications, all rely on these constraints. Applications for Microsoft’s Azure are
written using the .NET libraries, and compiled to the Common Language Runtime, a language-independent managed
environment. Thus, Azure is intermediate between application frameworks like AppEngine and hardware virtual
machines like EC2.

When is Utility Computing preferable to running a Private Cloud? A first case is when demand for a service varies
with time. Provisioning a data center for the peak load it must sustain a few days per month leads to underutilization
at other times, for example. Instead, Cloud Computing lets an organization pay by the hour for computing resources,
potentially leading to cost savings even if the hourly rate to rent a machine from a cloud provider is higher than the
rate to own one. A second case is when demand is unknown in advance. For example, a web startup will need to
support a spike in demand when it becomes popular, followed potentially by a reduction once some of the visitors turn
away. Finally, organizations that perform batch analytics can use the ”cost associativity” of cloud computing to finish
computations faster: using 1000 EC2 machines for 1 hour costs the same as using 1 machine for 1000 hours. For the
first case of a web business with varying demand over time and revenue proportional to user hours, we have captured
the tradeoff in the equation below.

UserHourscloud ⇥ (revenue� Costcloud) � UserHoursdatacenter ⇥ (revenue�
Costdatacenter

Utilization
) (1)

The left-hand side multiplies the net revenue per user-hour by the number of user-hours, giving the expected profit
from using Cloud Computing. The right-hand side performs the same calculation for a fixed-capacity datacenter
by factoring in the average utilization, including nonpeak workloads, of the datacenter. Whichever side is greater
represents the opportunity for higher profit.

Table 1 below previews our ranked list of critical obstacles to growth of Cloud Computing in Section 7. The first
three concern adoption, the next five affect growth, and the last two are policy and business obstacles. Each obstacle is
paired with an opportunity, ranging from product development to research projects, which can overcome that obstacle.

We predict Cloud Computing will grow, so developers should take it into account. All levels should aim at hori-
zontal scalability of virtual machines over the efficiency on a single VM. In addition

1. Applications Software needs to both scale down rapidly as well as scale up, which is a new requirement. Such
software also needs a pay-for-use licensing model to match needs of Cloud Computing.

2. Infrastructure Software needs to be aware that it is no longer running on bare metal but on VMs. Moreover, it
needs to have billing built in from the beginning.

3. Hardware Systems should be designed at the scale of a container (at least a dozen racks), which will be is
the minimum purchase size. Cost of operation will match performance and cost of purchase in importance,
rewarding energy proportionality such as by putting idle portions of the memory, disk, and network into low
power mode. Processors should work well with VMs, flash memory should be added to the memory hierarchy,
and LAN switches and WAN routers must improve in bandwidth and cost.

2 Cloud Computing: An Old Idea Whose Time Has (Finally) Come
Cloud Computing is a new term for a long-held dream of computing as a utility [35], which has recently emerged as
a commercial reality. Cloud Computing is likely to have the same impact on software that foundries have had on the

2

Source: Ambrust et al., “Above the clouds: A Berkeley’s view of Cloud Computing.”

‣ Even if we can accurately predict the peak load

Provisioning for peak load

9

(a) Provisioning for peak load (b) Underprovisioning 1

(c) Underprovisioning 2

Figure 2: (a) Even if peak load can be correctly anticipated, without elasticity we waste resources (shaded area) during
nonpeak times. (b) Underprovisioning case 1: potential revenue from users not served (shaded area) is sacrificed. (c)
Underprovisioning case 2: some users desert the site permanently after experiencing poor service; this attrition and
possible negative press result in a permanent loss of a portion of the revenue stream.

load equals the datacenter’s usable capacity, at which point users again receive acceptable service, but with fewer
potential users.

Example: Transferring risks. Suppose but 10% of users who receive poor service due to underpro-
visioning are “permanently lost” opportunities, i.e. users who would have remained regular visitors with
a better experience. The site is initially provisioned to handle an expected peak of 400,000 users (1000
users per server ⇥ 400 servers), but unexpected positive press drives 500,000 users in the first hour. Of
the 100,000 who are turned away or receive bad service, by our assumption 10,000 of them are perma-
nently lost, leaving an active user base of 390,000. The next hour sees 250,000 new unique users. The
first 10,000 do fine, but the site is still over capacity by 240,000 users. This results in 24,000 additional
defections, leaving 376,000 permanent users. If this pattern continues, after lg 500000 or 19 hours, the
number of new users will approach zero and the site will be at capacity in steady state. Clearly, the service
operator has collected less than 400,000 users’ worth of steady revenue during those 19 hours, however,
again illustrating the underutilization argument —to say nothing of the bad reputation from the disgruntled
users.

Do such scenarios really occur in practice? When Animoto [4] made its service available via Facebook, it expe-
rienced a demand surge that resulted in growing from 50 servers to 3500 servers in three days. Even if the average
utilization of each server was low, no one could have foreseen that resource needs would suddenly double every 12
hours for 3 days. After the peak subsided, traffic fell to a level that was well below the peak. So in this real world
example, scale-up elasticity was not a cost optimization but an operational requirement, and scale-down elasticity
allowed the steady-state expenditure to more closely match the steady-state workload.

Elasticity is valuable to established companies as well as startups. For example, Target, the nation’s second largest
retailer, uses AWS for the Target.com website. While other retailers had severe performance problems and intermittent
unavailability on “Black Friday” (November 28), Target’s and Amazon’s sites were just slower by about 50%. 5

Similarly, Salesforce.com hosts customers ranging from 2 seat to 40,000+ seat customers.
Even less-dramatic cases suffice to illustrate this key benefit of Cloud Computing: the risk of mis-estimating

workload is shifted from the service operator to the cloud vendor. The cloud vendor may charge a premium (reflected
as a higher use cost per server-hour compared to the 3-year purchase cost) for assuming this risk. We propose the
following simple equation that generalizes all of the above cases. We assume the Cloud Computing vendor employs

11

Unused resources

(a) Provisioning for peak load (b) Underprovisioning 1

(c) Underprovisioning 2

Figure 2: (a) Even if peak load can be correctly anticipated, without elasticity we waste resources (shaded area) during
nonpeak times. (b) Underprovisioning case 1: potential revenue from users not served (shaded area) is sacrificed. (c)
Underprovisioning case 2: some users desert the site permanently after experiencing poor service; this attrition and
possible negative press result in a permanent loss of a portion of the revenue stream.

load equals the datacenter’s usable capacity, at which point users again receive acceptable service, but with fewer
potential users.

Example: Transferring risks. Suppose but 10% of users who receive poor service due to underpro-
visioning are “permanently lost” opportunities, i.e. users who would have remained regular visitors with
a better experience. The site is initially provisioned to handle an expected peak of 400,000 users (1000
users per server ⇥ 400 servers), but unexpected positive press drives 500,000 users in the first hour. Of
the 100,000 who are turned away or receive bad service, by our assumption 10,000 of them are perma-
nently lost, leaving an active user base of 390,000. The next hour sees 250,000 new unique users. The
first 10,000 do fine, but the site is still over capacity by 240,000 users. This results in 24,000 additional
defections, leaving 376,000 permanent users. If this pattern continues, after lg 500000 or 19 hours, the
number of new users will approach zero and the site will be at capacity in steady state. Clearly, the service
operator has collected less than 400,000 users’ worth of steady revenue during those 19 hours, however,
again illustrating the underutilization argument —to say nothing of the bad reputation from the disgruntled
users.

Do such scenarios really occur in practice? When Animoto [4] made its service available via Facebook, it expe-
rienced a demand surge that resulted in growing from 50 servers to 3500 servers in three days. Even if the average
utilization of each server was low, no one could have foreseen that resource needs would suddenly double every 12
hours for 3 days. After the peak subsided, traffic fell to a level that was well below the peak. So in this real world
example, scale-up elasticity was not a cost optimization but an operational requirement, and scale-down elasticity
allowed the steady-state expenditure to more closely match the steady-state workload.

Elasticity is valuable to established companies as well as startups. For example, Target, the nation’s second largest
retailer, uses AWS for the Target.com website. While other retailers had severe performance problems and intermittent
unavailability on “Black Friday” (November 28), Target’s and Amazon’s sites were just slower by about 50%. 5

Similarly, Salesforce.com hosts customers ranging from 2 seat to 40,000+ seat customers.
Even less-dramatic cases suffice to illustrate this key benefit of Cloud Computing: the risk of mis-estimating

workload is shifted from the service operator to the cloud vendor. The cloud vendor may charge a premium (reflected
as a higher use cost per server-hour compared to the 3-year purchase cost) for assuming this risk. We propose the
following simple equation that generalizes all of the above cases. We assume the Cloud Computing vendor employs

11

Source: Ambrust et al., “Above the clouds: A Berkeley’s view of Cloud Computing.”

Underprovisioning

10

(a) Provisioning for peak load (b) Underprovisioning 1

(c) Underprovisioning 2

Figure 2: (a) Even if peak load can be correctly anticipated, without elasticity we waste resources (shaded area) during
nonpeak times. (b) Underprovisioning case 1: potential revenue from users not served (shaded area) is sacrificed. (c)
Underprovisioning case 2: some users desert the site permanently after experiencing poor service; this attrition and
possible negative press result in a permanent loss of a portion of the revenue stream.

load equals the datacenter’s usable capacity, at which point users again receive acceptable service, but with fewer
potential users.

Example: Transferring risks. Suppose but 10% of users who receive poor service due to underpro-
visioning are “permanently lost” opportunities, i.e. users who would have remained regular visitors with
a better experience. The site is initially provisioned to handle an expected peak of 400,000 users (1000
users per server ⇥ 400 servers), but unexpected positive press drives 500,000 users in the first hour. Of
the 100,000 who are turned away or receive bad service, by our assumption 10,000 of them are perma-
nently lost, leaving an active user base of 390,000. The next hour sees 250,000 new unique users. The
first 10,000 do fine, but the site is still over capacity by 240,000 users. This results in 24,000 additional
defections, leaving 376,000 permanent users. If this pattern continues, after lg 500000 or 19 hours, the
number of new users will approach zero and the site will be at capacity in steady state. Clearly, the service
operator has collected less than 400,000 users’ worth of steady revenue during those 19 hours, however,
again illustrating the underutilization argument —to say nothing of the bad reputation from the disgruntled
users.

Do such scenarios really occur in practice? When Animoto [4] made its service available via Facebook, it expe-
rienced a demand surge that resulted in growing from 50 servers to 3500 servers in three days. Even if the average
utilization of each server was low, no one could have foreseen that resource needs would suddenly double every 12
hours for 3 days. After the peak subsided, traffic fell to a level that was well below the peak. So in this real world
example, scale-up elasticity was not a cost optimization but an operational requirement, and scale-down elasticity
allowed the steady-state expenditure to more closely match the steady-state workload.

Elasticity is valuable to established companies as well as startups. For example, Target, the nation’s second largest
retailer, uses AWS for the Target.com website. While other retailers had severe performance problems and intermittent
unavailability on “Black Friday” (November 28), Target’s and Amazon’s sites were just slower by about 50%. 5

Similarly, Salesforce.com hosts customers ranging from 2 seat to 40,000+ seat customers.
Even less-dramatic cases suffice to illustrate this key benefit of Cloud Computing: the risk of mis-estimating

workload is shifted from the service operator to the cloud vendor. The cloud vendor may charge a premium (reflected
as a higher use cost per server-hour compared to the 3-year purchase cost) for assuming this risk. We propose the
following simple equation that generalizes all of the above cases. We assume the Cloud Computing vendor employs

11

Source: Ambrust et al., “Above the clouds: A Berkeley’s view of Cloud Computing.”

Underprovisioning

11

(a) Provisioning for peak load (b) Underprovisioning 1

(c) Underprovisioning 2

Figure 2: (a) Even if peak load can be correctly anticipated, without elasticity we waste resources (shaded area) during
nonpeak times. (b) Underprovisioning case 1: potential revenue from users not served (shaded area) is sacrificed. (c)
Underprovisioning case 2: some users desert the site permanently after experiencing poor service; this attrition and
possible negative press result in a permanent loss of a portion of the revenue stream.

load equals the datacenter’s usable capacity, at which point users again receive acceptable service, but with fewer
potential users.

Example: Transferring risks. Suppose but 10% of users who receive poor service due to underpro-
visioning are “permanently lost” opportunities, i.e. users who would have remained regular visitors with
a better experience. The site is initially provisioned to handle an expected peak of 400,000 users (1000
users per server ⇥ 400 servers), but unexpected positive press drives 500,000 users in the first hour. Of
the 100,000 who are turned away or receive bad service, by our assumption 10,000 of them are perma-
nently lost, leaving an active user base of 390,000. The next hour sees 250,000 new unique users. The
first 10,000 do fine, but the site is still over capacity by 240,000 users. This results in 24,000 additional
defections, leaving 376,000 permanent users. If this pattern continues, after lg 500000 or 19 hours, the
number of new users will approach zero and the site will be at capacity in steady state. Clearly, the service
operator has collected less than 400,000 users’ worth of steady revenue during those 19 hours, however,
again illustrating the underutilization argument —to say nothing of the bad reputation from the disgruntled
users.

Do such scenarios really occur in practice? When Animoto [4] made its service available via Facebook, it expe-
rienced a demand surge that resulted in growing from 50 servers to 3500 servers in three days. Even if the average
utilization of each server was low, no one could have foreseen that resource needs would suddenly double every 12
hours for 3 days. After the peak subsided, traffic fell to a level that was well below the peak. So in this real world
example, scale-up elasticity was not a cost optimization but an operational requirement, and scale-down elasticity
allowed the steady-state expenditure to more closely match the steady-state workload.

Elasticity is valuable to established companies as well as startups. For example, Target, the nation’s second largest
retailer, uses AWS for the Target.com website. While other retailers had severe performance problems and intermittent
unavailability on “Black Friday” (November 28), Target’s and Amazon’s sites were just slower by about 50%. 5

Similarly, Salesforce.com hosts customers ranging from 2 seat to 40,000+ seat customers.
Even less-dramatic cases suffice to illustrate this key benefit of Cloud Computing: the risk of mis-estimating

workload is shifted from the service operator to the cloud vendor. The cloud vendor may charge a premium (reflected
as a higher use cost per server-hour compared to the 3-year purchase cost) for assuming this risk. We propose the
following simple equation that generalizes all of the above cases. We assume the Cloud Computing vendor employs

11

Source: Ambrust et al., “Above the clouds: A Berkeley’s view of Cloud Computing.”

Cloud provisioning on demand

12

R
es

ou
rc

es

Time%(days)%
1 2 3

Demand%
Capacity%

Case study
 Animoto: a cloud-based video creation service

‣ Scale from 50 servers to 3500 servers in 3 days when
making its services available via Facebook

‣ Scale back down to a level well below the peak
afterwards

13

Highly profitable business for
Cloud providers

14

Economy of scale
‣ A medium-sized datacenter (~1k servers) vs. a large

datacenter (~50k servers) in 2006

15

Table 2: Economies of scale in 2006 for medium-sized datacenter (⇡1000 servers) vs. very large datacenter (⇡50,000
servers). [24]

Technology Cost in Medium-sized DC Cost in Very Large DC Ratio
Network $95 per Mbit/sec/month $13 per Mbit/sec/month 7.1
Storage $2.20 per GByte / month $0.40 per GByte / month 5.7
Administration ⇡140 Servers / Administrator >1000 Servers / Administrator 7.1

Table 3: Price of kilowatt-hours of electricity by region [7].

Price per KWH Where Possible Reasons Why
3.6¢ Idaho Hydroelectric power; not sent long distance

10.0¢ California Electricity transmitted long distance over the grid;
limited transmission lines in Bay Area; no coal
fired electricity allowed in California.

18.0¢ Hawaii Must ship fuel to generate electricity

4. Attack an incumbent. A company with the requisite datacenter and software resources might want to establish a
beachhead in this space before a single “800 pound gorilla” emerges. Google AppEngine provides an alternative
path to cloud deployment whose appeal lies in its automation of many of the scalability and load balancing
features that developers might otherwise have to build for themselves.

5. Leverage customer relationships. IT service organizations such as IBM Global Services have extensive cus-
tomer relationships through their service offerings. Providing a branded Cloud Computing offering gives those
customers an anxiety-free migration path that preserves both parties’ investments in the customer relationship.

6. Become a platform. Facebook’s initiative to enable plug-in applications is a great fit for cloud computing, as
we will see, and indeed one infrastructure provider for Facebook plug-in applications is Joyent, a cloud provider.
Yet Facebook’s motivation was to make their social-networking application a new development platform.

Several Cloud Computing (and conventional computing) datacenters are being built in seemingly surprising loca-
tions, such as Quincy, Washington (Google, Microsoft, Yahoo!, and others) and San Antonio, Texas (Microsoft, US
National Security Agency, others). The motivation behind choosing these locales is that the costs for electricity, cool-
ing, labor, property purchase costs, and taxes are geographically variable, and of these costs, electricity and cooling
alone can account for a third of the costs of the datacenter. Table 3 shows the cost of electricity in different locales [10].
Physics tells us it’s easier to ship photons than electrons; that is, it’s cheaper to ship data over fiber optic cables than
to ship electricity over high-voltage transmission lines.

4 Clouds in a Perfect Storm: Why Now, Not Then?
Although we argue that the construction and operation of extremely large scale commodity-computer datacenters was
the key necessary enabler of Cloud Computing, additional technology trends and new business models also played
a key role in making it a reality this time around. Once Cloud Computing was “off the ground,” new application
opportunities and usage models were discovered that would not have made sense previously.

4.1 New Technology Trends and Business Models
Accompanying the emergence of Web 2.0 was a shift from “high-touch, high-margin, high-commitment” provisioning
of service “low-touch, low-margin, low-commitment” self-service. For example, in Web 1.0, accepting credit card
payments from strangers required a contractual arrangement with a payment processing service such as VeriSign or
Authorize.net; the arrangement was part of a larger business relationship, making it onerous for an individual or a very
small business to accept credit cards online. With the emergence of PayPal, however, any individual can accept credit
card payments with no contract, no long-term commitment, and only modest pay-as-you-go transaction fees. The level
of “touch” (customer support and relationship management) provided by these services is minimal to nonexistent, but

6

5 - 7x decrease of cost!

Source: Ambrust et al., “Above the clouds: A Berkeley’s view of Cloud Computing.”

Statistical multiplexing

16

Se

rv
er

s
Re

qu
es

te
d

0

75

150

225

300

Time (days)

1 2 3 4 5

User 1 User 2 User 3

Plus…
‣ Leverage existing investment, e.g., Amazon

‣ Defend a franchise, e.g., Microsoft Azure

‣ Attack an incumbent, e.g., Google AppEngine

‣ Leverage customer relationships, e.g., IBM

‣ Become a platform, e.g., Facebook, Apple, etc.

17

Enabling technology: Virtualization

18

Bare Metal
OS

App App App

Traditional stack

Bare Metal

OS
App App App

Hypervisor
OS

Virtualized stack

VM1 VM2

What kind of Cloud services
do I expect?

19

Infrastructure-as-a-Service
‣ Processing, storage, networks, and other computing

resources, typically in a form of virtual machines

‣ Full control of OS, storage, applications, and some
networking components (e.g., firewalls)

20

Platform-as-a-Service
‣ Deploy onto the cloud infrastructure the applications

created by programming languages, libraries, services,
and tools supported by the provider

‣ No control of OS, storage, or network, but can control
the deployed applications and host environment

21

Software-as-a-Service
‣ Use the provider’s applications running on a cloud

infrastructure

‣ No control of network, OS, storage, and application
capabilities, except limited user-specific configuration
settings

22

23Source: K. Remde, “SaaS, PaaS, and IaaS.. Oh my!” TechNet Blog, 2011

24

Lower-level,
General-purpose,

Less managed

Higher-level,
Application-specific,

More managed

Infrastructure
(as a Service)

Platform
(as a Service)

Software
(as a Service)

We shall focus on IaaS in this
course

25

How can the Cloud services
be provisioned?

26

27Source: Google

28Source: Google

29Source: Google

A look into the datacenter

30

6 THE DATACENTER AS A COMPUTER

Figure 1.1 depicts some of the more popular building blocks for WSCs. A set of low-end serv-
ers, typically in a 1U or blade enclosure format, are mounted within a rack and interconnected using
a local Ethernet switch. These rack-level switches, which can use 1- or 10-Gbps links, have a num-
ber of uplink connections to one or more cluster-level (or datacenter-level) Ethernet switches. This
second-level switching domain can potentially span more than ten thousand individual servers.

1.6.1 Storage
Disk drives are connected directly to each individual server and managed by a global distributed
file system (such as Google’s GFS [31]) or they can be part of Network Attached Storage (NAS)
devices that are directly connected to the cluster-level switching fabric. A NAS tends to be a simpler
solution to deploy initially because it pushes the responsibility for data management and integrity to
a NAS appliance vendor. In contrast, using the collection of disks directly attached to server nodes
requires a fault-tolerant file system at the cluster level. This is difficult to implement but can lower
hardware costs (the disks leverage the existing server enclosure) and networking fabric utilization
(each server network port is effectively dynamically shared between the computing tasks and the
file system). The replication model between these two approaches is also fundamentally different. A
NAS provides extra reliability through replication or error correction capabilities within each appli-
ance, whereas systems like GFS implement replication across different machines and consequently

FIGURE 1.1: Typical elements in warehouse-scale systems: 1U server (left), 7´ rack with Ethernet
switch (middle), and diagram of a small cluster with a cluster-level Ethernet switch/router (right).

Commodity
Server

6 THE DATACENTER AS A COMPUTER

Figure 1.1 depicts some of the more popular building blocks for WSCs. A set of low-end serv-
ers, typically in a 1U or blade enclosure format, are mounted within a rack and interconnected using
a local Ethernet switch. These rack-level switches, which can use 1- or 10-Gbps links, have a num-
ber of uplink connections to one or more cluster-level (or datacenter-level) Ethernet switches. This
second-level switching domain can potentially span more than ten thousand individual servers.

1.6.1 Storage
Disk drives are connected directly to each individual server and managed by a global distributed
file system (such as Google’s GFS [31]) or they can be part of Network Attached Storage (NAS)
devices that are directly connected to the cluster-level switching fabric. A NAS tends to be a simpler
solution to deploy initially because it pushes the responsibility for data management and integrity to
a NAS appliance vendor. In contrast, using the collection of disks directly attached to server nodes
requires a fault-tolerant file system at the cluster level. This is difficult to implement but can lower
hardware costs (the disks leverage the existing server enclosure) and networking fabric utilization
(each server network port is effectively dynamically shared between the computing tasks and the
file system). The replication model between these two approaches is also fundamentally different. A
NAS provides extra reliability through replication or error correction capabilities within each appli-
ance, whereas systems like GFS implement replication across different machines and consequently

FIGURE 1.1: Typical elements in warehouse-scale systems: 1U server (left), 7´ rack with Ethernet
switch (middle), and diagram of a small cluster with a cluster-level Ethernet switch/router (right).

Rack

6 THE DATACENTER AS A COMPUTER

Figure 1.1 depicts some of the more popular building blocks for WSCs. A set of low-end serv-
ers, typically in a 1U or blade enclosure format, are mounted within a rack and interconnected using
a local Ethernet switch. These rack-level switches, which can use 1- or 10-Gbps links, have a num-
ber of uplink connections to one or more cluster-level (or datacenter-level) Ethernet switches. This
second-level switching domain can potentially span more than ten thousand individual servers.

1.6.1 Storage
Disk drives are connected directly to each individual server and managed by a global distributed
file system (such as Google’s GFS [31]) or they can be part of Network Attached Storage (NAS)
devices that are directly connected to the cluster-level switching fabric. A NAS tends to be a simpler
solution to deploy initially because it pushes the responsibility for data management and integrity to
a NAS appliance vendor. In contrast, using the collection of disks directly attached to server nodes
requires a fault-tolerant file system at the cluster level. This is difficult to implement but can lower
hardware costs (the disks leverage the existing server enclosure) and networking fabric utilization
(each server network port is effectively dynamically shared between the computing tasks and the
file system). The replication model between these two approaches is also fundamentally different. A
NAS provides extra reliability through replication or error correction capabilities within each appli-
ance, whereas systems like GFS implement replication across different machines and consequently

FIGURE 1.1: Typical elements in warehouse-scale systems: 1U server (left), 7´ rack with Ethernet
switch (middle), and diagram of a small cluster with a cluster-level Ethernet switch/router (right).

Cell

Source: L. Barroso et al., “The datacenter as a computer: An introduction to the design of
warehouse-scale machines.”

‣ Back to 2004 when Google has only 20k servers in a
datacenter

Network infrastructure

31

acenter deployments, the number of required protocols
can be substantially reduced.

Inspired by the community’s ability to scale out com-
puting with parallel arrays of commodity servers, we
sought a similar approach for networking. This paper
describes our experience with building five generations
of custom data center network hardware and software
leveraging commodity hardware components, while ad-
dressing the control and management requirements in-
troduced by our approach. We used the following prin-
ciples in constructing our networks:

Clos topologies: To support graceful fault tol-
erance, increase the scale/bisection of our datacenter
networks, and accommodate lower radix switches, we
adopted Clos topologies [2, 9, 15] for our datacenters.
Clos topologies can scale to nearly arbitrary size by
adding stages to the topology, principally limited by
failure domain considerations and control plane scala-
bility. They also have substantial in-built path diversity
and redundancy, so the failure of any individual ele-
ment can result in relatively small capacity reduction.
However, they introduce substantial challenges as well,
including managing the fiber fanout and more complex
routing across multiple equal-cost paths.

Merchant silicon: Rather than use commercial
switches targeting small-volume, large feature sets, and
high reliability, we targeted general-purpose merchant
switch silicon, commodity priced, o↵ the shelf, switch-
ing components. To keep pace with server bandwidth
demands which scale with cores per server and Moore’s
Law, we emphasized bandwidth density and frequent re-
fresh cycles. Regularly upgrading network fabrics with
the latest generation of commodity switch silicon allows
us to deliver exponential growth in bandwidth capacity
in a cost-e↵ective manner.

Centralized control protocols: Control and man-
agement becomes substantially more complex with Clos
topologies because we dramatically increase the num-
ber of discrete switching elements. Existing routing
and management protocols were not well-suited to such
an environment. To control this complexity, we ob-
served that individual datacenter switches played a pre-
determined forwarding role based on the cluster plan.
We took this observation to one extreme by collecting
and distributing dynamically changing link state infor-
mation from a central, dynamically-elected, point in the
network. Individual switches could then calculate for-
warding tables based on current link state relative to a
statically configured topology.

Overall, our software architecture more closely resem-
bles control in large-scale storage and compute plat-
forms than traditional networking protocols. Network
protocols typically use soft state based on pair-wise
message exchange, emphasizing local autonomy. We
were able to use the distinguishing characteristics and
needs of our datacenter deployments to simplify control
and management protocols, anticipating many of the
tenets of modern Software Defined Networking deploy-

Figure 1: Aggregate server tra�c in our datacenter fleet.

Figure 2: A traditional 2Tbps four-post cluster (2004). Top
of Rack (ToR) switches serving 40 1G-connected servers
were connected via 1G links to four 512 1G port Cluster
Routers (CRs) connected with 10G sidelinks.

ments [13]. The datacenter networks described in this
paper represent some of the largest in the world, are in
deployment at dozens of sites across the planet, and sup-
port thousands of internal and external services, includ-
ing external use through Google Cloud Platform. Our
cluster network architecture found substantial reuse for
inter-cluster networking in the same campus and even
WAN deployments [19] at Google.

2. BACKGROUND AND RELATED
WORK

The tremendous growth rate of our infrastructure
served as key motivation for our work in datacenter
networking. Figure 1 shows aggregate server commu-
nication rates since 2008. Tra�c has increased 50x in
this time period, roughly doubling every year. A combi-
nation of remote storage access [7, 14], large-scale data
processing [10,18], and interactive web services [4] drive
our bandwidth demands.

In 2004, we deployed traditional cluster networks sim-
ilar to [5]. Figure 2 depicts this “four-post” cluster ar-
chitecture. We employed the highest density Ethernet
switches available, 512 ports of 1GE, to build the spine
of the network (CRs or cluster routers). Each Top of
Rack (ToR) switch connected to all four of the cluster
routers for both scale and fault tolerance.

With up to 40 servers per ToR, this approach sup-
ported 20k servers per cluster. However, high band-

Source: A. Singh et al., “Jupiter rising: A decade of Clos topologies and centralized
control in Google’s datacenter network,” ACM SIGCOMM’15.

Things have changed quite a lot

32

acenter deployments, the number of required protocols
can be substantially reduced.

Inspired by the community’s ability to scale out com-
puting with parallel arrays of commodity servers, we
sought a similar approach for networking. This paper
describes our experience with building five generations
of custom data center network hardware and software
leveraging commodity hardware components, while ad-
dressing the control and management requirements in-
troduced by our approach. We used the following prin-
ciples in constructing our networks:

Clos topologies: To support graceful fault tol-
erance, increase the scale/bisection of our datacenter
networks, and accommodate lower radix switches, we
adopted Clos topologies [2, 9, 15] for our datacenters.
Clos topologies can scale to nearly arbitrary size by
adding stages to the topology, principally limited by
failure domain considerations and control plane scala-
bility. They also have substantial in-built path diversity
and redundancy, so the failure of any individual ele-
ment can result in relatively small capacity reduction.
However, they introduce substantial challenges as well,
including managing the fiber fanout and more complex
routing across multiple equal-cost paths.

Merchant silicon: Rather than use commercial
switches targeting small-volume, large feature sets, and
high reliability, we targeted general-purpose merchant
switch silicon, commodity priced, o↵ the shelf, switch-
ing components. To keep pace with server bandwidth
demands which scale with cores per server and Moore’s
Law, we emphasized bandwidth density and frequent re-
fresh cycles. Regularly upgrading network fabrics with
the latest generation of commodity switch silicon allows
us to deliver exponential growth in bandwidth capacity
in a cost-e↵ective manner.

Centralized control protocols: Control and man-
agement becomes substantially more complex with Clos
topologies because we dramatically increase the num-
ber of discrete switching elements. Existing routing
and management protocols were not well-suited to such
an environment. To control this complexity, we ob-
served that individual datacenter switches played a pre-
determined forwarding role based on the cluster plan.
We took this observation to one extreme by collecting
and distributing dynamically changing link state infor-
mation from a central, dynamically-elected, point in the
network. Individual switches could then calculate for-
warding tables based on current link state relative to a
statically configured topology.

Overall, our software architecture more closely resem-
bles control in large-scale storage and compute plat-
forms than traditional networking protocols. Network
protocols typically use soft state based on pair-wise
message exchange, emphasizing local autonomy. We
were able to use the distinguishing characteristics and
needs of our datacenter deployments to simplify control
and management protocols, anticipating many of the
tenets of modern Software Defined Networking deploy-

Figure 1: Aggregate server tra�c in our datacenter fleet.

Figure 2: A traditional 2Tbps four-post cluster (2004). Top
of Rack (ToR) switches serving 40 1G-connected servers
were connected via 1G links to four 512 1G port Cluster
Routers (CRs) connected with 10G sidelinks.

ments [13]. The datacenter networks described in this
paper represent some of the largest in the world, are in
deployment at dozens of sites across the planet, and sup-
port thousands of internal and external services, includ-
ing external use through Google Cloud Platform. Our
cluster network architecture found substantial reuse for
inter-cluster networking in the same campus and even
WAN deployments [19] at Google.

2. BACKGROUND AND RELATED
WORK

The tremendous growth rate of our infrastructure
served as key motivation for our work in datacenter
networking. Figure 1 shows aggregate server commu-
nication rates since 2008. Tra�c has increased 50x in
this time period, roughly doubling every year. A combi-
nation of remote storage access [7, 14], large-scale data
processing [10,18], and interactive web services [4] drive
our bandwidth demands.

In 2004, we deployed traditional cluster networks sim-
ilar to [5]. Figure 2 depicts this “four-post” cluster ar-
chitecture. We employed the highest density Ethernet
switches available, 512 ports of 1GE, to build the spine
of the network (CRs or cluster routers). Each Top of
Rack (ToR) switch connected to all four of the cluster
routers for both scale and fault tolerance.

With up to 40 servers per ToR, this approach sup-
ported 20k servers per cluster. However, high band-

Source: A. Singh et al., “Jupiter rising: A decade of Clos topologies and centralized
control in Google’s datacenter network,” ACM SIGCOMM’15.

Challenge: network

33

Figure 8: Firehose 1.1 deployed as a bag-on-the-side Clos
fabric.

Figure 9: A 128x10G port Watchtower chassis (top left).
The internal non-blocking topology over eight linecards
(bottom left). Four chassis housed in two racks cabled with
fiber (right).

cific intra-cluster tra�c would use the uplinks to Fire-
hose 1.1. Since our four-post cluster employed 1G links,
we only needed to reserve four 1GE ToR ports. We built
a Big Red Button fail-safe to configure the ToRs to avoid
Firehose uplinks in case of catastrophic failure.

3.3 Watchtower: Global Deployment
Our deployment experience with Firehose 1.1 was

largely positive. We showed that services could en-
joy substantially more bandwidth than with traditional
architectures, all with lower cost per unit bandwidth.
Firehose 1.1 went into production with a handful of clus-
ters and remained operational until recently. The main
drawback to Firehose 1.1 was the deployment challenges
with the external copper cabling.

We used these experiences to design Watchtower, our
third-generation cluster fabric. The key idea was to
leverage the next-generation merchant silicon switch
chips, 16x10G, to build a traditional switch chassis with
a backplane. Figure 9 shows the half rack Watchtower

Figure 10: Reducing deployment complexity by bundling
cables. Stages 1, 2 and 3 in the fabric are labeled S1, S2 and
S3, respectively.

Individual cables 15872
S2-S3 bundles (16-way) 512
Normalized cost of fiber/m in 16-way bundle 55%
S2-ToR bundles (8-way) 960
Normalized cost of fiber/m in 8-way bundle 60%
Total cable bundles 1472
Normalized cost of fiber/m with bundling
(capex + opex)

57%

Table 3: Benefits of cable bundling in Watchtower.

chassis along with its internal topology and cabling.
Watchtower consists of eight line cards, each with three
switch chips. Two chips on each linecard have half their
ports externally facing, for a total of 16x10GE SFP+
ports. All three chips also connect to a backplane for
port to port connectivity. Watchtower deployment, as
seen in Figure 9 was substantially easier than the earlier
Firehose deployments. The larger bandwidth density
of the switching silicon also allowed us to build larger
fabrics with more bandwidth to individual servers, a
necessity as servers were employing an ever-increasing
number of cores.

Fiber bundling further reduced the cabling complex-
ity of Watchtower clusters. Figure 10 shows a Watch-
tower fabric deployment without any cable bundling.
Individual fibers of varying length need to be pulled
from each chassis location, leading to significant deploy-
ment overhead. The bottom figure shows how bundling
can substantially reduce complexity. We deploy two
chassis in each rack and co-locate two racks. We can
then pull cable bundles to the midpoint of the co-located
racks, where each bundle is split to each rack and then
further to each chassis.

Finally, manufacturing fiber in bundles is more cost
e↵ective than individual strands. Cable bundling
helped reduce fiber cost (capex + opex) by nearly 40%
and expedited bringup of Watchtower fabric by multi-
ple weeks. Table 3 summarizes the bundling and cost
savings.

Source: A. Singh et al., “Jupiter rising: A decade of Clos topologies and centralized
control in Google’s datacenter network,” ACM SIGCOMM’15.

Challenge: storage
‣ Large dataset cannot fit into a local storage

‣ Persistent storage must be distributed

‣ GFS, BigTable, HDFS, Cassandra, S3, etc.

‣ Local storage goes volatile

‣ Cache for data being served

‣ local logging and async copy to persistent storage
34

Challenge: scale
‣ Large cluster: able to host petabytes of data

‣ Extremely large cluster: at Google, the storage system
pages a user if there is only a few petabytes of spaces left
available!

‣ A 10k-node cluster is considered small- to medium-
sized

35

Challenge: faults

Failure is a norm, not an exception!

‣ A 2000-node cluster will have >10 machines crashing per day

 — Luiz Barroso
36

>1% DRAM errors per year

2-10% Annual failure rate of disk drive

2 # crashes per machine-year

2-6 # OS upgrades per machine-year

>1 Power utility events per year

Source: J. Wilkes, “Cluster management at Google.”

Server heterogeneity
‣ Servers span multiple generations representing different

points in the configuration space

37

Number of machines Platform CPUs Memory
6732 B 0.50 0.50
3863 B 0.50 0.25
1001 B 0.50 0.75

795 C 1.00 1.00
126 A 0.25 0.25
52 B 0.50 0.12
5 B 0.50 0.03
5 B 0.50 0.97
3 C 1.00 0.50
1 B 0.50 0.06

Table 1: Configurations of machines in the cluster. CPU and
memory units are linearly scaled so that the maximum machine
is 1. Machines may change configuration during the trace; we
show their first configuration.

properties and their lifecycle management, workload behavior, and
resource utilization. Zhang et al. [26] study the trace from the per-
spective of energy-aware provisioning and energy-cost minimiza-
tion, using it to motivate dynamic capacity provisioning and the
challenges associated with it.

3. HETEROGENEITY
The traced ‘cloud computing’ workload is much less homoge-

neous than researchers often assume. It appears to be a mix of
latency-sensitive tasks, with characteristics similar to web site serv-
ing, and less latency-sensitive programs, with characteristics sim-
ilar to high-performance computing and MapReduce workloads.
This heterogeneity will break many scheduling strategies that might
target more specific environments. Assumptions that machines or
tasks can be treated equally are broken; for example, no schedul-
ing strategy that uses fixed-sized ‘slots’ or uniform randomization
among tasks or machines is likely to perform well.

3.1 Machine types and attributes
The cluster machines are not homogeneous; they consist of three

different platforms (the trace providers distinguish them by indi-
cating “the microarchitecture and chipset version” [18]) and a va-
riety of memory/compute ratios. The configurations are shown in
Table 1. Exact numbers of CPU cores and bytes of memory are
unavailable; instead, CPU and memory size measurements are nor-
malized to the configuration of the largest machines. We will use
these units throughout this paper. Most of the machines have half
of the memory and half the CPU of the largest machines.

This variety of configurations is unlike the fully homogeneous
clusters usually assumed by prior work. It is also distinct from
prior work that focuses on clusters where some machines have fun-
damentally different types of computing hardware, like GPUs, FP-
GAs, or very low-power CPUs. The machines here differ in ways
that can be explained by the machines being acquired over time
using whatever configuration was most cost-effective then, rather
than any deliberate decision to use heterogeneous hardware.

In addition to the CPU and memory capacity and microarchi-
tecture of the machines, a substantial fraction of machine hetero-
geneity, from the scheduler’s perspective, comes from “machine
attributes”. They are obfuscated <key,value> pairs, with a total
of 67 unique machine attribute keys in the cell. The majority of
those attributes have fewer than 10 unique values ever used by any
machine. That is consistent with [21], where the only machine at-
tributes with possible values exceeding 10 were number of disks

Figure 1: Normal production (top) and lower (bottom) priority
CPU usage by hour of day. The dark line is the median and the
grey band represents the quartiles.

and clock speed. In this trace, exactly 10 keys are used with more
than 10 possible values. 6 of these keys are used as constraints. One
of them has 12569 unique values — an order of magnitude greater
than all others combined, which roughly corresponds to the number
of machines in the cluster. Based on further analysis in Section 6
and [21], these attributes likely reflect a combination of machine
configuration and location information. Since these attributes are
all candidates for task placement constraints (discussed later), their
number and variety are a concern for a scheduler. Scheduler de-
signs can no longer consider heterogeneity of hardware an aberra-
tion.

3.2 Workload types
One signal of differing job types is the priority associated with

the tasks. The trace uses twelve task priorities (numbered 0 to 11),
which we will group into three sets: production (9–11), middle
(2–8), and gratis (0–1). The trace providers tell us that latency-
sensitive tasks (as marked by another task attribute) in the produc-
tion priorities should not be “evicted due to over-allocation of ma-
chine resources” [18] and that users of tasks of gratis priorities are
charged substantially less for their resources.

The aggregate usage shows that the production priorities repre-
sent a different kind of workload than the others. As shown in Fig-
ure 1, production priorities account for more resource usage than
all the other priorities and have the clearest daily patterns in usage
(with a peak-to-mean ratio of 1.3). As can be seen from Figure 2,
the production priorities also include more long-duration jobs, ac-
counting for a majority of all jobs which run longer than a day even
though only 7% of all jobs run at production priority. Usage at the
lowest priority shows little such pattern, and this remains true even
if short-running jobs are excluded.

These are clearly not perfect divisions of job purpose — each
priority set appears to contain jobs that behave like user-facing
services would and large numbers of short-lived batch-like jobs
(based on their durations and utilization patterns). The trace con-
tains no obvious job or task attribute that distinguishes between

Source: C. Reiss, “Heterogeneity and dynamicity of Clouds at scale: Google trace
analysis,” ACM SoCC’12.

Workload heterogeneity

38

sharing incentive, strategy-proofness, Pareto efficiency,
and envy-freeness. DRF provides incentives for users to
share resources by guaranteeing that no user is better off
in a system in which resources are statically and equally
partitioned among users. Furthermore, DRF is strategy-
proof, as a user cannot get a better allocation by lying
about her resource demands. DRF is Pareto-efficient as
it allocates all available resources subject to satisfying
the other properties, and without preempting existing al-
locations. Finally, DRF is envy-free, as no user prefers
the allocation of another user. Other solutions violate at
least one of the above properties. For example, the pre-
ferred [3, 22, 33] fair division mechanism in microeco-
nomic theory, Competitive Equilibrium from Equal In-
comes [30], is not strategy-proof.

We have implemented and evaluated DRF in
Mesos [16], a resource manager over which multiple
cluster computing frameworks, such as Hadoop and MPI,
can run. We compare DRF with the slot-based fair shar-
ing scheme used in Hadoop and Dryad and show that
slot-based fair sharing can lead to poorer performance,
unfairly punishing certain workloads, while providing
weaker isolation guarantees.

While this paper focuses on resource allocation in dat-
acenters, we believe that DRF is generally applicable to
other multi-resource environments where users have het-
erogeneous demands, such as in multi-core machines.

The rest of this paper is organized as follows. Sec-
tion 2 motivates the problem of multi-resource fairness.
Section 3 lists fairness properties that we will consider in
this paper. Section 4 introduces DRF. Section 5 presents
alternative notions of fairness, while Section 6 analyzes
the properties of DRF and other policies. Section 7 pro-
vides experimental results based on traces from a Face-
book Hadoop cluster. We survey related work in Sec-
tion 8 and conclude in Section 9.

2 Motivation

While previous work on weighted max-min fairness has
focused on single resources, the advent of cloud com-
puting and multi-core processors has increased the need
for allocation policies for environments with multiple
resources and heterogeneous user demands. By multi-
ple resources we mean resources of different types, in-
stead of multiple instances of the same interchangeable
resource.

To motivate the need for multi-resource allocation, we
plot the resource usage profiles of tasks in a 2000-node
Hadoop cluster at Facebook over one month (October
2010) in Figure 1. The placement of a circle in Figure 1
indicates the memory and CPU resources consumed by
tasks. The size of a circle is logarithmic to the number of
tasks in the region of the circle. Though the majority of
tasks are CPU-heavy, there exist tasks that are memory-

Figure 1: CPU and memory demands of tasks in a 2000-node
Hadoop cluster at Facebook over one month (October 2010).
Each bubble’s size is logarithmic in the number of tasks in its
region.

heavy as well, especially for reduce operations.
Existing fair schedulers for clusters, such as Quincy

[18] and the Hadoop Fair Scheduler [2, 34], ignore the
heterogeneity of user demands, and allocate resources at
the granularity of slots, where a slot is a fixed fraction
of a node. This leads to inefficient allocation as a slot is
more often than not a poor match for the task demands.

Figure 2 quantifies the level of fairness and isola-
tion provided by the Hadoop MapReduce fair sched-
uler [2, 34]. The figure shows the CDFs of the ratio
between the task CPU demand and the slot CPU share,
and of the ratio between the task memory demand and
the slot memory share. We compute the slot memory
and CPU shares by simply dividing the total amount of
memory and CPUs by the number of slots. A ratio of
1 corresponds to a perfect match between the task de-
mands and slot resources, a ratio below 1 corresponds to
tasks underutilizing their slot resources, and a ratio above
1 corresponds to tasks over-utilizing their slot resources,
which may lead to thrashing. Figure 2 shows that most of
the tasks either underutilize or overutilize some of their
slot resources. Modifying the number of slots per ma-
chine will not solve the problem as this may result either
in a lower overall utilization or more tasks experiencing
poor performance due to over-utilization (see Section 7).

3 Allocation Properties

We now turn our attention to designing a max-min fair al-
location policy for multiple resources and heterogeneous
requests. To illustrate the problem, consider a system
consisting of 9 CPUs and 18 GB RAM, and two users:
user A runs tasks that require h1 CPUs, 4 GBi each, and
user B runs tasks that require h3 CPUs, 1 GBi each.
What constitutes a fair allocation policy for this case?

2

Source: A. Ghodsi et al., “Dominant resource fairness: fair allocation of multiple resource
types,” USENIX/ACM NSDI’11.

Challenges due to heterogeneity
‣ Hard to provide predictable and consistent services

‣ Hard to monitor the system, identify the performance
bottleneck, or reason about the stragglers

‣ Hard to achieve fair sharing among users

39

Despite all these challenges,
we still want to achieve…

40

Objectives
‣ Network with high bisection bandwidth

‣ Able to run everything at scale

‣ Fault tolerance

‣ Predictable services

‣ High utilization

With the minimum human intervention!
41

Now what is the Cloud user’s
problem?

42

43

How to handle big data?

Basic idea: Divide and Conquer

44

Job

Task Task Task Task Task

Worker Worker Worker Worker Worker

out out out out out

Final results

The degree of
parallelism
depends on the
problem scale

Implementation challenges
‣ How to schedule tasks onto the worker nodes?

‣ How to communicate with workers?

‣ How to collect/aggregate results?

‣ What if workers want to share intermediate results?

‣ What if workers become stragglers or die?

‣ How to monitor and reason about the problem?
45

A system that handles all the challenges of
parallelism, allowing users to focus on the high-
level logic, not low-level implementation details

46

Typical operations
‣ Iterate over a large number of records across servers

‣ Extract some intermediate results from each

‣ Shuffle and sort intermediate results

‣ Collect and aggregate

‣ Generate final output

47

48

“CSE”
“UST”
“HK”

“CSE” “CSE”
“HK”

“UST”
“HK”

(“CSE”, 1)
(“UST”, 1)
(“HK”, 1)

(“CSE”, 1) (“CSE”, 1)
(“HK”, 1)

(“UST”, 1)
(“HK”, 1)

Word Count

(“CSE”, 1)
(“CSE”, 1)
(“CSE”, 1)

(“UST”, 1)
(“UST”, 1)

(“HK”, 1)
(“HK”, 1)
(“HK”, 1)

(“CSE”, 3) (“UST”, 2) (“HK”, 3)

(“CSE”, 3), (“UST”, 2), (“HK”, 3)

Abstract, abstract, abstract!
‣ Iterate over a large number of records across servers

‣ Extract some intermediate results from each record

‣ Shuffle and sort intermediate results

‣ Collect and aggregate

‣ Generate final output

49

Map

Reduce

50

CSE
UST
HK

CSE CSE
HK

UST
HK

(CSE, 1)
(UST, 1)
(HK, 1)

(CSE, 1) (CSE, 1)
(HK, 1)

(UST, 1)
(HK, 1)

Word Count

(CSE, 1)
(CSE, 1)
(CSE, 1)

(UST, 1)
(UST, 1)

(HK, 1)
(HK, 1)
(HK, 1)

(CSE, 3) (UST, 2) (HK, 3)

(CSE, 3), (UST, 2), (HK, 3)

Map

Reduce

MapReduce: programming on a 1000-
node cluster is no more difficult than
programming on a laptop

51

vs.

“Simple things
should be
simple, complex
things should be
possible.”

 — Alan Kay

Papers to be presented
Friday, Sep. 11

‣ MapReduce: Saethish

‣ Spark: Shengkai

Monday, Sep. 14

‣ SparkStreaming: Yaofeng

‣ Tez: Daizuo
53

