
Approximate Range Counting Under Differential Privacy∗

Ziyue Huang† Ke Yi‡

February 25, 2021

Abstract

Range counting under differential privacy has been studied extensively. Unfortunately,
lower bounds based on discrepancy theory suggest that large errors have to be introduced in
order to preserve privacy: Essentially for any range space (except axis-parallel rectangles),
the error has to be polynomial. In this paper, we show that by allowing a standard notion
of geometric approximation where points near the boundary of the range may or may not
be counted, the error can be reduced to logarithmic. Furthermore, our approximate range
counting data structure can be used to solve the approximate nearest neighbor (ANN)
problem and k-NN classification, leading to the first differentially private algorithms for
these two problems with provable guarantees on the utility.

1 Introduction

Differential privacy (DP) [7] is a rigorous notion of privacy-preserving data publishing, which
has been widely adopted. Essentially, it ensures that no individual can substantially change
the probability distribution on the published results of an analysis. A central problem studied
under differential privacy is counting queries. Given a set of points P ⊆ U , where U is the
universe, the goal is to release a differentially private data structure of P , so that for any query
Q ⊆ U from a certain query family Q, we can find the count1 |P ∩Q|. To ensure the privacy of
P , some noise has to be injected to the query answers, so the key challenge is to minimize the
error under a given privacy budget (ε, δ); please see Section 2.1 for a more formal DP definition
and the meaning of the privacy parameters ε, δ.

When Q consists of arbitrary subsets of U , then the optimal error achievable is
√
n ·

poly(1ε , log |U|·|Q|δ) [12]. In the other extreme when Q = U , which are called point queries,
also known as the histogram problem, the error is O(1ε ·min{log |U|, log 1

δ}) [21]. This is a large
gap. Thus, there have been a lot of interest in studying specific query families, and particularly,
identifying those that yield polylogarithmic errors. In this paper, we study query families in
constant-dimensional Euclidean space. More precisely, the dataset P consists of n points from
U = [u]d, where [u] denotes integers from 1 to u, while Q consists of geometric ranges of a
certain type, e.g., (axis-parallel) rectangles, halfspaces, simplices, spheres, or arbitrarily-shaped
regions. In the geometric setting, Q is often called a range space.

1.1 Previous work

For d = 1, the only interesting range space is the set of intervals. For this case, Dwork
et al. [8] present an (ε, 0)-DP algorithm with error O

(
1
ε log1.5 u

)
, as well as a lower bound

∗This work has been supported by HKRGC under grants 16202317, 16201318, and 16201819.
†Department of Computer Science and Engineering, HKUST. zhuangbq@cse.ust.hk.
‡Department of Computer Science and Engineering, HKUST. yike@cse.ust.hk.
1We allow P to be a multiset, i.e., the same point from U may appear multiple times in P . In this case,

|P ∩Q| adds up all the multiplicities of points of P that are in Q.

1

of Ω(1ε log u)2. Bun et al. [4] show that under (ε, δ)-DP, this lower bound can be broken,

achieving error 2(1+o(1)) log
∗ u · log(1/δ)/ε. They also show an Ω(log∗ u · log(1/δ)/ε) lower bound

for exp(−εn/ log∗ n) ≤ δ ≤ 1/n2. Note that these lower bounds justify the restriction that the
points must have integer coordinates. In addition, they hold irrespective of the space/time of
the data structure. They solely rely on the privacy requirement.

For d ≥ 2, Chan et al. [5] extend the algorithm of [8] to answer axis-parallel rectangle queries
with error O

(
1
ε log1.5d u

)
, which is later improved to O

(
1
ε (log u+ log1.5d n)

)
[9]. These results

show that rectangles are “easy”, namely, they admit polylogarithmic errors. Unfortunately, it
turns out they are essentially the only easy cases. Muthukrishnan and Nikolov [17] and Nikolov
et al. [18] build an equivalence between the error and the discrepancy of the range space
Q. Rectangle range counting has polylogarithmic errors essentially because the discrepancy of
rectangles is polylogarithmic [16]. On the other hand, since the discrepancy of other natural
range spaces, such as halfspaces, simplices, and spheres, is all nφ(d), where φ(d) ∈ [14 ,

1
2] is a

constant depending on the particular range space and d [16], they are ruled out for having
polylogarithmic errors. Making things worse, if we allow nonconvex ranges, the discrepancy
becomes

√
n, which means that the aforementioned solution that works for arbitrary query

families [12] is already optimal, namely, geometry doesn’t help.
However, a series of differentially private range counting data structures [6, 14, 22, 15, 19,

20, 23] have been proposed by practitioners, mostly based on hierarchical space decompositions.
They work well on many real-world datasets, but perform badly on high-discrepancy point sets,
as predicted by the lower bounds [17, 18].

Must not be counted

May be counted

Must be counted

Q−

α

Q

Q+

α

Figure 1: Approximate range counting.

1.2 Our results

This paper provides the theoretical justification that geometry does help, at least in constant
dimensions. However, in order to circumvent the polynomial discrepancy lower bounds, we have
to introduce some relaxation. Specifically, we consider approximate range counting as defined
in [1]. The diameter of a range Q is the largest distance between any two points in Q. Given
a range Q of diameter w and a constant fuzziness parameter 0 < α < 1, the inner range Q−α is
defined as the region of points whose distance from any point exterior to Q is at least αw, while
the outer range Q+

α is those points whose distance from a point interior to Q is at most αw.
Then any count between |P ∩Q−α | and |P ∩Q+

α | is considered a valid answer to Q, i.e., points
in Q+

α −Q−α may or may not be counted (see Figure 1). In fact, Blum et al. [3] used a similar
notion of geometric approximation with differential privacy, but their error is still polynomial.

We show that polylogarithmic errors are achievable under this notion of approximation. In
particular, we show that (1) under (ε, 0)-DP, the error is O

(
1
ε log u

)
, with a lower bound of

2All upper bounds stated in this paper hold for any single query with constant probability, while lower bounds
hold for the maximum error of all queries with constant probability.

2

Ω
(
1
ε log u

)
; and (2) under (ε, δ)-DP, the error can be reduced to O(1ε (log log u+log 1

δ +log1.5 n)),
with a lower bound of Ω

(
1
ε log∗ u · log(1/δ)

)
for exp(−εn/ log∗ n) ≤ δ ≤ 1/n2. These results

hold for any range space in constant dimensions (even if the ranges are nonconvex). Compared
with the

√
n lower bound mentioned above, we obtain this exponential improvement exactly

due to geometry—the notion of fuzziness has no counterpart in arbitrary query families over an
abstract set system. Technically, the fuzziness allows a packing argument (see Theorem 2.4),
which we borrow from the non-private setting [1].

In practice, this notion of fuzziness is often acceptable, considering that either data or the
range (or both) are often imprecise themselves. For example, if the public want to know how
many people got COVID-19 in their neighborhood, whether the cases near the boundary are
included or not is not very important. Another way of comparing our result with prior work on
DP range counting (which does not allow fuzziness) is that we have an extra |P ∩ (Q+

α −Q−α)|
term in our error bound. This term is incomparable to

√
n, so our result doesn’t contradict the

discrepancy-based lower bound [17, 18]. However, this error term is small on most real-world
datasets, which explains why small errors are often observed in many practical solutions.

Our data structures are naturally based on approximate range counting structures in the
non-private setting, in particular, the BBD-tree [1]. However, some non-trivial modifications
and analyses are needed to make the BBD-tree private, especially for reducing the dependence
on u in the (ε, δ)-DP case.

Our approximate range counting data structure can also be used to solve the approximate
nearest neighbor (ANN) problem and k-NN classification, yielding the first DP algorithms for
these two problems with provable guarantees on the utility. For the ANN problem, returning the
NN itself (or any other point in P) is not private; instead, we return a distance that approximates
the nearest distance. Returning only the distance can still be useful in many applications, e.g.,
if the user only wants to know whether there is a point in P that is sufficiently close to her
query point. Also, only the distance to the query point is needed in k-NN classification; please
see Section 4 for details.

2 Preliminaries

2.1 Differential privacy

Let P ∼ P ′ denote two neighboring databases, i.e., one contains one more point than the other.

Definition 2.1 (Differential Privacy [10]). For ε > 0 and δ ≥ 0, a randomized algorithm M is
(ε, δ)-differentially private if for any neighboring databases P ∼ P ′ and any S ⊆ Range(M),

Pr[M(P) ∈ S] ≤ eε · Pr[M(P ′) ∈ S] + δ

The case when δ = 0 is also referred to as pure differential privacy. In practice, ε is usually a
constant ranging from 0.1 to 10, while δ must be much smaller than 1/n. For a numeric query f ,
the most common technique for designing DP mechanisms is by masking the result with Laplace
noise calibrated to the sensitivity of the query ∆f = maxP∼P ′ |f(P) − f(P ′)|. We use Lap(λ)
to denote the Laplace distribution with parameter λ, which has probability density function
Pr[X = z] = 1

2λ exp(−|z|/λ) and variance 2λ2. And the fact that Pr[|X| > t · λ] ≤ exp(−t) is
often useful to analyze the accuracy of the Laplace mechanism.

Theorem 2.1 (Laplace Mechanism [10]). For a numeric query f over a database P , an (ε, 0)-
differentially private mechanism is to output f(P) +X, where X ∼ Lap(∆f/ε).

We need the following properties of DP mechanisms.

3

Theorem 2.2 (Basic Composition [10]). Let Mi be an (ε, δ)-differentially private mechanism
for all i ∈ [k], then M(P) = (M1(P),M2(P), . . . ,Mk(P)) is (kε, kδ)-differentially private.

Theorem 2.3 (Group Privacy [10]). Let M be an (ε, 0)-differentially private mechanism. For
any two databases P and P ′ that differ by at most k individuals and any S ⊆ Range(M),

Pr[M(P) ∈ S] ≤ ekε · Pr[M(P ′) ∈ S]

2.2 The BBD-tree

The balanced box-decomposition tree (BBD-tree) [2] is a hierarchical space decomposition3 where
each node is associated with a region of space called a cell. We define a box to be an axis-parallel
rectangle whose aspect ratio is either 1 or 2. Recall that points in P have integer coordinates.
To avoid the ambiguity of points lying on the boundary of a box, the boxes’ corners all have
coordinates in the form x + 1

2 for integer x. Each cell in the BBD-tree is either a box or the
region between two boxes, one enclosed within the other. Thus each cell comprises of an outer
box and an optional inner box. For a cell c, its size is the length of the longest side of its outer
box. We use size(c) to denote its size and count(c) to denote the number of points in P lying
inside c. The aspect ratio of each cell in the BBD-tree is bounded by 2, which allows us to
bound the number of cells that intersect any range of a given diameter.

Theorem 2.4 ([1]). Consider any space decomposition of height h, consisting of cells of bounded
aspect ratios. Let C be any subset of its cells, where each cell has size at least s and they all
intersect a range of diameter w. Then |C| = O(h+ (w/s)d). If the cells are also disjoint, then
|C| = O((w/s)d).

Note that the quadtree has this property (where the aspect ratios are all 1), but it has a
large height h = O(log u). On the other hand, the BBD-tree has only O(log n) height. To
achieve this without violating the aspect ratio constraint, the key idea is to give a little more
flexibility to the shape of the cells.

The BBD-tree is a binary tree and is constructed by the repeated application of two par-
titioning operations alternatively on each level, split and shrink. Starting from the root node
whose corresponding cell is the entire space [u]d, we recursively divide each cell c by either split
or shrink, until size(c) or count(c) is at most 1.

To split a cell, we bisect it along its longest side (it is guaranteed that the bisecting hyper-
plane does not intersect c’s inner box if it has one). The resulting cells have aspect ratio of
either 1 or 2. Now consider the shrink operation. If c does not have an inner box, the shrink
operation is performed by repeatedly applying split operations and recursing on the child box
bc with the majority of points in c, until count(bc∩ c) ≤ 2

3count(c). Then all intermediate splits
are discarded, and the two children of c are bc and c− bc (i.e., c and bc are the outer and inner
boxes of the cell c− bc; see Figure 2a). For the case when there is an inner box bI in c, we first
follow the same procedure to obtain the box bc. If bI ⊆ bc, then we shrink c to bc−bI (the other
child is thus c− bc). Otherwise, suppose the majority boxes obtained during the series of splits
are b1, . . . , bk = bc. Let bj be the smallest box in the sequence that contains bI . Then we first
shrink c to bj − bI (the other child is c− bj), then split bj − bI to bj+1 and bj − bj+1 − bI , then
shrink bj+1 to bc (the other child is bj+1 − bc), as shown in Figure 2b. The shrink operations
ensure that count(c) decreases by a constant factor as we descend a constant number of levels,
leading to an O(log n) height of the BBD-tree.

3As a hierarchical space decomposition naturally corresponds to a tree, where each node corresponds to a
cell, we will use the terms “node” and “cell” interchangeably.

4

shrink

bc

c− bc

(a) shrink without an existing inner box

bI

split

shrink

bI

bc

c− bj

bj − bj+1 − bI

bj − bI

bj+1

bj+1 − bc

(b) shrink with an existing inner box bI

Figure 2: The shrink operation in the BBD-tree.

3 Approximate range counting

In this section, we describe and analyze our private range counting data structure. It is similar
to the existing heuristic solutions [6, 19, 23], namely, we also release a hierarchical space decom-
position that is differentially private and can be used to answer any range query. Each cell c in
the space decomposition is associated with a count masked by Laplace noise, which we denote
by noisy count(c). However, there are two differences, which are important for achieving theo-
retical guarantees: First, we use a different query procedure, which is described in Section 3.1.
Second, we use the BBD-tree as our space decomposition, and we show how to make it private
in Sections 3.2 and 3.3.

3.1 Query procedure

Our query procedure is similar to the one in [1]. Given a space decomposition and a range Q,
we visit its cells in a top-down manner, summing up the noisy counts of cells as we go along.
We stop exploring further at a cell in the following two cases: (1) if c∩Q−α = ∅, we just skip c;
and if (2) if c ⊆ Q+

α , we add noisy count(c) and then skip c. If we do not skip a cell, we visit
its children recursively. The detailed query procedure is given in Algorithm 1.

Algorithm 1 Approximate Range Counting Procedure: Query(Q,α, c)

Input: a range Q; range approximation factor α; a cell c in the space decomposition.
Output: an answer to the α-approximate range query Q.
1: if c ∩Q−α = ∅ then return 0
2: if c ⊆ Q+

α then return noisy count(c)
3: if c is a leaf cell then return 0
4: s← 0
5: for each child c′ of c do
6: s← s+ Query(Q,α, c′)
7: return s

It is clear that line 1 in Algorithm 1 does not introduce any error. Line 2 introduces a
zero-mean error with magnitude proportional to the noise level, while line 3 introduces a bias
equal to count(c). We will account for these two sources of errors when analyzing the accuracy
of our private BBD-tree.

5

3.2 Pure differential privacy

For pure DP, we use the BBD-tree with only split operations, which results in a full (binary)
quadtree. The quadtree has ud leaves and O(log u) height. It is safe to release this tree structure
as it does not depend on P . It is clear that the sensitivity of count(c) is 1 for each cell c and
each point contributes to the counts of d log u nodes on a root-to-leaf path. Then by the basic
composition theorem, adding noise drawn from Lap(d log u/ε) to each count(c) is sufficient to
preserve (ε, 0)-DP.

Now we analyze the error of an approximate range counting query. The proofs of the
following theorem, as well as some others, are given in the appendix.

Theorem 3.1. There is an (ε, 0)-differentially private space decomposition, such that any α-

approximate range counting query can be answered within error O
(
ε−1α−d/2 log u log 1

β

)
with

probability at least 1 − β. Moreover, it can be pruned to O(n) nodes with probability at least

1− β, and in this case the error is O
(
ε−1α−d log u log n

β

)
.

The log u dependency of the error follows from the height of the tree. One may wonder if
we could make the shrink operation differentially private, thus reducing its height to O(log n).
Unfortunately, we show that this is not possible under pure DP, by presenting an Ω(log u) lower
bound on the error for any pure DP approximate range counting algorithm (see Section 5).

3.3 (ε, δ)-differential privacy

By adopting (ε, δ)-DP, we can improve the error dependence on u from log u to log log u. The
key, as mentioned above, is to make the shrink operations private. Recall that the original
shrink algorithm on a cell c uses a series of splits until the majority box contains at most
2
3count(c) points. To make this comparison private and ensure that the shrink algorithm still
decreases count(c) by a constant factor, we can add noise proportional to count(c). However,
directly using count(c) to calibrate the noise would not be differentially private. In fact, even
the total count, i.e., n, cannot be released; so we use ñ := n + 4

ε log 2
β + Lap(4ε) instead. The

idea is to make O(log ñ) “guesses” for the right noise level, which is captured by a parameter h.
At h = 0, the magnitude of noise is ñO(1)/ε, and it will exponentially decrease as h increases;
at h = O(log ñ), the noise magnitude will become O(1/ε).

We now describe how to construct a private BBD-tree. We still use shrink and split op-
erations on alternating levels of the tree. The split operation is the same as in the standard
BBD-tree, while the private shrink operation is shown in Algorithm 2 for a given cell c with
noise level h. The shrink operation on the root node is invoked with h = 0; on a non-root
node c, we will use h = hp + 1, where hp is the noise level used in the shrink operation at the
grandparent of c. We stop further subdividing c when size(c) = 1, when we are about to invoke
the shrink algorithm with h = H := d2.5 log ñe, or after the shrink algorithm returns LEAF.

Algorithm 2 works as follows. If count(c) is too small compared with the the current noise
level (determined probabilistically), the algorithm will return AGAIN. In this case, we invoke
the algorithm again with h ← h + 1, decreasing the noise magnitude by a constant factor.
Otherwise it will split c repeatedly and recurse on the majority box. Compared with the non-
private shrink operation, we make the following changes. Let bc be the current majority box.
First, we add noise before checking if count(bc∩c) ≤ 2

3count(c). As a result, we cannot guarantee
that count(c) will decrease by a constant factor, but it will be the case with high probability.
Second, in the non-private case, we can just return bc when count(bc ∩ c) ≤ 2

3count(c) after the
last split. We can no longer do this, as being the majority box is also sensitive information
which depends on P (this was not sensitive before the splits stop, as the count of the majority
box was large enough to hide the presence or absence of one data point). Instead, we return

6

bc or its sibling after a noisy comparison. Finally, when c has an inner box bI , the non-private
shrink algorithm will never try to split bI because the count would have become 0 ≤ 2

3count(c)
already. However, as the comparison with 2

3count(c) is now probabilistic, we need to guard
against this from happening. In particular, when the algorithm tries to split bI , it will return
LEAF. If the algorithm does not return AGAIN or LEAF, it will return a box bc. Then we shrink c
to bc as in the standard BBD-tree as described in Section 2.2; this may involve an interleaving
split in case c has an inner box bI that is disjoint from bc.

Algorithm 2 Private Shrink Operation; Shrink(c, h, β)

Input: an input cell c = bo − bI (bI is optional) with noise level h; the failure probability β.
Output: a child box bc, AGAIN, or LEAF.

1: εh ←
(
3
4

)H−h · ε/100

2: Draw ζ ∼ Lap(1/εh). Let R̃← count(c) + ζ.

3: if R̃ < 370 ·
(

log 2ñd
βδ + log log u

)
/εh then return AGAIN

4: Draw γ ∼ Lap(1/εh). Let T̃ ← 2
3count(c) + γ.

5: bc ← bo
6: repeat
7: bl, br ← split(bc)
8: if count(bl ∩ c) > count(br ∩ c) then bc ← bl else bc ← br
9: if bI exists and bc = bI then return LEAF

10: Draw η ∼ Lap(1/εh). Let θ̃ ← count(bc ∩ c) + η.
11: until θ̃ < T̃ or size(bc) = 1
12: Draw ξl, ξr ∼ Lap(1/εh).
13: if count(bl ∩ c) + ξl > count(br ∩ c) + ξr then bc ← bl else bc ← br
14: return bc

Finally, after the BBD-tree has been constructed, we associate each cell c a noisy count,
obtained by adding noise drawn from Lap(40 log ñ/ε) to count(c). The following theorem guar-
antees its privacy and establishes some of its key properties that will be useful for proving its
utility.

Theorem 3.2. The private BBD-tree preserves (ε, δ)-differential privacy. Furthermore, for
n > 8

ε log 2
β , with probability at least 1 − β, it has height O(log n) and O(n) nodes, and every

leaf cell c has either size(c) = 1 or count(c) = O
(
ε−1 ·

(
log n

βδ + log log u
))

.

Proof. Let `h = 10·(log 2ñd
βδ +log log u)/εh. Note that in a private shrink operation (Algorithm 2)

on an input cell c with noise level h, all the noises are generated from Lap(1/εh). We say that
a Laplace noise is bounded if its absolute value does not exceed `h.

We begin with the following lemma on one invocation of Algorithm 2:

Lemma 3.1. If all its Laplace noises are bounded, then Algorithm 2 (1) will not return LEAF; (2)
if it returns AGAIN, then we have count(c) ≤ 38`h; (3) otherwise we must have count(c) ≥ 36`h,
and the algorithm returns a child box bc which satisfies either of the following two properties:
(a) size(bc) > 1 and 1

4count(c) ≤ count(bc ∩ c) ≤ 3
4count(c); (b) size(bc) = 1 and count(bc ∩ c) ≥

1
4count(c).

Proof. (2) is easy to show. If Algorithm 2 returns AGAIN, since all noises are bounded, then it
follows from line 3 that count(c) ≤ 37`h − ζ ≤ 38`h. The first part of (3) is also true, since if
the algorithm does not return AGAIN, we must have count(c) ≥ 37`h − ζ ≥ 36`h.

7

Next, we prove the second part of (3). Let b
(1)
c , b

(1)
l , b

(1)
r , θ̃(1), . . . , b

(k)
c , b

(k)
l , b

(k)
r , θ̃(k) denote

the values of the variables bc, bl, br, θ̃ at the end of each iteration in the repeat-until loop; note

that b
(i)
c is always the majority box between b

(i)
l and b

(i)
r , i = 1, . . . , k. Let bc be the final output

child box which is either b
(k)
l or b

(k)
r after a noisy comparison (line 13). We have k ≤ d log u as

every d splits will decrease size(b
(i)
c) by a factor of 2. To prove the second part of (3), we only

need to consider the case size(bc) > 1. In this case, we have θ̃(k) < T̃ and θ̃(k−1) ≥ T̃ according
to line 11. Given θ̃(k) < T̃ , we have

count(bc ∩ c) ≤ count(b(k)c ∩ c) ≤
2

3
count(c)− η(k) + γ ≤ 2

3
count(c) + 2`h ≤

3

4
count(c),

where the first inequality is because bc is either b
(k)
l or b

(k)
r , while b

(k)
c is the majority box between

b
(k)
l and b

(k)
r ; the second inequality follows from the definition of θ̃(k) and T̃ ; the third inequality

follows from the boundedness of η(k) and γ; and the fourth inequality is due to count(c) ≥ 36`h.
On the other hand, given θ̃(k−1) > T̃ , following similar arguments, we have

count(b(k−1)c ∩ c) ≥ 2

3
count(c)− η(k−1) + γ ≥ 2

3
count(c)− 2`h.

Assume w.l.o.g. that bc = b
(k)
l . Then,

2 · count(bc ∩ c) = count(b
(k)
l ∩ c) + count(b

(k)
l ∩ c)

≥ count(b
(k)
l ∩ c) + (count(b(k)r ∩ c)− ξl + ξr)

= count(b(k−1)c ∩ c)− ξl + ξr

≥ count(b(k−1)c ∩ c)− 2`h

≥ 2

3
count(c)− 4`h,

where the first inequality follows from line 13, and the second inequality follows from the
boundedness of ξl and ξr. Because count(c) ≥ 36`h, we have

count(bc ∩ c) ≥
1

3
count(c)− 2`h ≥

1

4
count(c),

proving (3).

For (1), observe that b
(i)
c is not identical to bI (if it exists) for any i ∈ [k], since

count(b(i)c ∩ c) ≥
1

2
count(b(i−1)c ∩ c) ≥ 1

3
count(c)− `h > 0,

where the first inequality is because b
(i)
c is the majority box after a split on b

(i−1)
c ; the second

inequality follows from θ̃(i−1) > T̃ and the boundedness of η(i−1) and γ; and the third inequality
is due to count(c) ≥ 36`h. Thus the algorithm will not return LEAF. �

We are now ready to prove the utility properties of a private BBD-tree. If the event F that
n ≤ ñ ≤ 2n holds, the O(log n) height trivially follows from the construction algorithm. Due to
the exponential tail of the Laplace distribution and n > 8

ε log 2
β , we have Pr[F] ≥ 1− β/2. To

prove that the tree has O(n) nodes and the property of the leaves stated in the theorem, consider
the event E that the Laplace noises used in all invocations of Algorithm 2 when constructing
the private BBD-tree are bounded, conditioned upon which the properties stated in Lemma 3.1
hold.

8

Lemma 3.2. Pr[E] ≥ 1− βδ/2.

Proof. In one invocation of Algorithm 2 on a cell c, we draw O(d log u) independent Laplace
noises from Lap(1/εh), so they are all bounded with probability at least 1− βδ/(2ñ10), due to
the exponential tail of Laplace distribution and a union bound. To bound the noise values in all
the invocations, first consider the case when Algorithm 2 returns AGAIN. When this happens,
we invoke it on c again with noise level h← h+ 1. This step is logically equivalent to making
two copies of c, say c′ and c′′, such that c′ is the only child of c and c′′ is the only child of
c′. Recall that we alternate between split and shrink operations, so we will later perform a
shrink on c′′ with h ← h + 1. Then in this logically equivalent BBD-tree, we only invoke one
split operation or one shrink operation (or just make a copy of itself). Recall that we stop the
construction when we reach H = 2.5 log ñ, and one shrink operation may generate 4 levels of
the tree (in case an interleaving split is needed), so the height of the logical tree is at most
4H = 10 log ñ. Thus, it has at most ñ10 nodes, namely, at most ñ10 invocations of Algorithm 2.
Then the lemma is proved by a union bound. �

Lemma 3.3. Conditioned upon E ∧ F , the private BBD-tree has O(n) nodes and every leaf

cell c has either size(c) = 1 or count(c) = O
(
ε−1 ·

(
log n

βδ + log log u
))

.

Proof. Conditioned upon E, all the shrink operations have the three properties stated in
Lemma 3.1. For any leaf c of size larger than 1, consider the path from root to c in the
BBD-tree. There are exactly H invocations of Algorithm 2 on the path, as none of them has
returned LEAF. At most log4/3 n < H (as the event F holds) of them have returned a child box,

since every such shrink operation decreases the count by a factor at least 1
4 . This means that

there is at least one invocation of Algorithm 2 that returned AGAIN.
Let c∗ be the smallest cell on this path on which Algorithm 2 returned AGAIN, and let h∗

be its noise level. By Lemma 3.1,

count(c∗) ≤ 38`h∗ = O

((
4

3

)H−h∗
·
(

log
nd

βδ
+ log log u

)
/ε

)
.

Each of the remaining H − h∗ shrink operations must have reduced the count by a factor of at
least 1

4 , so

count(c) = O

((
3

4

)H−h∗
· `h∗

)
= O

((
log

nd

βδ
+ log log u

)
/ε

)
.

To see that the BBD-tree has O(n) nodes, consider the parent or grandparent, depending
on which one is on the shrink level, of any leaf. Algorithm 2 might have been invoked on this
node multiple times, but the last one must have returned a child box, implying that it contained
at least `H data points by Lemma 3.1. Then we conclude that the private BBD-tree has O(n)
nodes since there are O(log n) levels and each level has at most O(n/`H) nodes. �

Finally, we prove its privacy.

Lemma 3.4. The private BBD-tree preserves (ε, δ)-differential privacy.

Proof. Note that releasing ñ preserves (ε/4, 0)-DP. Furthermore, there are two parts of the
BBD-tree: its structure and the noisy counts associated with its cells. Since the height of the
tree is at most 10 log ñ, the released noisy counts preserves (ε/4, 0)-DP by a standard argument.
Below, we show that the tree structure is (ε/2, δ)-DP. Then by the basic composition theorem,
the private BBD-tree achieves (ε, δ)-DP.

9

The structure depends on the input point set P , as well as the Laplace noises generated
internally during all the invocations of Algorithm 2. Let M(P,Γ) denote the tree structure
constructed on point set P using noises Γ. We will show that for any two neighboring data sets
P , P ′, and any tree structure y,

Pr[M(P,Γ) = y ∧ E] ≤ eε/2 · Pr[M(P ′,Γ) = y], (1)

where the probability is computed over the randomness of Γ, Then, for any set of output
structures S, we have

Pr[M(P,Γ) ∈ S] ≤ Pr[M(P,Γ) ∈ S ∧ E] + Pr[Ē] ≤ eε/2 · Pr[M(P ′,Γ) ∈ S] + δ,

namely, M is (ε/2, δ)-DP.
To prove Eq. (1), it suffices to demonstrate an injection f from {Γ : M(P,Γ) = y ∧ E} to

{Γ : M(P ′,Γ) = y} such that Pr(Γ) ≤ eε/2 · Pr(f(Γ)). In order to achieve this, f can only
change a small number of Laplace noises by a constant magnitude each. Note that the presence
or absence of a data point will only affect the cells on a root-to-leaf path of y. For any Γ such
that M(P,Γ) = y and all noises in Γ are bounded (i.e., event E holds), we follow the path
starting from the root while making changes to Γ so that M(P ′, f(Γ)) = y. Since the split
operations do not depend on P , we only need to consider all the H shrink operations on that
path.

For a cell c, we use count(c) to denote its count in P while count′(c) its count in P ′. Note
that |count(c)− count′(c)| ≤ 1 for any c. We use ζ, η, R̃, T̃ , . . . to denote the noises in Γ, and
ζ ′, η′, R̃′, T̃ ′, . . . for their counterparts in f(Γ). The injection is defined as follows for each
invocation of Algorithm 2:

1. Set ζ ′ := ζ + count(c) − count′(c). Then we have R̃′ = R̃, which makes the decisions at
line 2 on P and P ′ are the same. Note that |ζ ′ − ζ| = |count(c)− count′(c)| ≤ 1.

2. Recall the definitions of b
(·)
c , b

(·)
l , b

(·)
r , η(·), θ̃(·) in the proof of Lemma 3.1. Set T̃ ′ := T̃ − 1,

η′(i) := η(i) for 1 ≤ i < k, and θ̃′
(k)

:= θ̃(k) − 2. Note that |γ′ − γ| ≤ 2 in order to achieve
T̃ ′ := T̃ − 1 since |count(c)− count′(c)| ≤ 1. We already have θ̃(i) ≥ T̃ for 1 ≤ i < k and

θ̃(k) < T̃ on P . For 1 ≤ i < k, since θ̃(i) ≥ T̃ , we have count(b
(i)
c) > 2

3count(c) − 2`h >
1
2count(c) + `h by |η(i)| ≤ `h, |γ| ≤ `h and count(c) ≥ 36`h. This implies that the

difference between count(b
(i)
l) and count(b

(i)
r) is at least `h, then the presence or absence

of a single data point will not affect the choice of the majority box b
(i)
c on line 8, thus we

have |θ̃′(i)− θ̃(i)| ≤ 1 by |count(b
(i)
c)− count′(b

(i)
c)| ≤ 1 and η′(i) = η(i). Since b

(k−1)
c in the

invocations on P and P ′ are the same, we can conclude that |count′(bc
(k))−count(b

(k)
c)| ≤

1, implying that |η′(k) − η(k)| ≤ 3 in order to achieve θ̃′
(k)

:= θ̃(k) − 2. Given θ̃(i) ≥ T̃ for

1 ≤ i < k and θ̃(k) < T̃ , by the above mapping, we will have θ̃′
(i) ≥ T̃ ′ for 1 ≤ i < k and

θ̃′
(k)

< T̃ ′. This implies that the repeat-until loop in the invocations on P and P ′ are the
same.

3. Set ξ′l := count(b
(k)
l) + ξl − count′(b

(k)
l), ξ′r := count(b

(k)
r) + ξr − count′(b

(k)
r). This makes

the decision on line 13 in the invocations on P and P ′ the same. We have |ξ′l − ξl| ≤ 1

since |count′(b
(k)
l)− count(b

(k)
l)| ≤ 1, and similarly |ξ′r − ξr| ≤ 1.

Note that the injection defined above changes the values of the noises drawn from Lap(1/εh)
by at most 8, so the ratio between Pr(Γ) and Pr(f(Γ)) is bounded by exp(8·εh) for the invocation

10

of Algorithm 2 at noise level h. Across all H invocations, we have

Pr(Γ) ≤ exp

(
8 ·

H∑
h=0

εh

)
· Pr(f(Γ)) ≤ exp(ε/2) · Pr(f(Γ)),

and Eq. (1) is proved. �

Then Theorem 3.2 follows from Lemma 3.2, 3.3, and 3.4.

Now we analyze the error when using the private BBD-tree to answer approximate range
queries.

Theorem 3.3. Given an (ε, δ)-differentially private BBD-tree and any α-approximate range
query Q, for n > 8

ε log 2
β , with probability at least 1− β, Algorithm 1 answers Q with an error

of O
(
ε−1 ·

(
α−d(log n

βδ + log log u) + log1.5 n log 1
β + α−d/2 log n log 1

β

))
.

4 Applications

4.1 Approximate nearest neighbor

In the approximate nearest neighbor (ANN) problem, the goal is to find a data point p ∈ P such
that dist(p, q) ≤ (1 +α)dist(p∗, q) for any given query point q, where p∗ is the nearest neighbor
of q in P and 0 < α < 1 is the approximation ratio. In the non-private setting, there is a
standard approach using BBD-tree to solve ANN problem [2]. In the private setting, however,
there are two differences. First, returning a data point in P will clearly breach privacy. Thus,
we must settle for a slightly weaker target, namely, we will aim to return only the approximate
distance to the NN, but not the NN itself. Second, the non-private BBD-tree has no errors,
while its private versions do. This introduces some technical complications. In particular, we
can no longer measure the approximation ratio of the ANN compared with the nearest neighbor
p∗, but the τ -th nearest neighbor. More precisely, our goal is to return a distance r such that
r(1) ≤ r ≤ (1 + α)r(τ), where r(τ) is the distance between q and its τ -th nearest neighbor in P .
We call τ the rank error ; obviously, smaller τ means better utility.

We present a more general algorithm for approximately finding the distance between a query
point q and its k-th nearest neighbor in P , given an approximate range counting synopsis with
error κ for (α/10)-approximate spherical range queries. Note that since the whole space is
[u]d, the smallest and the largest possible distance between two distinct points are 1 and

√
du

respectively. Let B(q, w) denote the open ball with radius w centered at q. From the approxi-
mate range counting synopsis, we obtain approximate counts for |P ∩B(q, 1/2)|, |P ∩B(q, (1 +
α/3)/2)|, |P ∩ B(q, (1 + α/3)2/2)|, . . . , |P ∩ B(q, (1 + α/3)t/2)|, where t = dlog1+α/3(2

√
du)e;

denote these approximate counts as a0, a1, a2, . . . , at. Let i = min{i | ai > k + κ}. Then we
output r = (1 + α/10)(1 + α/3)i/2 if i 6= 0; otherwise we return r = 0.

Lemma 4.1. For any k ≤ n − 2κ, the above algorithm returns an r such that r(k) ≤ r ≤
(1 + α)r(k+2κ).

In the private setting, we use our private BBD-trees presented in Section 3.2 and 3.3 as the
approximate range counting synopsis.

Theorem 4.1. There is an (ε, δ)-differentially private synopsis such that, with probability at
least 1 − β, the distance to the ANN for any query point can be found with a rank error of

11

O(τε,δ), where t = dlog1+α/3(2
√
du)e, and

τε,δ =

{
ε−1α−d/2 log u log t

β , δ = 0;

ε−1 ·
(
α−d(log n

βδ + log log u) + log1.5 n log t
β + α−d/2 log n log t

β

)
, δ > 0.

4.2 k-NN classification

In k-NN classification, we are given m classes of points P1, P2, . . . , Pm, and i is called the label
of Pi. Given a query point q, the k-NN algorithm returns the label that is most common among
its k nearest neighbors in P = P1 ∪ · · · ∪ Pm.

To obtain a private k-NN algorithm, we release an (ε/2, δ/2)-private BBD-tree for P , as
well as an (ε/2, δ/2)-private BBD-tree for each Pi. This preserves an overall (ε, δ)-DP, since
the presence or absence of one point affects only two private BBD-trees. For a given query
point q, we invoke the algorithm in Section 4.1 on P with approximation factor α/3, obtaining
an r such that r(k) ≤ r ≤ (1 + α/3)r(k+O(τε,δ)). Next, we query the private BBD-trees with
approximation factor α/10 to obtain approximate counts for |P1 ∩ B(q, r)|, . . . , |Pm ∩ B(q, r)|.
Finally, we return the label i with the largest estimated |Pi ∩B(q, r)|.

Our private k-NN algorithm has the following utility guarantee. Intuitively, it says that as
long as the correct label wins the majority in the k nearest neighbors of q by a poly-logarithmic
margin, while the distances measured are allowed an (1 ± α)-factor approximation, then the
algorithm will find it with high probability.

Theorem 4.2. There exists absolute constants C1 and C2 such that, with probability at least
1 − β, our private k-NN synopsis can be used to find the correct label i for any query point q,
provided that |Pi ∩B(q, (1− α)r(k))| − |Pj ∩B(q, (1 + α)r(k+C1·τε,δ))| ≥ C2 · τε,δ for all j 6= i.

Note that our algorithm releases a private k-NN classifier, which can be used to classify any
query point. On the other hand, the private k-NN classifier in [11] only releases the classification
results (with no utility guarantees) for a given set of queries, while no more queries can be
accepted afterwards. Thus we solve a much more general problem than theirs.

5 Lower bounds

Observe that the errors in Theorem 3.1 and 4.1 for pure DP have an O(log u) term. In this
section, we show that this is unavoidable even in one dimension. In particular, we prove the
following lower bound on the one-dimensional ANN problem with a constant approximation
factor α = 0.1 and a constant failure probability β = 1/3 via a packing argument [13]. This in
turn implies a lower bound for approximate range counting.

Theorem 5.1. Any (ε, 0)-differentially private one-dimensional ANN algorithm that, with
probability at least 2/3, returns an r such that r(1) ≤ r ≤ 1.1 · r(τ) for every query point q,

must have a rank error τ = Ω
(
1
ε log u

)
.

Corollary 5.1. Any (ε, 0)-differentially private one-dimensional approximate range counting
algorithm that, with probability at least 2/3, answers all 0.01-approximate range queries with
error at most κε,0, must have κε,0 = Ω

(
1
ε log u

)
.

We can also show a lower bound under (ε, δ)-DP by a reduction from exact (i.e., no fuzziness)
range counting [4]:

Theorem 5.2. Any (ε, δ)-differentially private one-dimensional approximate range counting
algorithm that, with probability at least 2/3, answers all 0.01-approximate range queries with
error at most κε,δ, must have κε,δ = Ω

(
1
ε · (log∗ u) · log(1/δ)

)
, for exp(−εn/ log∗ n) ≤ δ ≤ 1/n2.

12

Note that this lower bound means that (1) some dependency on u is inevitable even under
(ε, δ)-DP, justifying the restriction that the points have integer coordinates; and (2) a logarith-
mic dependency on n/δ is also necessary.

References

[1] Sunil Arya and David M Mount. Approximate range searching. In Proceedings of the
eleventh annual symposium on Computational geometry, pages 172–181, 1995.

[2] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y Wu. An
optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal
of the ACM (JACM), 45(6):891–923, 1998.

[3] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-
interactive database privacy. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 609–618, 2008.

[4] Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Differentially private release
and learning of threshold functions. In 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science, pages 634–649. IEEE, 2015.

[5] TH Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics.
In International Colloquium on Automata, Languages, and Programming, pages 405–417.
Springer, 2010.

[6] Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, Entong Shen, and Ting Yu. Dif-
ferentially private spatial decompositions. In 2012 IEEE 28th International Conference on
Data Engineering, pages 20–31. IEEE, 2012.

[7] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006.

[8] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy
under continual observation. In Proceedings of the forty-second ACM symposium on Theory
of computing, pages 715–724, 2010.

[9] Cynthia Dwork, Moni Naor, Omer Reingold, and Guy N Rothblum. Pure differential
privacy for rectangle queries via private partitions. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 735–751. Springer,
2015.

[10] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[11] Mehmet Emre Gursoy, Ali Inan, Mehmet Ercan Nergiz, and Yucel Saygin. Differentially
private nearest neighbor classification. Data Mining and Knowledge Discovery, 31(5):1544–
1575, 2017.

[12] Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-
preserving data analysis. In 2010 IEEE Annual Symposium on Foundations of Computer
Science, pages 61–70. IEEE, 2010.

13

[13] Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In Proceedings
of the forty-second ACM symposium on Theory of computing, pages 705–714, 2010.

[14] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of
differentially private histograms through consistency. Proceedings of the VLDB Endow-
ment, 3(1-2):1021–1032, 2010.

[15] Chao Li, Michael Hay, Gerome Miklau, and Yue Wang. A data-and workload-aware algo-
rithm for range queries under differential privacy. Proceedings of the VLDB Endowment,
7(5):341–352, 2014.

[16] J. Matoušek. Geometric Discrepancy: An Illustrated Guide. Springer-Verlag, Berlin, 1999.

[17] Shanmugavelayutham Muthukrishnan and Aleksandar Nikolov. Optimal private halfspace
counting via discrepancy. In Proceedings of the forty-fourth annual ACM symposium on
Theory of computing, pages 1285–1292, 2012.

[18] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy:
the sparse and approximate cases. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pages 351–360, 2013.

[19] Wahbeh Qardaji, Weining Yang, and Ninghui Li. Differentially private grids for geospatial
data. In 2013 IEEE 29th international conference on data engineering (ICDE), pages
757–768. IEEE, 2013.

[20] Wahbeh Qardaji, Weining Yang, and Ninghui Li. Understanding hierarchical methods for
differentially private histograms. Proceedings of the VLDB Endowment, 6(14):1954–1965,
2013.

[21] Salil Vadhan. The complexity of differential privacy. In Tutorials on the Foundations of
Cryptography, pages 347–450. Springer, 2017.

[22] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential privacy via wavelet
transforms. IEEE Transactions on knowledge and data engineering, 23(8):1200–1214, 2010.

[23] Jun Zhang, Xiaokui Xiao, and Xing Xie. Privtree: A differentially private algorithm
for hierarchical decompositions. In Proceedings of the 2016 International Conference on
Management of Data, pages 155–170, 2016.

A Proof of Theorem 3.1

Proof. We need the following technical lemma.

Lemma A.1. (Measure Concentration [5]) Let Xi’s be independent random variables drawn
from Lap(λi), then for any 0 < β < 1,

Pr

∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ > 4

√∑
i

λ2i log
2

β

 ≤ β.
As mentioned, there are two sources of errors: the noisy counts from line 2 and the leaf

nodes from line 3 in Algorithm 1. Since the split operation terminates only when the size of the

14

cell is 1, which means that the precise location of the points in the cell is known, the condition
in line 3 is actually never true4. Thus, it suffices to only account for the noises from line 2.

Consider any cell c whose noisy count has been added in line 2, and denote its parent
cell as parent(c). Observe that parent(c) must intersect both Q−α and the complement of Q+

α

(otherwise we would not have visited c), which means that size(parent(c)) = Ω(αw). Because
size(c) ≥ 1

2size(parent(c)), we have size(c) = Ω(αw) as well. In addition, all cells whose
noisy counts have been added in line 2 must be disjoint. Then Theorem 2.4 states that there
are O((w/αw)d) = O(α−d) such cells. Each cell has an noise that is independently drawn
from Lap(d log u/ε). By Lemma A.1, the absolute value of the aggregated Laplace noise is

O
(
ε−1α−d/2 log u log 1

β

)
with probability at least 1− β.

Let T := 2ε−1d log u log n
β . During the construction of the private space decomposition,

which is a full binary tree, we can stop subdividing a node when its noisy count (perturbed
by a Laplace noise drawn from Lap(2d log u/ε)) is below 2T ; whenever the number of nodes
exceeds n we report failure, otherwise after the construction each node is associated with a
refreshed noisy count (perturbed by a fresh Laplace noise drawn from Lap(2d log u/ε)). By
the basic composition theorem, this procedure preserves (ε, 0)-DP. The error due to line 2 is
the same as in the last paragraph. Next, we analyze the error due to line 3. For n Laplace
noises used during the construction, by a union bound they have bounded absolute value T
with probability at least 1 − β. Conditioned upon this event in the following analysis. Then
all nodes, except leaf nodes, contain at least T data points (otherwise the stopping condition
will be true). In addition, the nodes on each level are disjoint, so across all levels there are at
most n/T · log u < n nodes. Moreover, each leaf node has O(T) data points since the stopping
condition is true. And because there are O(α−d) leaf nodes from line 3, the error due to line 3
is O

(
α−dT

)
.

B Proof of Theorem 3.3

Proof. As in the proof of Theorem 3.1, the error comes from the noisy counts from line 2 and
the leaf nodes whose size is greater than 1 from line 3 in Algorithm 1. Denote the former set
of nodes as C1 and the latter C2. Assume the event that n ≤ ñ ≤ 2n holds in the following
analysis, which happens with probability at least 1 − β/2 due to the exponential tail of the
Laplace distribution.

Each node in C1 has noise independently drawn from Lap(40 log ñ/ε). By Lemma A.1,

the aggregated noise has bounded absolute value O
(√
|C1| log 1

β log n/ε
)

with probability at

least 1 − β/4. To bound |C1|, consider their parent cells. As argued in the proof of Theo-
rem 3.1, their parent cells have size at least Ω(αw), but not necessarily disjoint. So there are
O
(
log n+ (1/α)d

)
of them by Theorem 2.4. |C1| is at most twice this size.

By Theorem 3.2, with probability at least 1− β/4, the number of points lying in every leaf

cell in C2 is O
(
ε−1 ·

(
log n

βδ + log log u
))

. Each leaf cell in C2 has size Ω(αw) because it must

intersect both Q−α and the complement of Q+
α . Furthermore, all leaf cells are disjoint. Thus, by

Theorem 2.4, we have |C2| = O(α−d).
Then the theorem follows by applying a union bound and summing these two parts of

error.

4When checking the conditions in line 1 and 2 of Algorithm 1, we use the precise location of the points inside
the cell if the cell size is 1.

15

C Proof of Lemma 4.1

Proof. We know such i should exist, since at ≥ n− κ ≥ k + κ. First assume i 6= 0. Given ai ≥
k + κ, by the definition of approximate range counting, we have |P ∩B(q, (1 + α/3)i/2)+α/10| ≥
ai − κ ≥ k, implying that

r = (1 + α/10)(1 + α/3)i/2 ≥ r(k).

Given ai−1 ≤ k + κ, we have |P ∩ B(q, (1 + α/3)i−1/2)−α/10| ≤ ai−1 + κ ≤ k + 2κ, meaning

r(k+2κ) ≥ (1− α/10)(1 + α/3)i−1/2. Thus

r = (1 + α/10)(1 + α/3)i/2 ≤ (1 + α)(1− α/10)(1 + α/3)i−1/2 ≤ (1 + α)r(k+2κ).

For the special case i = 0, we know r(k) = 0. Then outputting r = 0 is fine.

D Proof of Theorem 4.1

Proof. The privacy guarantee simply follows from the post-processing property of differential
privacy. Now we argue for the rank error. For any query point, there are t spherical range queries
asked by the algorithm above. When δ = 0, setting the failure probability in Theorem 3.1 to
β/t and applying a union bound, the error guarantee is O(τε,δ) which holds for t spherical
range queries with probability at least 1 − β. When δ > 0, we analyze the errors due to
line 2 and line 3 in Algorithm 1 as in the proof of Theorem 3.3. By Theorem 3.2, with
probability at least 1 − β/2, every leaf cell c in the private BBD-tree has either size(c) = 1
or count(c) = O(ε−1 · (log n

βδ + log log u)), then the error due to line 3 in Algorithm 1 is

O(ε−1α−d(log n
βδ + log log u)) which holds for all range queries. By Lemma A.1 and applying a

union bound, the error due to line 2 in Algorithm 1 is O(log1.5 n log t
β +α−d/2 log n log t

β) which
holds for t spherical range queries with probability at least 1− β/2. Thus, the error guarantee
is O(τε,δ) which holds for t spherical range queries with probability at least 1−β. Then we run
the algorithm above with k = 1, which leads to a rank error of O(τε,δ) by Lemma 4.1.

E Proof of Theorem 4.2

Proof. By Theorem 4.1, there exists an absolute constant C1 such that r(k) ≤ r ≤ (1 +
α/3)r(k+C1·τε,δ). Let ai denote the approximate count for |Pi ∩ B(q, r)| for i = 1, 2, . . . ,m. As
argued in the proof of Theorem 4.1, the error guarantee is C ′2 ·τε,δ which holds for a1, a2, . . . , am
with probability at least 1− β, where C ′2 is an absolute constant. Taking C2 = 2C ′2, then since
|Pi ∩B(q, (1− α)r(k))| − |Pj ∩B(q, (1 + α)r(k+C1·τε,δ))| ≥ C2 · τε,δ for all j 6= i, we have

ai ≥ |Pi ∩B(q, (1− α

10
)r)| − C ′2 · τε,δ

≥ |Pi ∩B(q, (1− α)r(k))| − C ′2 · τε,δ
≥ |Pj ∩B(q, (1 + α)r(k+C1·τε,δ))|+ C ′2 · τε,δ

≥ |Pj ∩B(q, (1 +
α

10
)(1 +

α

3
)r(k+C1·τε,δ))|+ C ′2 · τε,δ

≥ |Pj ∩B(q, (1 +
α

10
)r)|+ C ′2 · τε,δ

≥ aj

Then the theorem follows.

16

F Proof of Theorem 5.1

Proof. Let A be the purported ANN algorithm with error τ . We first construct the hard point
sets and queries. The set of queries is Q = {q = 1 + 10i | i = 2, 3, . . . , t} where t = bu/10c − 1.
Then we construct the same number of point sets Pi, i = 2, 3, . . . , t. These point sets are
similar but they will have well-separated answers for Q. Specifically, Pi consists of n− τ points
at coordinate 1 and τ points at 10i. Note that for j 6= i, Pj and Pi only differ by τ points, while
A must return different distances on the query q = 1 + 10j to guarantee an error of at most τ .
In particular, the answer must be between 1 and 1 + 0.1 on Pj while it should be least 9 on Pi.

Next, we use a packing argument. Let A(P,Q) ∈ R|Q| be the answers for Q when applying
A on P . Let Pi ⊆ R|Q| be all the allowed answers (up to error τ) for Q on each data set Pi,
then we have Pr[A(Pi, Q) ∈ Pi] ≥ 2/3 for every i according to the probability guarantee of A.
Also, as argued above, all the Pi’s must be disjoint. Now we have

1 ≥
t∑
i=1

Pr[A(P1, Q) ∈ Pi]

≥
t∑
i=1

e−τε · Pr[A(Pi, Q) ∈ Pi]

≥
t∑
i=1

2

3
e−τε

≥ u

20
e−τε.

The first inequality follows from the fact that all the Pi’s are disjoint. The second inequality is
according to the group privacy property of DP (Theorem 2.3), since any pair of our constructed
data sets differ at most τ points. The third inequality follows from the accuracy guarantee of
the given algorithm A. Then we conclude that τ = Ω

(
1
ε log u

)
after rearranging.

G Proof of Corollary 5.1

Proof. By the reduction in Section 4.1, any 0.01-approximate range counting algorithm with
error κ can be used to construct an 0.1-approximate ANN algorithm with error O(κ). Then
the corollary follows.

H Proof of Theorem 5.2

Proof. We will show that any dataset P can be transformed to another dataset T (P) such that
the answer of any threshold query over P is the same as the answer of an 0.01-approximate
threshold query over T (P). The transformation T is defined as mapping each integer x in
P to 2x in T (P). Note that the universe size has increased from u to U := 2u after the
transformation. Then for any threshold query [1, y] over P , its answer is the same as the 0.01-
approximate threshold query [−1.5 · 2y, 1.5 · 2y] over T (P), because: (1) for any point x in P
lying inside [1, y], we have 2x ≤ 2y < 1.5 · 2y − 0.03 · 2y and 2x ≥ 21 > −1.5 · 2y + 0.03 · 2y; (2)
for any point z in P lying outside [1, y], we have 2z ≥ 2y+1 > 1.5 · 2y + 0.03 · 2y.

Therefore, by the reduction from exact range counting to approximate range counting, along
with the existing lower bound of Ω((log∗ u)·log(1/δ)/ε) for exact range counting proved in [4], we
have κε,δ = Ω((log∗ u) · log(1/δ)/ε) = Ω((log∗ logU) · log(1/δ)/ε) = Ω((log∗ U) · log(1/δ)/ε).

17

	Introduction
	Previous work
	Our results

	Preliminaries
	Differential privacy
	The BBD-tree

	Approximate range counting
	Query procedure
	Pure differential privacy
	Approximate differential privacy

	Applications
	Approximate nearest neighbor
	k-NN classification

	Lower bounds
	Proof of Theorem 3.1
	Proof of Theorem 3.3
	Proof of Lemma 4.1
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 5.1
	Proof of Corollary 5.1
	Proof of Theorem 5.2

