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ABSTRACT
Answering SPJA queries under differential privacy (DP), including

graph pattern counting under node-DP as an important special

case, has received considerable attention in recent years. The dual

challenge of foreign-key constraints and self-joins is particularly

tricky to deal with, and no existing DP mechanisms can correctly

handle both. For the special case of graph pattern counting under

node-DP, the existing mechanisms are correct (i.e., satisfy DP), but

they do not offer nontrivial utility guarantees or are very compli-

cated and costly. In this paper, we propose the first DP mechanism

for answering arbitrary SPJA queries in a database with foreign-key

constraints. Meanwhile, it achieves a fairly strong notion of opti-

mality, which can be considered as a small and natural relaxation

of instance optimality. Finally, our mechanism is simple enough

that it can be easily implemented on top of any RDBMS and an LP

solver. Experimental results show that it offers order-of-magnitude

improvements in terms of utility over existing techniques, even

those specifically designed for graph pattern counting.

CCS CONCEPTS
• Information systems→ Database query processing; • Secu-
rity and privacy→ Database and storage security; • Theory
of computation→ Theory of database privacy and security.
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1 INTRODUCTION
Differential privacy (DP), already deployed by Apple [11], Google

[16], Microsoft [12], and the US Census Bureau [26], has become

the standard notion for private data release, due to its strong pro-

tection of individual information. Informally speaking, DP requires
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indistinguishability of the query results whether any particular indi-

vidual’s data is included or not in the database. The standard Laplace
mechanism first finds 𝐺𝑆𝑄 , the global sensitivity, of the query, i.e.,
how much the query result may change if an individual’s data is

added/removed from the database. Then it adds a Laplace noise

calibrated accordingly to the query result to mask this difference.

However, this mechanism runs into issues in a relational database,

as illustrated in the following example.

Example 1.1. Consider a simple join-counting query

𝑄 := |𝑅1 (𝑥1, . . . ) Z 𝑅2 (𝑥1, 𝑥2, . . . ) |.
Here, the underlined attribute 𝑥1 is the primary key (PK), while

𝑅2 .𝑥1 is a foreign key (FK) referencing 𝑅1 .𝑥1. For instance, 𝑅1 may

store customer information where 𝑥1 is the customer ID and 𝑅2
stores the orders the customers have placed. Then this query simply

returns the total number of orders; more meaningful queries could

be formed with some predicates, e.g., all customers from a certain

region and/or orders in a certain category. Furthermore, suppose

the customers, namely, the tuples in 𝑅1, are the entities whose

privacy we aim to protect.

What’s the 𝐺𝑆𝑄 for this query? It is, unfortunately, ∞. This is
because a customer, theoretically, could have an unbounded number

of orders, and adding such a customer to the database can cause an

unbounded change in the query result. A simple fix is to assume a

finite𝐺𝑆𝑄 , which can be justified in practice because we may never

have a customer with, say, more than a million orders. However,

as assuming such a 𝐺𝑆𝑄 limits the allowable database instances,

one tends to be conservative and sets a large 𝐺𝑆𝑄 . This allows the

Laplace mechanism to work, but adding noise of this scale clearly

eliminates any utility of the released query answer. □

1.1 The Truncation Mechanism
The issue above was first identified by Kotsogiannis et al. [23],

who also formalized the DP policy for relational databases with FK
constraints. The essence of their model (a rigorous definition is

given in Section 3) is that the individuals and their private data are

stored in separate relations that are linked by FKs. This is perhaps

the most crucial feature of the relational model, yet it causes a

major difficulty in designing DP mechanisms as illustrated above.

Their solution is the truncation mechanism, which simply deletes

all customers with more than 𝜏 orders before applying the Laplace

mechanism, for some threshold 𝜏 . After truncation, the query has

sensitivity 𝜏 , so adding a noise of scale 𝜏 is sufficient.

Truncation is a special case of Lipshitz extensions and has been

studied extensively for graph pattern counting queries [22] and

machine learning [1]. A well-known issue for the truncation mech-

anism is the bias-variance trade-off: In one extreme 𝜏 = 𝐺𝑆𝑄 , it

degenerates into the naive Laplace mechanism with a large noise
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(i.e., large variance); in the other extreme 𝜏 = 0, the truncation

introduces a bias as large as the query answer. The issue of how to

choose a near-optimal 𝜏 has been extensively studied in the statis-

tics and machine learning community [2, 3, 18, 27, 33]. In fact, the

particular query in Example 1.1 is equivalent to the 1-dimensional

mean (sum) estimation problem, which is important for many ma-

chine learning tasks. A key challenge there is that the selection of

𝜏 must also be done in a DP manner.

1.2 The Issue with Self-joins
While self-join-free queries are equivalent to mean (sum) estimation

(see Section 4 for a more formal statement), self-joins introduce

another challenge unique to relational queries. In particular, all

techniques from the statistics and machine learning literature [2,

3, 18, 27, 33] for choosing a 𝜏 critically rely on the fact that the

individuals are independent, i.e., adding/removing one individual

does not affect the data associated with another, which is not true

when the query involves self-joins. In fact, when there are self-

joins, even the truncation mechanism itself fails, as illustrated in

the example below.

Example 1.2. Suppose we extend the query from Example 1.1 to

the following one with a self-join:

𝑄 := |𝑅1 (𝑥1, . . . , ) Z 𝑅1 (𝑦1, . . . ) Z 𝑅2 (𝑥1, 𝑦1, 𝑥2, . . . ) |.

Note that the PK of 𝑅1 has been renamed differently in the two

logical copies 𝑅1, so that they join different attributes of 𝑅2. For

instance, 𝑅2 may store the transactions between pairs of customers,

and this query would count the total number of transactions. Again,

predicates can be added to make the query more meaningful.

Let 𝐺 be an undirected 𝜏-regular graph (i.e., every vertex has

degree 𝜏) with 𝑛 vertices. We will construct an instance I = (𝐼1, 𝐼2)
on which the truncation mechanism fails. Let 𝐼1 be the vertices

of 𝐺 and let 𝐼2 be the edges (each edge will appear twice as 𝐺 is

undirected). Thus 𝑄 simply returns the number of edges in the

graph times 2. Let I′ be the neighboring instance corresponding

to 𝐺 ′, to which we add a vertex 𝑣 that connects to every existing

vertex. Note that in𝐺 ′, 𝑣 has degree 𝑛 while every other vertex has

degree 𝜏 + 1. Now truncating by 𝜏 fails DP: The query answer on I
is 𝑛𝜏 , and that on I′ is 0 (all vertices are truncated). Adding noise of
scale 𝜏 cannot mask this gap, violating the DP definition. □

The reason why the truncation mechanism fails is that the under-

lined claim above does not hold in the presence of self-joins. More

fundamentally, this is due to the correlation among the individuals

introduced by self-joins. In the example above, we see that the addi-

tion of one node may cause the degrees of many others to increase.

For the problem of graph pattern counting under node-DP, which

can be formulated as a multi-way self-join counting query on the

special schema R = {Node(ID), Edge(src, dst)}, Kasiviswanathan
et al. [22] propose an LP-based truncation mechanism (to differenti-

ate, we will call the truncation mechanism above naive truncation)
to fix the issue, but they do not study how to choose 𝜏 . As a result,

while their mechanism satisfies DP, there is no optimality guarantee

in terms of utility. In fact, if 𝜏 is chosen inappropriately, their error

can be even larger than𝐺𝑆𝑄 , namely, worse than the naive Laplace

mechanism.

1.3 Our Contributions
In this paper, we start by studying how to choose a near-optimal

𝜏 in a DP manner in the presence of self-joins. As with all prior 𝜏-

selection mechanisms over mean (sum) estimation [2, 3, 18, 27, 33]

and self-join-free queries [37], we assume that the global sensitivity
of the given query 𝑄 is bounded by 𝐺𝑆𝑄 . Since one tends to set a

large 𝐺𝑆𝑄 as argued in Example 1.1, we must try to minimize the

dependency on 𝐺𝑆𝑄 .

The first contribution of this paper (Section 5) is a simple and

general DP mechanism, called Race-to-the-Top (R2T), which can be

used to adaptively choose 𝜏 in combination with any valid DP trun-

cation mechanism that satisfies certain properties. In fact, it does

not choose 𝜏 per se; instead, it directly returns a privatized query

answer with error at most 𝑂 (log(𝐺𝑆𝑄 ) log log(𝐺𝑆𝑄 ) · 𝐷𝑆𝑄 (I)) for
any instance I with constant probability. While we defer the formal

definition of 𝐷𝑆𝑄 (I) to Section 4, what we can show is that it is an

per-instance lower bound, i.e., any valid DP mechanism has to incur

error Ω(𝐷𝑆𝑄 (I)) on I (in a certain sense). Thus, the error of R2T is

instance-optimal up to logarithmic factors in 𝐺𝑆𝑄 . Furthermore, a

logarithmic dependency on 𝐺𝑆𝑄 is also unavoidable [20], even for

the mean estimation problem, i.e., the simple self-join-free query

in Example 1.1.

However, as we see in Example 1.2, naive truncation is not a

valid DP mechanism in the presence of self-joins. As our second

contribution (Section 6), we extend the LP-based mechanism of [22],

which only works for graph pattern counting queries, to general

queries on an arbitrary relational schema that uses the 4 basic rela-

tional operators: Selection (with arbitrary predicates), Projection,

Join (including self-join), and sum Aggregation. When plugged into

R2T, this yields the first DP mechanism for answering arbitrary

SPJA queries in a database with FK constraints. For SJA queries,

the utility is instance-optimal, while the optimality guarantee for

SPJA queries (Section 7) is slightly weaker, but we argue that this

is unavoidable.

Furthermore, the simplicity of our mechanism allows it to be

built on top of any RDMBS and an LP solver. To demonstrate its

practicality, we built a system prototype (Section 9) using Post-

greSQL and CPLEX. Experimental results (Section 10) show that

it can provide order-of-magnitude improvements in terms of util-

ity over the state-of-the-art DP-SQL engines. We obtain similar

improvements even over node-DP mechanisms that are specifi-

cally designed for graph pattern counting problems, which are just

special SJA queries.

2 RELATEDWORK
Answering arbitrary SQL queries under DP is the holy grail of

private query processing. Most early work focuses on answering

a given set counting queries over a single relation with different

predicates (namely, SA queries with count aggregation) [6, 7, 10,

17, 25, 30, 35, 36, 40, 42]. [7, 25, 30] design mechanisms that are

optimal for the given query set, but over the worst-case database.
In particular, if the set consists of just one query, their optimality

degenerates into worst-case optimality.

Most existing work on join queries can only support restricted

types of joins, such as PK-PK joins [4, 28, 29, 32, 34] and joins with



a fixed join attribute [39]. A number of recent papers try to ex-

tend the support for joins, but as we see in Example 1.2, certain

features like self-joins are tricky to handle correctly. PrivateSQL

[23] uses naive truncation to truncate the tuples with high degree,

so it does not really meet the DP requirement when there are self-

joins. In a subsequent work, Tao et al. [37] use naive truncation to

truncate the tuples with high sensitivity for self-join-free queries

and they propose a mechanism to select 𝜏 . However, our analy-

sis (see Appendix A) shows that the error of their mechanism

is Ω(𝐺𝑆𝑄/log(𝐺𝑆𝑄 )) with constant probability, i.e., it is at most a

logarithmic-factor better than the naive Laplace mechanism that

adds noise of scale 𝐺𝑆𝑄 . We reduce the dependency on 𝐺𝑆𝑄 from

(near) linear to logarithmic. We also compare with their mechanism

experimentally for self-join-free queries in Section 10.

Smooth sensitivity [31] is a popular approach for dealing with

self-joins. Elastic sensitivity [19] and residual sensitivity [13, 14],

both of which are efficiently computable versions of smooth sen-

sitivity, can handle self-joins correctly. However, as we argue in

Section 4, smooth sensitivity (including any efficiently computable

version) cannot support FK constraints, which are important to

modeling the relationship between an individual and all his/her

associated data in a relational database. Consequently, they do not

support node-DP for graph pattern counting, which is an important

special case of FK constraints.

Node-DP and edge-DP are two popular DP policies for private

graph data, which respectively are the special cases of having FK

or no FK constraints in a relational database, as elaborated in Sec-

tion 3.2. For node-DP, Kasiviswanathan et al. [22] combine naive

truncation and smooth sensitivity, and also propose an LP-based

truncation mechanism, while Blocki et al. [8] develop a smooth

distance estimator. All of these mechanisms require a 𝜏 given in

advance. As such, none of them has any utility guarantees. Ex-

perimentally, we show in Section 10 (cf. Table 3) that the error of

these mechanisms is highly sensitive to 𝜏 , while there is no fixed

𝜏 that works well for all queries and datasets. On the other hand,

R2T can always adaptively choose a 𝜏 that is provably close to the

optimal one tuned (note that the tuning violates DP!) for each par-

ticular query/dataset. For edge-DP, better utility can be achieved

[8, 21, 31, 41], but the privacy protection is weaker.

The recursive mechanism [9] also achieves an error close to

𝐷𝑆𝑄 (I), but without showing its instance optimality. More impor-

tantly, it adopts an approach that is complicated and different from

the mainstream ones (e.g., the truncation mechanism and smooth

sensitivity). In addition, its high computational costs prevent it from

being used in practice. In our experiments, we were able to finish

running this mechanism (with a time limit of 6 hours) only on the

3 test cases with the smallest query result size.

3 PRELIMINARIES
3.1 Database Queries
Let R be a database schema. We start with a multi-way join:

𝐽 := 𝑅1 (x1) Z · · · Z 𝑅𝑛 (x𝑛), (1)

where 𝑅1, . . . , 𝑅𝑛 are relation names in R and each x𝑖 is a set of

𝑎𝑟𝑖𝑡𝑦 (𝑅𝑖 ) variables. When considering self-joins, there can be re-

peats, i.e., 𝑅𝑖 = 𝑅 𝑗 ; in this case, we must have x𝑖 ≠ x𝑗 , or one of the
two atoms will be redundant. Let 𝑣𝑎𝑟 (𝐽 ) := x1 ∪ · · · ∪ x𝑛 .

Let I be a database instance over R. For any 𝑅 ∈ R, denote
the corresponding relation instance in I as I(𝑅). This is a physical
relation instance of 𝑅. We use I(𝑅, x) to denote I(𝑅) after renaming

its attributes to x, which is also called a logical relation instance of
𝑅. When there are self-joins, one physical relation instance may

have multiple logical relation instances; they have the same rows

but with different column (variable) names.

An JA or SJA query𝑄 aggregates over the join results 𝐽 (I). More

abstractly, let𝜓 : dom(𝑣𝑎𝑟 (𝐽 )) → N be a function that assigns non-

negative integer weights to the join results, where dom(𝑣𝑎𝑟 (𝐽 ))
denotes the domain of 𝑣𝑎𝑟 (𝐽 ). The result of evaluating 𝑄 on I is

𝑄 (I) :=
∑

𝑞∈𝐽 (I)
𝜓 (𝑞) . (2)

Note that the function𝜓 only depends on the query. For a counting

query,𝜓 (·) ≡ 1; for an aggregation query, e.g. SUM(𝐴∗𝐵),𝜓 (𝑞) is the
value of 𝐴 ∗ 𝐵 for 𝑞. And an SJA query with an arbitrary predicate

over 𝑣𝑎𝑟 (𝐽 ) can be easily incorporated into this formulation: If some

𝑞 ∈ 𝐽 (I) does not satisfy the predicate, we simply set𝜓 (𝑞) = 0.

Example 3.1. Graph pattern counting queries can be formulated

as SJA queries. Suppose we store a graph in a relational database by

the schema R = {Node(ID), Edge(src, dst)} where src and dst
are FKs referencing ID, then the number of length-3 paths can be

counted by first computing the join

Edge(A, B) Z Edge(B, C) Z Edge(C, D),
followed by a count aggregation. Note that this also counts triangles

and non-simple paths (e.g., 𝑥-𝑦-𝑥-𝑧), which may or may not be

considered as length-3 paths depending on the application. If not,

they can be excluded by introducing a predicate (i.e., redefining

𝜓 ) A ≠ C ∧ A ≠ D ∧ B ≠ D. If the graph is undirected, then the query

counts every path twice, so we should divide the answer by 2.

Alternatively, we may introduce the predicate A < D to eliminate

the double counting. □

Finally, for an SPJA query where the output variables are y ⊂
𝑣𝑎𝑟 (𝐽 ), we simply replace 𝐽 (I) with 𝜋y 𝐽 (I) in (2). Note that we use

the relational algebra semantics of a projection, where duplicates

are removed. If not, the projection would not make any difference

in the aggregate. In fact, it is precisely the duplicate-removal that

makes SPJA queries more difficult than SJA queries in terms of

optimality, as we argue in Section 7.

3.2 Differential Privacy in Relational
Databases with Foreign Key Constraints

We adopt the DP policy in [23], which defines neighboring instances

by taking foreign key (FK) constraints into consideration. We model

all the FK relationships as a directed acyclic graph over R by adding

a directed edge from 𝑅 to 𝑅′ if 𝑅 has an FK referencing the PK

of 𝑅′. There is a1 designated primary private relation 𝑅𝑃 and any

1
For most parts of the paper, we consider the case where there is only one primary
private relation in R; the case with multiple primary private relations is discussed in

Section 8.



relation that has a direct or indirect FK referencing 𝑅𝑃 is called

a secondary private relation. The referencing relationship over the

tuples is defined recursively as follows: (1) any tuple 𝑡𝑃 ∈ I(𝑅𝑃 )
said to reference itself; (2) for 𝑡𝑃 ∈ I(𝑅𝑃 ), 𝑡 ∈ I(𝑅), 𝑡 ′ ∈ I(𝑅′), if 𝑡 ′
references 𝑡𝑃 , 𝑅 has an FK referencing the PK of 𝑅′, and the FK of 𝑡

equals to the PK of 𝑡 ′, then we say that 𝑡 references 𝑡𝑃 . Then two

instances I and I′ are considered neighbors if I′ can be obtained

from I by deleting a set of tuples, all of which reference the same

tuple 𝑡𝑃 ∈ I(𝑅𝑃 ), or vice versa. In particular, 𝑡𝑃 may also be deleted,

in which case all tuples referencing 𝑡𝑃 must be deleted in order to

preserve the FK constraints. Finally, for a join result 𝑞 ∈ 𝐽 (I), we
say that 𝑞 references 𝑡𝑃 ∈ I(𝑅𝑃 ) if |𝑡𝑃 Z 𝑞 | = 1.

We use the notation I ∼ I′ to denote two neighboring instances

and I ∼𝑡𝑃 I′ denotes that all tuples in the difference between I and
I′ reference the tuple 𝑡𝑃 ∈ 𝑅𝑃 .

Example 3.2. Consider the TPC-H schema:

R = {Nation(NK), Customer(CK, NK), Order(OK, CK), Lineitem(OK)}.
If the customers are the individuals whose privacy we wish to pro-

tect, then we designate Customer as the primary private relation,

which implies that Order and Lineitem will be secondary private

relations, while Nation will be public. Note that once Customer
is designated as a primary private relation, the information in

Order and Lineitem is also protected since the privacy induced by

Customer is stronger than that induced by Order and Lineitem.
Alternatively, one may designate Order as the primary private re-

lation, which implies that Lineitem will be a secondary private

relation, while Customer and Nation will be public. This would

result in weaker privacy protection but offer higher utility. □

Some queries, as given, may be incomplete, i.e., it has a variable
that is an FK but its referenced PK does not appear in the query

𝑄 . The query in Example 3.1 is such an example. Following [23],

we always make the query complete by iteratively adding those

relations whose PKs are referenced to 𝑄 . The PKs will be given

variables names matching the FKs. For example, for the query in

Example 3.1, we add Node(A), Node(B), Node(C), and Node(D).
The DP policy above incorporates both edge-DP and node-DP,

two commonly used DP policies for private graph analysis, as spe-

cial cases. In Example 3.1, by designating Edge as the private re-

lation (Node is thus public, and we may even assume it contains

all possible vertex IDs), we obtain edge-DP; for node-DP, we add

FK constraints from src and dst to ID, and designate Node as the
primary private relation, while Edge becomes a secondary private

relation.

A mechanism𝑀 is 𝜀-DP if for any neighboring instance I, I′, and
any output 𝑦, we have

Pr[𝑀 (I) = 𝑦] ≤ 𝑒𝜀 Pr[𝑀 (I′) = 𝑦] .
Typical values of 𝜀 used in practice range from 0.1 to 10, where a

smaller value corresponds to stronger privacy protection.

4 INSTANCE OPTIMALITY OF DP
MECHANISMS WITH FK CONSTRAINTS

Global sensitivity and worst-case optimality. The standard DP

mechanism is the Laplace mechanism [15], which adds 𝐿𝑎𝑝 (𝐺𝑆𝑄 )
to the query answer. Here, 𝐿𝑎𝑝 (𝑏) denotes a random variable drawn

from the Laplace distributionwith scale𝑏 and𝐺𝑆𝑄 = maxI∼I′ |𝑄 (I)−
𝑄 (I′) | is the global sensitivity of 𝑄 . However, either a join or a sum

aggregation makes 𝐺𝑆𝑄 unbounded. The issue with the former is

illustrated in Example 1.1, where a customer may have unbounded

orders; a sum aggregation with an unbounded𝜓 results in the same

situation. Thus, as with prior work [2, 3, 18, 27, 33, 37], we restrict

to a set of instances I such that

max

I∈I,I′∈I,I∼I′
|𝑄 (I) −𝑄 (I′) | = 𝐺𝑆𝑄 , (3)

where 𝐺𝑆𝑄 is a parameter given in advance. For the query in Ex-

ample 1.1, this is equivalent to assuming that a customer is allowed

to have at most 𝐺𝑆𝑄 orders in any instance.

For general queries, the situation is more complicated. We first

consider SJA queries. Given an instance I and an SJA query 𝑄 , for

a tuple 𝑡𝑃 ∈ I(𝑅𝑃 ), its sensitivity is

𝑆𝑄 (I, 𝑡𝑃 ) :=
∑

𝑞∈𝐽 (I)
𝜓 (𝑞)I(𝑞 references 𝑡𝑃 ), (4)

where I(·) is the indicator function. For SJA queries, (3) is equivalent

to

max

I∈I
max

𝑡𝑃 ∈I(𝑅𝑃 )
𝑆𝑄 (I, 𝑡𝑃 ) = 𝐺𝑆𝑄 .

For self-join-free SJA queries, it is clear that

𝑄 (I) =
∑

𝑡𝑃 ∈𝑅𝑃

𝑆𝑄 (I, 𝑡𝑃 ),

which turns the problem into a sum estimation problem. However,

when self-joins are present, this equality no longer holds since one

join result 𝑞 references multiple 𝑡𝑃 ’s. This also implies that remov-

ing one tuple from I(𝑅𝑃 ) may affect multiple 𝑆𝑄 (I, 𝑡𝑃 )’s, making

the neighboring relationship more complicated than in the sum

estimation problem, where two neighboring instances differ by only

one datum [2, 3, 18, 27, 33].

What notion of optimality shall we use for DP mechanisms over

SJA queries? The traditional worst-case optimality is meaningless,

since the naive Laplace mechanism that adds noise of scale 𝐺𝑆𝑄 is

already worst-case optimal, just by the definition of 𝐺𝑆𝑄 . In fact,

the basis of the entire line of work on the truncation mechanism

and smooth sensitivity is the observation that typical instances

should be much easier than the worst case, so these mechanisms

all add instance-specific noises, which are often much smaller than

the worst-case noise level 𝐺𝑆𝑄 .

Instance optimality. The standard notion of optimality for mea-

suring the performance of an algorithm on a per-instance basis

is instance optimality. More precisely, let M be the class of DP

mechanisms and let
2

Lins (I) := min

𝑀′∈M
min{𝜉 : Pr[|𝑀 ′(I) −𝑄 (I) | ≤ 𝜉] ≥ 2/3}

be the lower bound any𝑀 ′ ∈ M can achieve (with probability 2/3)
on I, then the standard definition of instance optimality requires us

to design an𝑀 such that

Pr[|𝑀 (I) −𝑄 (I) | ≤ 𝑐 · Lins (I)] ≥ 2/3 (5)

for every I, where 𝑐 is called the optimality ratio. Unfortunately, for
any I, one can design a trivial 𝑀 ′(·) ≡ 𝑄 (I) that has 0 error on I
2
The probability constant 2/3 can be changed to any constant larger than 1/2 without
affecting the asymptotics.



(but fails miserably on other instances), so Lins (·) ≡ 0, which rules

out instance-optimal DP mechanisms by a standard argument [15].

To avoid such a trivial𝑀 ′, [5, 14] consider a relaxed version of

instance optimality where we compare 𝑀 against any 𝑀 ′ that is
required to work well not just on I, but also on its neighbors, i.e.,

we raise the target error from Lins (I) to

L
nbr
(I) := min

𝑀′∈M
max

I′:I∼I′
min{𝜉 : Pr[|𝑀 ′(I′) −𝑄 (I′) | ≤ 𝜉] ≥ 2/3}.

Vadhan [38] observes that L
nbr
(I) ≥ 𝐿𝑆𝑄 (I)/2, where

𝐿𝑆𝑄 (I) := max

I′∈I,I′∼I
|𝑄 (I) −𝑄 (I′) |

is the local sensitivity of 𝑄 at I. This instance optimality has been

used for certain machine learning problems [5] and conjunctive

queries without FKs [14]. However, it has an issue for SJA queries in

a database with FK constraints: For any I, we can add a 𝑡𝑃 to I(𝑅𝑃 ) to-
gether with tuples in the secondary private relations all referencing

𝑡𝑃 , obtaining an I′ such that 𝑆𝑄 (I′, 𝑡𝑃 ) = 𝐺𝑆𝑄 , i.e., 𝐿𝑆𝑄 (·) ≡ 𝐺𝑆𝑄 .
This means that this relaxed instance optimality degenerates into

worst-case optimality. This is also why smooth sensitivity, including

all its efficiently computable versions [13, 14, 19, 31], will not have

better utility than the naive Laplace mechanism on databases with

FK constraints, since they are all no lower than the local sensitivity.

The reason why the above relaxation is “too much” is that we

require𝑀 ′ to work well on any neighbor I′ of I. Under the neigh-
borhood definition with FK constraints, this means that I′ can be

any instance obtained from I by adding a tuple 𝑡𝑃 and arbitrary
tuples referencing 𝑡𝑃 in the secondary private relations. This is too

high a requirement for𝑀 ′, hence too low an optimality notion for

𝑀 .

To address the issue, [18] restricts the neighborhood in which

𝑀 ′ is required to work well, but their definition only works for the

mean estimation problem. For SJA queries under FK constraints,

we revise L
nbr
(·) to

L
d-nbr
(I) := min

𝑀′∈M
max

I′:I∼I′,I′⊆I
min{𝜉 : Pr[|𝑀 ′(I′)−𝑄 (I′) | ≤ 𝜉] ≥ 2/3},

namely, we require 𝑀 ′ to work well only on I′ and its down-
neighbors, which can be obtained only by removing a tuple 𝑡𝑃
already in I(𝑅𝑃 ) and all tuples referencing 𝑡𝑃 . Correspondingly, an

instance-optimal𝑀 (w.r.t. the down-neighborhood) is one such that

(5) holds where Lins is replaced by L
d-nbr

.

Clearly, the smaller the neighborhood, the stronger the optimal-

ity notion. Our instance optimality notion is thus stronger than

those in [5, 14, 18]. Note that for such an instance-optimal𝑀 (by

our definition), there still exist I, 𝑀 ′ such that 𝑀 ′ does better on
I than 𝑀 , but if this happens, 𝑀 ′ must do worse on one of the

down-neighbors of I, which is as typical as I itself.
Using the same argument from [38], we haveL

d-nbr
(I) ≥ 𝐷𝑆𝑄 (I)/2,

where

𝐷𝑆𝑄 (I) := max

I′,I∼I,I′⊆I
|𝑄 (I) −𝑄 (I′) | = max

𝑡𝑃 ∈I(𝑅𝑃 )
𝑆𝑄 (I, 𝑡𝑃 ) (6)

is the downward local sensitivity of I. Thus, 𝐷𝑆𝑄 (I) is a per-instance
lower bound, which can be used to replace Linc (I) in (5) in the

definition of instance-optimal DP mechanisms.
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Figure 1: An illustration of R2T.

5 R2T: INSTANCE-OPTIMAL TRUNCATION
Our instance-optimal truncation mechanism, Race-to-the-Top (R2T),
can be used in combination with any truncation method 𝑄 (I, 𝜏),
which is a function 𝑄 : I × N→ N with the following properties:

(1) For any 𝜏 , the global sensitivity of 𝑄 (·, 𝜏) is at most 𝜏 .

(2) For any 𝜏 , 𝑄 (I, 𝜏) ≤ 𝑄 (I).
(3) For any I, there exists a non-negative integer 𝜏∗ (I) ≤ 𝐺𝑆𝑄

such that for any 𝜏 ≥ 𝜏∗ (I), 𝑄 (I, 𝜏) = 𝑄 (I).
We describe various choices for 𝑄 (I, 𝜏) depending on the DP

policy and whether the query contains self-joins and/or projections

in the subsequent sections. Intuitively, such a 𝑄 (I, 𝜏) gives a stable
(property (1)) underestimate (property (2)) of 𝑄 (I), while reaches
𝑄 (I) for 𝜏 sufficiently large (property (3)). Note that 𝑄 (I, 𝜏) itself
is not DP. To make it DP, we can add 𝐿𝑎𝑝 (𝜏/𝜀), which would turn

it into an 𝜀-DP mechanism by property (1). The issue, of course, is

how to set 𝜏 . The basic idea of R2T is to try geometrically increasing

values of 𝜏 and somehow pick the “winner” of the race.

Assuming such a 𝑄 (I, 𝜏), R2T is works as follows. For a proba-

bility
3 𝛽 , we first compute

4

𝑄̃ (I, 𝜏 ( 𝑗) ) :=𝑄 (I, 𝜏 ( 𝑗) ) + 𝐿𝑎𝑝
(
log(𝐺𝑆𝑄 )

𝜏 ( 𝑗)

𝜀

)
− log(𝐺𝑆𝑄 ) ln

(
log(𝐺𝑆𝑄 )

𝛽

)
· 𝜏
( 𝑗)

𝜀
, (7)

for 𝜏 ( 𝑗) = 2
𝑗
, 𝑗 = 1, . . . , log(𝐺𝑆𝑄 ). Then R2T outputs

𝑄̃ (I) := max

{
max

𝑗
𝑄̃ (I, 𝜏 ( 𝑗) ), 𝑄 (I, 0)

}
. (8)

The privacy of R2T is straightforward: Since𝑄 (I, 𝜏 ( 𝑗) ) has global
sensitivity at most 𝜏 ( 𝑗) , and the third term of (7) is independent

of I, each 𝑄̃ (I, 𝜏 ( 𝑗) ) satisfies 𝜀
log(𝐺𝑆𝑄 ) -DP by the standard Laplace

mechanism. Collectively, all the 𝑄̃ (I, 𝜏 ( 𝑗) )’s satisfy 𝜀-DP by the

basic composition theorem [15]. Finally, returning the maximum

preserves DP by the post-processing property of DP.

3
The probability 𝛽 only concerns about the utility but not privacy.

4
log has base 2 and ln has base 𝑒 .



Utility analysis. For some intuition on why R2T offers good

utility, please see Figure 1. By property (2) and (3), as we increase

𝜏 , 𝑄 (I, 𝜏) gradually approaches the true answer 𝑄 (I) from below

and reaches 𝑄 (I, 𝜏) = 𝑄 (I) when 𝜏 ≥ 𝜏∗ (I). However, we cannot
use 𝑄 (I, 𝜏) or 𝜏∗ (I) directly as this would violate DP. Instead, we

only get to see 𝑄̃ (I, 𝜏), which is masked with the noise of scale

proportional to 𝜏 . We thus face a dilemma, that the closer we get

to 𝑄 (I), the more uncertain we are about the estimate 𝑄̃ (I, 𝜏). To
get out of the dilemma, we shift 𝑄 (I, 𝜏) down by an amount that

equals to the scale of the noise (if ignoring the log log factor). This

penalty for 𝑄̃ (I, 𝜏), where 𝜏 is the smallest power of 2 above 𝜏∗ (I),
will be on the same order as 𝜏∗ (I), so it will not affect its error by

more than a constant factor, while taking the maximum ensures

that the winner is at least as good as 𝑄̃ (I, 𝜏). Meanwhile, the extra

log log factor ensures that no 𝑄̃ (I, 𝜏) overshoots the target. Below,
we formalize the intuition.

Theorem 5.1. On any instance I, with probability at least 1 − 𝛽 ,
we have

𝑄 (I) − 4 log(𝐺𝑆𝑄 ) ln
(
log(𝐺𝑆𝑄 )

𝛽

)
𝜏∗ (I)
𝜀
≤ 𝑄̃ (I) ≤ 𝑄 (I) .

Proof. It suffices to show that each inequality holds with proba-

bility at least 1 − 𝛽
2
. For the second inequality, since 𝑄 (I, 0) ≤ 𝑄 (I),

we just need to show that max𝑗 𝑄̃ (I, 𝜏 ( 𝑗) ) ≤ 𝑄 (I). By a union

bound, it suffices to show that 𝑄̃ (I, 𝜏) ≤ 𝑄 (I) with probability at

most
𝛽

2 log(𝐺𝑆𝑄 ) for each 𝜏 . This easily follows from property (2) of

𝑄 (I, 𝜏) and the tail bound of the Laplace distribution:

Pr[𝑄̃ (I, 𝜏) > 𝑄 (I)]
≤Pr[𝑄̃ (I, 𝜏) > 𝑄 (I, 𝜏)]

=Pr
[
𝐿𝑎𝑝

(
log(𝐺𝑆𝑄 )

𝜏

𝜀

)
> log(𝐺𝑆𝑄 ) ln

(
log(𝐺𝑆𝑄 )

𝛽

)
· 𝜏
𝜀

]
=

𝛽

2 log(𝐺𝑆𝑄 )
.

For the first inequality, we discuss two cases 𝜏∗ (I) = 0 and

𝜏∗ (I) ∈ [2𝑗−1, 2𝑗 ] for some 𝑗 ≥ 1. For the first case, by property

(3) of 𝑄 (I, 𝜏), 𝑄 (I, 0) = 𝑄 (I). Therefore, 𝑄̃ (I) ≥ 𝑄 (I, 0) = 𝑄 (I).
Below we discuss the second case where 𝜏∗ (I) ∈ [2𝑗−1, 2𝑗 ]. Note
that 2

𝑗 ≤ 2𝜏∗ (I). Let 𝜏 = 2
𝑗
. By the tail bound on the Laplace

distribution, with probability at least 1 − 𝛽
2
, we have

𝑄̃ (I, 𝜏) ≥𝑄 (I, 2𝑗 ) − 2 log(𝐺𝑆𝑄 ) ln
(
log(𝐺𝑆𝑄 )

𝛽

)
2
𝑗

𝜀

=𝑄 (I) − 2 log(𝐺𝑆𝑄 ) ln
(
log(𝐺𝑆𝑄 )

𝛽

)
2
𝑗

𝜀
(9)

≥𝑄 (I) − 4 log(𝐺𝑆𝑄 ) ln
(
log(𝐺𝑆𝑄 )

𝛽

)
𝜏∗ (I)
𝜀

. (10)

Note that (9) follows the third property of𝑄 (I, 𝜏), and (10) is because
2
𝑗 ≤ 2𝜏∗ (I). Finally, since 𝑄̃ (I) = max𝑗 𝑄̃ (I, 𝜏 ( 𝑗) ) ≥ 𝑄̃ (I, 𝜏), the first

inequality also holds with probability at least 1 − 𝛽
2
. □

6 TRUNCATION FOR SJA QUERIES
In this section, we will design a𝑄 (I, 𝜏) with 𝜏∗ (I) = 𝐷𝑆𝑄 (I) for SJA
queries. Plugged into Theorem 5.1 with 𝛽 = 1/3 and the definition

of instance optimality, this turns R2T into an instance-optimal DP

mechanismwith an optimality ratio of𝑂 (log(𝐺𝑆𝑄 ) log log(𝐺𝑆𝑄 )/𝜀).
For self-join-free SJA queries, each join result 𝑞 ∈ 𝐽 (I) references

only one tuple in 𝑅𝑃 . Thus, the tuples in 𝑅𝑃 are independent, i.e.,

removing one does not affect the sensitivities of others. This means

that naive truncation (i.e., removing all 𝑆𝑄 (I, 𝑡𝑃 ) > 𝜏 and then

summing up the rest) is a valid𝑄 (I, 𝜏) that satisfies the 3 properties
required by R2T with 𝜏∗ (I) = 𝐷𝑆𝑄 (I).

When there are self-joins, naive truncation does not satisfy prop-

erty (1), as illustrated in Example 1.2, where all 𝑆𝑄 (I, 𝑡𝑃 )’s in two

neighboring instances may differ. Belowwe generalize the LP-based

mechanism for graph pattern counting [22] to arbitrary SJA queries,

and show that it satisfies the 3 properties with 𝜏∗ (I) = 𝐷𝑆𝑄 (I).
Given a SJA query𝑄 and instance I, recall that𝑄 (I) = ∑

𝑞∈𝐽 (I) 𝜓 (𝑞),
where 𝐽 (I) is the join results. For 𝑘 ∈ [|𝐽 (I) |], let 𝑞𝑘 (I) be the 𝑘th
join result. For each 𝑗 ∈ [|I(𝑅𝑃 ) |], let 𝑡 𝑗 (I) be the 𝑗 th tuple in I(𝑅𝑃 ).
We use 𝐶 𝑗 (I) to denote (the indices of) the set of join results that

reference 𝑡 𝑗 (I). More precisely,

𝐶 𝑗 (I) := {𝑘 : 𝑞𝑘 (I) references 𝑡 𝑗 (I)}. (11)

For each 𝑘 ∈ [|𝐽 (I) |], introduce a variable 𝑢𝑘 , which represents

the weight assigned to the join result 𝑞𝑘 (I). We return the optimal

solution of the following LP as 𝑄 (I, 𝜏):

maximize 𝑄 (I, 𝜏) =
∑

𝑘∈[ | 𝐽 (I) | ]
𝑢𝑘

subject to

∑
𝑘∈𝐶 𝑗 (I)

𝑢𝑘 ≤ 𝜏, 𝑗 ∈ [|I(𝑅𝑃 ) |],

0 ≤ 𝑢𝑘 ≤ 𝜓 (𝑞𝑘 (I)), 𝑘 ∈ [|𝐽 (I) |] .

Lemma 6.1. For SJA queries, the 𝑄 (I, 𝜏) defined above satisfies the
3 properties required by R2T with 𝜏∗ (I) = 𝐷𝑆𝑄 (I).

Proof. Property (2) easily follows from the constraint 𝑢𝑘 ≤
𝜓 (𝑞𝑘 (I)). For property (3), observe that for SJA queries, for any 𝑗 ∈
[|I(𝑅𝑃 ) |], 𝑆𝑄 (I, 𝑡 𝑗 (I)) =

∑
𝑘∈𝐶 𝑗 (I) 𝜓 (𝑞𝑘 (I)). So when 𝜏 ≥ 𝐷𝑆𝑄 (I),

all constraints

∑
𝑘∈𝐶 𝑗 (I) 𝑢𝑘 ≤ 𝜏 are satisfied automatically and we

can set 𝑢𝑘 = 𝜓 (𝑞𝑘 (I)) for all 𝑘 .
Below, we prove property (1), i.e., for any I ∼ I′, 𝑄 (I, 𝜏) and

𝑄 (I′, 𝜏) differ by at most 𝜏 . W.l.o.g., assume I ⊆ I′. It is clear that
𝐽 (I) ⊆ 𝐽 (I′), and we order the join results in 𝐽 (I′) in such a way

that the extra join results are at the end. This means that the two

LPs on I and I′ share common variables 𝑢1, . . . , 𝑢 𝐽 (I) , while the

latter has some extra variables 𝑢 𝐽 (I)+1, . . . , 𝑢 𝐽 (I′) . Each constraint∑
𝑘∈𝐶 𝑗 (I) 𝑢𝑘 ≤ 𝜏 in the LP on I has a counterpart

∑
𝑘∈𝐶 𝑗 (I′) 𝑢𝑘 ≤

𝜏 in the LP on I′, where 𝐶 𝑗 (I) ⊆ 𝐶 𝑗 (I′). Let 𝑡 𝑗∗ be the tuple in

I′(𝑅𝑃 ) that all tuples in I′ − I reference. Note that 𝑡 𝑗∗ may or may

not appear in I. But in either case, the LP on I′ has a constraint∑
𝑘∈𝐶 𝑗∗ (I′) 𝑢𝑘 ≤ 𝜏 and𝐶 𝑗∗ (I′) contains all the extra variables in the

LP on I′.
Let {𝑢∗

𝑘
(I)}𝑘 be the optimal solution of the LP on I. We extend it

to a solution {𝑢𝑘 (I′)}𝑘 of the LP on I′, by setting 𝑢𝑘 (I′) = 𝑢∗
𝑘
(I) for

𝑘 ≤ |𝐽 (I) | and 𝑢𝑘 (I′) = 0 for all 𝑘 > |𝐽 (I) |. It is clear that {𝑢𝑘 (I′)}𝑘
is a valid solution of the LP on I′, so we have

𝑄 (I′, 𝜏) ≥
∑
𝑘

𝑢𝑘 (I′) =
∑
𝑘

𝑢∗ (I) = 𝑄 (I, 𝜏) .
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Figure 2: Example of edge counting.

For the other direction, let {𝑢∗
𝑘
(I′)}𝑘 be an optimal solution of

the LP on I′. We cut it down to a solution {𝑢𝑘 (I)}𝑘 of the LP on

I, by setting 𝑢𝑘 (I) = 𝑢∗
𝑘
(I′) for 𝑘 ≤ |𝐽 (I) | while ignoring all 𝑢∗

𝑘
(I′)

for 𝑘 > |𝐽 (I) |. It is clear that {𝑢𝑘 (I)}𝑘 is a valid solution of the LP

on I, so we have

𝑄 (I, 𝜏) ≥
∑
𝑘

𝑢𝑘 (I) ≥
∑
𝑘

𝑢∗ (I′) − 𝜏 = 𝑄 (I′, 𝜏) − 𝜏,

where the second inequality follows from the observation that the

constraint

∑
𝑘∈𝐶 𝑗∗ (I′) 𝑢𝑘 ≤ 𝜏 in the LP on I′ implies that the sum

of the ignored 𝑢∗
𝑘
(I′)’s is at most 𝜏 . □

Example 6.2. We now give a step-by-step example to show how

this truncation method works together with R2T. Consider the

problem of edge counting under node-DP, which corresponds to

the SJA query

𝑄 := |𝜎ID1<ID2 (Node(ID1) Z Node(ID2) Z Edge(ID1, ID2)) |
on the graph data schema introduced in Example 3.1. Note that in

SQL, the query would be written as

SELECT count(∗) FROM Node AS Node1, Node AS Node2, Edge

WHERE Edge.src = Node1.ID AND Edge.dst = Node2.ID

AND Node1.ID < Node2.ID

Suppose we set𝐺𝑆𝑄 = 2
8 = 256. For this particular𝑄 , this means

the maximum degree of any node in any instance I ∈ I is 256. We

set 𝛽 = 0.1 and 𝜀 = 1.

Now, suppose we are given an I containing 8103 nodes, which
form 1000 triangles, 1000 4-cliques, 100 8-stars, 10 16-stars, and one

32-star as shown in Figure 2. The true query result is

𝑄 (I) = 3 × 1000 + 6 × 1000 + 8 × 100 + 16 × 10 + 32 = 9992.

We run R2T with 𝜏 ( 𝑗) = 2
𝑗
for 𝑗 = 1, . . . , 8. For each 𝜏 = 𝜏 ( 𝑗) ,

we assign a weight 𝑢𝑘 ∈ [0, 1] to each join result (i.e., an edge)

that satisfies the predicate ID1 < ID2. To calculate 𝑄 (I, 𝜏), we can
consider the LP on each clique/star separately. For a triangle, the

optimal LP solution always assigns 𝑢𝑘 = 1 for each edge. For each

4-clique, it assigns 2/3 to each edge for 𝜏 = 2 and 1 for 𝜏 ≥ 4. For

each 𝑘-star, the LP optimal solution is min{𝑘, 𝜏}. Thus, the optimal

LP solutions are

𝑄 (I, 2) = 1 × 3000 + 2

3

× 6000 + 2 × 100 + 2 × 10 + 2 × 1 = 7222,

𝑄 (I, 4) = 1 × 3000 + 1 × 6000 + 4 × 100 + 4 × 10 + 4 × 1 = 9444,

𝑄 (I, 8) = 1 × 3000 + 1 × 6000 + 8 × 100 + 8 × 10 + 8 × 1 = 9888,

𝑄 (I, 16) = 1 × 3000 + 1 × 6000 + 8 × 100 + 16 × 10 + 16 × 1 = 9976.

In addition, we have 𝑄 (I, 0) = 0 and 𝑄 (I, 𝜏) = 9992 for 𝜏 ≥ 32.

Finally, we plug all the 𝑄 (I, 𝜏)’s into (7) and (8) to obtain the final

output. □

7 TRUNCATION FOR SPJA QUERIES
A negative result. The correctness of the LP-based truncation

method relies on a key property of SJA queries, that removing

𝑡𝑃 will always reduce 𝑄 (I) by 𝑆𝑄 (I, 𝑡𝑃 ), which is the contribution

of 𝑡𝑃 to 𝑄 (I). Unfortunately, the projection operator violates this

property, as illustrated in the following example.

Example 7.1. Revisit the query𝑄 in Example 1.1, where 𝑅1 is the

primary private relation, and 𝑅2 is a secondary relation. Consider

the following instance I: Set I(𝑅1) = {(𝑎1), (𝑎2)}, I(𝑅2) = {(𝑎𝑖 , 𝑏 𝑗 ) :
𝑖 ∈ [2], 𝑗 ∈ [𝑚]}. Then 𝑆𝑄 (I, (𝑎1)) = 𝑆𝑄 (I, (𝑎2)) = 𝑚, 𝑄 (I) = 2𝑚,

and 𝐷𝑆𝑄 (I) =𝑚.

Now, we add a projection operator, changing the query to

𝑄 ′ := |𝜋𝑥2 (𝑅1 (𝑥1) Z 𝑅2 (𝑥1, 𝑥2)) |.

Both (𝑎1) and (𝑎2) contribute 𝑚 to 𝑄 (I) but their contributions
“overlap”, thus removing either will not affect the query result, i.e.,

𝐷𝑆𝑄′ (I) = 0. □

Intuitively, a projection reduces the query answer, hence its

sensitivity, so it requires less noise. However, it makes achieving

instance optimality harder because the optimality target, 𝐷𝑆𝑄 (I),
may get a lot smaller, as illustrated in the example above. In partic-

ular, the second equality in (6) no longer holds (the first equality

is the definition of 𝐷𝑆𝑄 (I)), and 𝐷𝑆𝑄 (I) may be smaller than any

𝑆𝑄 (I, 𝑡𝑃 ). We formalize this intuition with the following negative

result:

Theorem 7.2. Let 𝑄 ′ be the query in Example 7.1. For any𝐺𝑆𝑄 ,
there is a set of instances I with global sensitivity𝐺𝑆𝑄 such that, for
any functions𝑀 ,𝑓 : I → R, if Pr[|𝑀 (I)−𝑄 ′(I) | ≤ 𝑓 (I) ·𝐷𝑆𝑄′ (I)] ≥
2/3, then𝑀 is not 𝜀-DP for any 𝜀 < 1

2
ln(𝐺𝑆𝑄/2).

Proof. We build the set of instances I as follows. First, put the

empty instance I0 into I. Then, for any𝑚 ∈ [𝐺𝑆𝑄 ], construct an
I𝑚 with I𝑚 (𝑅1) = {(𝑎1), (𝑎2)}, I𝑚 (𝑅2) = {(𝑎𝑖 , 𝑏 𝑗 ) : 𝑖 ∈ [2], 𝑗 ∈
[𝑚]}. Note that 𝑄 ′(I𝑚) = 𝑚, and 𝐷𝑆𝑄′ (I𝑚) = 0 since removing

either (𝑎1) or (𝑎2) will not affect the query result. Finally, for each

I𝑚 , remove (𝑎1) (and all referencing tuples) and add the resulting

instance to I. It can be verified that the global sensitivity of I is

𝐺𝑆𝑄 . Meanwhile, for any𝑚 ∈ [𝐺𝑆𝑄 ], I𝑚 and I0 are 2-hop neighbors,
so if𝑀 is 𝜀-DP, then

Pr[𝑀 (I𝑚) = 𝑦] ≤ 𝑒2𝜀 Pr[𝑀 (I0) = 𝑦],

for any 𝑦, by the group privacy property of DP [15].

The instance-optimality guarantee implies that for every𝑚 ∈
[𝐺𝑆𝑄 ],

Pr[𝑀 (I𝑚) =𝑚] ≥ 2/3.
Consider I0. On the one hand,

Pr[𝑀 (I0) ≠ 0] ≤ 1/3. (12)



On the other hand,

Pr[𝑀 (I0) ≠ 0] ≥ Pr[𝑀 (I0) = 1] + · · · + Pr[𝑀 (I0) = 𝐺𝑆𝑄 ]

≥
𝐺𝑆𝑄∑
𝑚=1

𝑒−2𝜀 Pr[𝑀 (I𝑚) =𝑚]

≥
𝐺𝑆𝑄∑
𝑚=1

𝑒−2𝜀 · 2
3

=
2𝐺𝑆𝑄

3𝑒2𝜀
,

which contradicts (12) when 𝜀 < 1

2
ln(𝐺𝑆𝑄/2). □

Indirect sensitivity. Recall the definition of 𝑆𝑄 (I, 𝑡𝑃 ) as in (4).

However, for an SPJA query, we have 𝑄 (I) = ∑
𝑞∈𝜋y 𝐽 (I) 𝜓 (𝑞) in-

stead of 𝑄 (I) = ∑
𝑞∈𝐽 (I) 𝜓 (𝑞) thus (6) no longer holds. This means

that, while 𝑆𝑄 (I, 𝑡𝑃 ) is still the contribution of 𝑡𝑃 to𝑄 (I), it is “indi-
rect”: The overlapping contributions should be counted only once

due to the projection operator removing duplicates.

We now define the indirect sensitivity for an instance I:

𝐼𝑆𝑄 (I) = max

𝑡𝑃 ∈I(𝑅𝑃 )
𝑆𝑄 (I, 𝑡𝑃 ) .

It should be clear that 𝐼𝑆𝑄 (I) ≥ 𝐷𝑆𝑄 (I) due to the overlapping;

in the extreme case shown in Example 7.1, we have 𝐼𝑆𝑄 (I) = 𝑚

but 𝐷𝑆𝑄 (I) = 0. Below we give a truncation method for SPJA

queries with 𝜏∗ (I) = 𝐼𝑆𝑄 (I). When plugged into R2T, this yields

a DP mechanism with error 𝑂 (log(𝐺𝑆𝑄 ) log log(𝐺𝑆𝑄 )𝐼𝑆𝑄 (I)/𝜀).
This is not instance-optimal, which is unachievable by Theorem

7.2 anyway. Note that for SJA queries, we have y = 𝑣𝑎𝑟 (𝐽 ), and
𝐷𝑆𝑄 (I) = 𝐼𝑆𝑄 (I) in this case.

Truncation method. We modify the LP-based truncation method

from Section 6 to handle SPJA queries. Let 𝑝𝑙 (I) be the 𝑙-th result in

𝜋y 𝐽 (I), 𝑞𝑘 (I) the 𝑘-th result in 𝐽 (I). To formalize the relationship

of the query results before and after the projection, we use 𝐷𝑙 (I)
to denote (the indices of) the join results corresponding to the

projected result 𝑝𝑙 (I), i.e.,
𝐷𝑙 (I) := { 𝑗 : 𝑝𝑙 = 𝜋y𝑞 𝑗 (I)},

while𝐶 𝑗 (I) is still defined as in (11). Then 𝑆𝑄 (I, 𝑡 𝑗 ) can be rewritten

as

𝑆𝑄 (I, 𝑡 𝑗 ) =
∑

𝑘∈𝐶 𝑗 (I)
𝜓 (𝑞𝑘 (I)) .

Now, we define a new LP. For each 𝑙 ∈ [|𝜋y 𝐽 (I) |], we introduce
a new variable 𝑣𝑙 ∈ [0,𝜓 (𝑝𝑙 (I))], which represents the weight

assigned to the projected result 𝑝𝑙 (I). For each 𝑘 ∈ [|𝐽 (I) |], we
still use a variable 𝑢𝑘 (I) ∈ [0,𝜓 (𝑞𝑘 (I))] to represent the weight

assigned to 𝑞𝑘 (I). We keep the same truncation constraints on the

𝑢𝑘 ’s, while adding the constraint that a the weight of a projected

result should not exceed the total weights of all its corresponding

join results. Then we try to maximize the projected results. More

precisely, the new LP is

maximize 𝑄 (I, 𝜏) =
∑

𝑙 ∈[ |𝜋y 𝐽 (I) | ]
𝑣𝑙

subject to 𝑣𝑙 ≤
∑

𝑘∈𝐷𝑙 (I)
𝑢𝑘∑

𝑘∈𝐶 𝑗 (I)
𝑢𝑘 ≤ 𝜏, 𝑗 ∈ [|I(𝑅𝑃 ) |],

0 ≤ 𝑢𝑘 ≤ 𝜓 (𝑞𝑘 (I)), 𝑘 ∈ [|𝐽 (I) |]
0 ≤ 𝑣𝑙 ≤ 𝜓 (𝑝𝑙 (I)), 𝑙 ∈ [|𝜋y 𝐽 (I) |] .

We can show that this modified LP yields a valid truncation

method for SPJA queries:

Lemma 7.3. For SPJA queries, the 𝑄 (I, 𝜏) defined above satisfies
the 3 properties required by R2T with 𝜏∗ (I) = 𝐼𝑆𝑄 (I).

Proof. First, same as SJA queries, property (2) holds due to the

constraint 𝑣𝑙 ≤ 𝜓 (𝑝𝑙 (I)). For property (3), we have 𝑆𝑄 (I, 𝑡 𝑗 ) =∑
𝑘∈𝐶 𝑗 (I) 𝜓 (𝑞𝑘 (I)). Then with same argument as in the proof of

Lemma 6.1, we can show that the property holds with 𝜏∗ (I) =

𝐼𝑆𝑄 (I). Finally consider property (1). For any I ∼ I′, I ⊆ I′, it is easy
to see that 𝐽 (I) ⊆ 𝐽 (I′) and all different projection results are in

𝐶 𝑗∗ for some 𝑗∗ ∈ [|I(𝑅𝑃 ) |]. Then the same line of reasoning as in

the proof of Lemma 6.1 proves property (1). □

8 MULTIPLE PRIMARY PRIVATE RELATIONS
Now we consider the case with 𝑘 ≥ 2 primary private relations

𝑅1
𝑃
, . . . , 𝑅𝑘

𝑃
. In this case, two instances are considered neighbors if

one can be obtained from the other by deleting a set of tuples, all

of which reference the same tuple that belongs to some 𝑅𝑖
𝑃
, 𝑖 ∈ [𝑘].

We reduce it to the case with only one primary private relation as

follows. Add a new column ID to every I(𝑅𝑖
𝑃
), 𝑖 ∈ [𝑘], and assign

unique identifiers to all tuples in these relations. Next, we construct

a new relation 𝑅𝑃 (ID), whose physical instance I(𝑅𝑃 ) consists of
all these identifiers. For each 𝑅𝑖

𝑃
, we add an FK constraint from

its ID column to reference the ID column of 𝑅𝑃 . Note that this

FK reference relationship is actually a bijection between the ID
column in 𝑅𝑃 and all the identifiers in the primary private relations.

Now, we designate 𝑅𝑃 as the only primary private relation, while

𝑅𝑖
𝑃
, 𝑖 ∈ [𝑘] all become secondary private relations. The original

secondary private relations, i.e., those having FK references to the

𝑅𝑖
𝑃
’s directly or indirectly, are still secondary private relations.

It is not hard to see that (1) the query answer is not affected by

this schema change; (2) two instances in the original schema are

neighbors if and only if they are neighbors in the new schema; and

(3) the join results that reference any tuple 𝑡 ∈ I(𝑅𝑖
𝑃
), 𝑖 ∈ [𝑘] are

the same as those that reference 𝑡𝑃 ∈ I(𝑅𝑃 ), where 𝑡𝑃 and 𝑡 have

the same identifier. Thus, both the privacy and utility guarantees

of our algorithm continue to hold.

Finally, it is worth pointing out that the reduction above is con-

ceptual; in the actual implementation, there is no need to construct

the new primary private relation and the additional ID columns, as

illustrated in Example 9.1 of the next section.

9 SYSTEM IMPLEMENTATION
Based on the R2T algorithm, we have implemented a system on

top of PostgreSQL and CPLEX. The system structure is shown

in Figure 3. The input to our system is any SPJA query written

in SQL, together with a designated primary private relation 𝑅𝑃
(interestingly, while R2T satisfies the DP policy with FK constraints,

the algorithm itself does not need to know the PK-FK constraints).

The system supports SUM and COUNT aggregation. Our SQL parser
first unpacks the aggregation into a reporting query so as to find

𝜓 (𝑞𝑘 (I)) for each join result, as well as 𝐶 𝑗 (I), which stores the

referencing relationships between tuples in I(𝑅𝑃 ) and 𝐽 (I).
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Figure 4: The foreign-key graph of TPC-H schema.

Example 9.1. Suppose we use the TPC-H schema (shown in Fig-

ure 4), where we designate Supplier and Customer as primary

private relations. Consider the following query:

SELECT SUM(price ∗ (1 − discount))
FROM Supplier, Lineitem, Orders, Customer

WHERE Supplier.SK = Lineitem.SK AND Lineitem.OK = Orders.OK

AND Orders.CK = Customer.CK

AND Orders.orderdate >=′ 2020 − 08 − 01′

We rewrite it as

SELECT Supplier.SK, Customer.CK, price ∗ (1 − discount)
FROM Supplier, Lineitem, Orders, Customer

WHERE Supplier.SK = Lineitem.SK AND Lineitem.OK = Orders.OK

AND Orders.CK = Customer.CK

AND Orders.orderdate >=′ 2020 − 08 − 01′

The price ∗ (1 − discount) column in the query results gives all

the𝜓 (𝑞𝑘 (I)) values, while Supplier.SK and Customer.CK yield the
referencing relationships from each supplier and customer to all

the join results they contribute to. □

We execute the rewritten query in PostgreSQL, and export the

query results to a file. Then, an external program is invoked to

construct the log(𝐺𝑆𝑄 ) LPs from the query results, which are then

solved by CPLEX. Finally, we use R2T to compute a privatized

output.

The computation bottleneck is the log(𝐺𝑆𝑄 ) LPs, each of which

contains |𝐽 (I) | variables and |𝐽 (I) | + |I(𝑅𝑃 ) | constraints. This takes
polynomial time, but can still be very expensive in practice. One

immediate optimization is to solve them in parallel. Below we

present another effective technique to speed up the process.

Algorithm 1: R2T with early stop

Input: I, 𝑄 ,𝑅𝑃 , 𝐺𝑆𝑄
1 𝑄̃ (I) ← 0;

2 for 𝜏 ( 𝑗) ← 𝐺𝑆𝑄 ,𝐺𝑆𝑄/2, . . . , 1 do in parallel
3 𝑇 ( 𝑗) ←

𝐿𝑎𝑝

(
log(𝐺𝑆𝑄 ) 𝜏

( 𝑗 )
𝜀

)
− log(𝐺𝑆𝑄 ) ln

(
log(𝐺𝑆𝑄 )

𝛽

)
· 𝜏 ( 𝑗 )𝜀 ;

4 for 𝑡 ← 1, 2, . . . do
5 if 𝑄̂ (𝑡 ) (I, 𝜏 ( 𝑗) ) achieves the optimal then
6 𝑄̃ (I) ← max(𝑄̃ (I), 𝑄̂ (𝑡 ) (I, 𝜏 ( 𝑗) ) +𝑇 ( 𝑗) );
7 Break;

8 else if 𝑄̂ (𝑡 ) (I, 𝜏 ( 𝑗) ) +𝑇 ( 𝑗) ≤ 𝑄̃ (I) then
9 Break;

10 end
11 end
12 end
13 return 𝑄̃ (I);

Early stop. The key observation is that R2T returns the maxi-

mum of 𝑂 (log(𝐺𝑆𝑄 )) maximization LPs (masked by some noise

and reduced by a factor), and most LP solvers (e.g., CPLEX) for maxi-

mization problems use some iterative search technique to gradually

approach the optimum from below, namely, these 𝑂 (log(𝐺𝑆𝑄 )) LP
solvers all “race to the top”. Thus, we will not know the winner

until they all stop.

To cut down the unnecessary search, the idea is to flip the prob-

lem around. Instead of solving the primal LPs, we solve their duals.

By LP duality, the dual LP has the same optimal solution as the

primal, but importantly, the LP solver will approach the optimal

solution from above, namely, we have a gradually decreasing upper

bound for the optimal solution of each LP. This allows us to termi-

nate those LPs that have no hope to be the winner. The optimized

R2T algorithm, shown in Algorithm 1, also uses the trick that the

noises are generated before we start running the LP solvers, so that

we know when to terminate.

In Algorithm 1, we use 𝑡 to denote the iterations of the LP solver,

and use 𝑄̂ (𝑡 ) (I, 𝜏) to denote the solution to the dual LP in the 𝑡-th

iteration. A technicality is that in line 1, we should initialize 𝑄̃ (I)
to 𝑄 (I, 0) to be consistent with the R2T algorithm, but 𝑄 (I, 0) = 0

for all the truncation methods described in this paper.

When there are not enough CPU cores to solve all LPs in parallel,

we choose to start with those with a larger 𝜏 in line 3 of Algorithm

1. This is based on our observation that those LPs tend to terminate
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Figure 5: The structure of queries.

faster. This is very intuitive: when 𝜏 is larger, the optimal solution

is also higher, thus the LP solver for the dual can terminate earlier.

Dataset Deezer Amazon1 Amazon2 RoadnetPA RoadnetCA
Nodes 144,000 262,000 335,000 1,090,000 1,970,000

Edges 847,000 900,000 926,000 1,540,000 2,770,000

Maximum degree 420 420 549 9 12

Degree upper bound 𝐷 1,024 1,024 1,024 16 16

Table 1: Graph datasets used in the experiments.

10 EXPERIMENTS
We conducted experiments on two types of queries: graph pattern

counting queries under node-DP and general SPJA queries with

FK constraints, with the former being an important special case

of the latter. For graph pattern counting queries, we compare R2T

with naive truncation with smooth sensitivity (NT) [22], smooth

distance estimator (SDE) [8], recursive mechanism (RM) [9], and

the LP-based mechanism (LP) [22]. For general SPJA queries, we

compare with the local sensitivity-based mechanism (LS) [37].

10.1 Setup
Queries. For graph pattern counting queries, we used four queries:

edge counting 𝑄1−, length-2 path counting 𝑄2−, triangle count-

ing 𝑄△ , and rectangle counting 𝑄□. For SPJA queries, we used 10

queries from the TPC-H benchmark, whose structures are shown in

Figure 5. These queries involve a good mix of selection, projection,

join, and aggregation. We removed all the group-by clauses from

the queries — a brief discussion on this is provided at the end of

the paper.

Datasets. For graph pattern counting queries, we used 5 real

world networks datasets:Deezer,Amazon1,Amazon2, RoadnetPA
and RoadnetCA. Deezer collects the friendships of users from the

music streaming service Deezer. Amazon1 and Amazon2 are two
Amazon co-purchasing networks. RoadnetPA and RoadnetCA are

road networks of Pennsylvania and California, respectively. All

these datasets are obtained from SNAP [24]. Table 1 shows the

basic statistics of these datasets.

Most algorithms need to assume a𝐺𝑆𝑄 in advance. Note that the

value of𝐺𝑆𝑄 should not depend on the instance, but may use some

background knowledge for a particular class of instances. Thus, for

the three social networks, we set a degree upper bound of 𝐷 = 1024,

while for the two road networks, we set 𝐷 = 16. Then we set 𝐺𝑆𝑄
as the maximum number of graph patterns containing any node.

This means that 𝐺𝑆𝑄1− = 𝐷 , 𝐺𝑆𝑄2− = 𝐺𝑆𝑄△ = 𝐷2
, and 𝐺𝑆𝑄□ = 𝐷3

.

For TPC-H queries, we used datasets of scale 2
−3, 2−2, . . . , 23. The

one with scale 1 (default scale) has about 7.5 million tuples, and we

set 𝐺𝑆𝑄 = 10
6
.

The LP mechanism requires a truncation threshold 𝜏 , but [22]

does not discuss how this should be set. Initially, we used a ran-

dom threshold uniformly chosen from [1,𝐺𝑆𝑄 ]. This turned out

to be very bad as with constant probability, the picked threshold

is Ω(𝐺𝑆𝑄 ), which makes these mechanisms as bad as the naive

mechanism that adds 𝐺𝑆𝑄 noise. To achieve better results, as in

R2T, we consider {2, 4, 8, . . . ,𝐺𝑆𝑄 } as the possible choices. Simi-

larly, NT and SDE need a truncation threshold 𝜃 on the degree, and

we choose one from {2, 4, 8, . . . , 𝐷} randomly.

Experimental environment. All experiments were conducted on

a Linux server with a 24-core 2.2GHz Intel Xeon CPU and 256GB

of memory. Each program was allowed to use at most 10 threads

and we set a time limit of 6 hours for each run. Each experiment

was repeated 100 times and we report the average running time.

The errors are less stable due to the random noise, so we remove

the best 20 and worst 20 runs, and report the average error of the

remaining 60 runs. The failure probability 𝛽 in R2T is set to 0.1.

The default DP parameter is 𝜀 = 0.8.

10.2 Graph Pattern Counting Queries
Utility and efficiency. The errors and running times of all mecha-

nisms over the graph pattern counting queries are shown in Table 2.

These results indicate a clear superiority of R2T in terms of utility,

offering order-of-magnitude improvements over other methods in

many cases. What is more desirable is its robustness: In all the

20 query-dataset combinations, R2T consistently achieves an error

below 20%, while the error is below 10% in all but 3 cases.We also no-

tice that, given a query, R2T performs better in road networks than

social networks. This is because the error of R2T is proportional to

𝐷𝑆𝑄 (I) by our theoretical analysis. Thus the relative error is pro-

portional to 𝐷𝑆𝑄 (I)/|𝑄 (I) |. Therefore, larger and sparser graphs,

such as road networks, lead to smaller relative errors.

In terms of running time, all mechanisms are reasonable, except

for RM and SDE. RM can only complete within the 6-hour time



Dataset Deezer Amazon1 Amazon2 Roadnet − PA Roadnet − CA
Result type Relative error(%) Time(s) Relative error(%) Time(s) Relative error(%) Time(s) Relative error(%) Time(s) Relative error(%) Time(s)

𝑞1−

Query result 847,000 1.28 900,000 1.52 926,000 1.62 1,540,000 1.51 2,770,000 2.64

R2T 0.535 12.3 0.557 15.6 0.432 16.2 0.0114 26.8 0.00635 48.7

NT 59.1 18.1 101 29.3 125 40.4 1,370 21.9 1,410 39.7

SDE 548 9,870 363 4,570 286 1,130 55.2 105 81.8 292

LP 14.3 16.9 5.72 14.7 6.75 14.4 3.6 28.3 3.02 54

𝑞2−

Query result 21,800,000 13.8 9,120,000 11.8 9,750,000 13.8 3,390,000 6.39 6,000,000 6.06

R2T 6.64 356 12.2 170 9.06 196 0.0539 80.2 0.0352 145

NT 116 21.0 398 28.4 390 41.0 6,160 23.2 6,530 44.2

SDE 8,900 9,870 5,110 4,570 1,930 1,130 211 104 228 296

LP 35.9 8,820 23.2 3,600 27.8 461 11.1 148 13.3 404

𝑞△

Query result 794,000 4.53 718,000 5.03 667,000 4.20 67,200 2.96 121,000 5.17

R2T 5.58 17.3 1.27 18.8 2.03 19.9 0.102 4.21 0.061 7.5

NT 782 23.0 1,660 31.7 1,920 41.0 110,000 23.3 105,000 45.0

SDE 67,300 9,880 26,000 4,570 9,600 1,130 4,150 106 3,830 297

LP 24.6 131 12.8 18.2 14.2 18.3 0.104 3.95 0.0625 7.06

RM Over time limit 0.0388 1,280 0.0193 2,550

𝑞□

Query result 11,900,000 74.3 2,480,000 21.6 3,130,000 15.6 158,000 4.50 262,000 10.1

R2T 16.9 289 6.29 70.5 10.5 86.8 0.0729 8.18 0.0638 16.2

NT 3,750 57.6 30,700 35.8 26,100 50.6 319,000 24.8 368,000 45.0

SDE 6,970,000 9,930 11,400,000 4,580 202,000 1,140 10,300 108 9,130 300

LP 92.6 2,530 94.8 70.4 77.8 81.2 0.223 7.83 0.165 14.2

RM Over time limit 0.0217 10,500 Over time limit

Table 2: Comparison between R2T, naive truncation with smooth sensitivity (NT), smooth distance estimator (SDE), LP-based
Mechanism (LP), and recursive mechanism (RM) on graph pattern counting queries.

Figure 6: Error levels of various mechanisms on graph pattern counting queries various values of 𝜀.

Query 𝑄1− 𝑄2− 𝑄△ 𝑄□

Query result 926,000 9,750,000 667,000 3,130,000

R2T 4,000 883,000 13,500 328,000

LP

𝜏 = 𝐺𝑆𝑄 1,440 1,580,000 1,290,000 1,370,000,000

𝜏 = 𝐺𝑆𝑄/8 2,100 181,000 157,000 140,000,000

𝜏 = 𝐺𝑆𝑄/64 110,000 259,000 15,100 25,800,000

𝜏 = 𝐺𝑆𝑄/512 645,000 1,260,000 2,790 2,630,000

𝜏 = 𝐺𝑆𝑄/4096 810,000 3,950,000 2,090 274,000

𝜏 = 𝐺𝑆𝑄/32768 911,000 7,580,000 92,300 48,700

𝜏 = 𝐺𝑆𝑄/262144 924,000 9,340,000 459,000 76,400

Average error 62,500 2,710,000 94,900 2,430,000

Table 3: Error levels of R2T and LP-based mechanism (LP)
with different 𝜏 .

limit on 3 cases, although it achieves very small errors on these 3

cases. SDE is faster than RM but runs a bit slower than others. It is

also interesting to see that R2T sometimes even runs faster than

Dataset Deezer Amazon1 Amazon2 RoadnetPA RoadnetCA
w early stop 289 70.5 86.8 8.18 16.2

w/o early stop 28,700 537 422 12.8 16.4

Speed up 99.3× 7.62 × 4.86× 1.56× 1.01×
Table 4: Running times of R2T with and without early stop.

LP, despite the fact that R2T needs to solve 𝑂 (log𝐺𝑆𝑄 ) LPs. This
is due to the early stop optimization: The running time of R2T is

determined by the LP that corresponds to the near-optimal 𝜏 , which

often happens to be one of the LPs that can be solved fastest.

Privacy parameter 𝜀. Next, we conducted experiments to see

how the privacy parameter 𝜀 affects various mechanisms. We tested

different queries on Roadnet − PAwhere we vary 𝜀 from 0.1 to 12.8.

We plot the results in Figure 6, where we also plot the query result

to help see the utilities of the mechanisms. The first message from

the plot is the same as before, that both R2T and RM achieve high



Query type Single primary private relation Multiple primary private relations Aggregation Projection

Query 𝑄3 𝑄12 𝑄20 𝑄5 𝑄8 𝑄21 𝑄7 𝑄11 𝑄18 𝑄10

Query

result

Value 2,890,000 6,000,000 6,000,000 240,000 1,830,000 6,000,000 218,000,000 2,000,000 153,000,000 1,500,000

Time(s) 1.6 1.24 1.25 2.51 1.41 2.32 3.22 0.29 2.21 0.32

R2T

Relative error(%) 0.254 0.0229 0.579 1.626 1.92 0.654 0.607 1.82 0.132 0.174

Time(s) 18.9 28.2 24.5 8.42 39.6 124 140 4.41 42.7 8.77

LS

Relative error(%) 38.8 16.3 15.4

Not supported

Time(s) 19.2 25.8 24.4

Table 5: Comparison between R2T and local-sensitivity based mechanism (LS) on SQL queries.

Figure 7: Running times and error levels of R2T and local-sensitivity based mechanism (LS) for different data scales.

Figure 8: Error levels of R2T and local-sensitivity based mechanism (LS) with different 𝐺𝑆𝑄 .

utility (but RM spends 300x more time). NT and SDE lose utility (i.e.,

error larger than query result) except for very large 𝜀. LP achieves

similar utility as R2T on 𝑄△ and 𝑄□, but is much worse on 𝑄1−
and 𝑄2−. In particular, a higher 𝜀 does not help LP on these two

queries, because the bias (further controlled by a randomly selected

𝜏) dominates the error for these two queries.

Selection of 𝜏 . In the next set of experiments, we dive deeper

and see how sensitive the utility is with respect to the truncation

threshold 𝜏 . We tested the queries on Amazon2 and measured the

error of the LP-based mechanism [22] with different 𝜏 . For each

query, we tried various 𝜏 from 2 to 𝐺𝑆𝑄 and compare their errors

with R2T. The results are shown in Table 3, where the optimal

error is marked in gray. The results indicate that the error is highly

sensitive to 𝜏 , and more importantly, the optimal choice of 𝜏 closely

depends on the query, and there is no fixed 𝜏 that works for all

cases. On the other hand, the error of R2T is within a small constant

factor (around 6) to the optimal choice of 𝜏 , which is exactly the

value of instance-optimality.

Early stop optimization. We also did some experiments to com-

pare the running time of R2T with and without the early stop opti-

mization. Here, we ran 𝑄□ over different datasets and the results

are shown in Table 4. From this table, we can see the early stop is



particularly useful in cases with long running times. In these cases,

one or two LPs, which do not correspond to the optimal choice of

𝜏 , take a long time to run, and early stop is able to terminate these

LPs as soon as possible.

10.3 SPJA Queries
Utility and efficiency. We tested 10 queries from the TPC-H

benchmark comparing R2T and LS, and the results are shown in

Table 5. We see that R2T achieves order-of-magnitude improve-

ments over LS in terms of utility, with similar running times. More

importantly, R2T supports a variety of SPJA queries that are not

supported by LS, with robust performance across the board.

Scalability. To examine the effects as the data scale changes, we

used TPC-H datasets with scale factors ranging from 2
−3

to 2
3
with

𝑄3, 𝑄12 and 𝑄20. We compare both the errors and running times

of R2T and LS. The results are shown in Figure 7. From the results,

we see that the error of R2T barely increases with the data size.

The reason is that our error only depends on 𝐷𝑆𝑄 (I), which does

not change much by the scale of TPC-H data. On the other hand,

the behavior of LS is more complicated. For 𝑄3 and 𝑄20, its error

increases with the data size; for𝑄12, its error increases first but then

decreases later. This is because LS runs an SVT on the sensitivities

of tuples to choose 𝜏 , which is closely related to the distribution

of tuples’ sensitivities. This is another indication that selecting a

near-optimal 𝜏 is not an easy task. In terms of running time, both

mechanisms have the running time linearly increase with the data

size, which is expected.

Dependency on 𝐺𝑆𝑄 . Our last set of experiments examine the

effect 𝐺𝑆𝑄 brings to the utilities of R2T and LS. We conducted

experiments using 𝑄3, 𝑄12, 𝑄20 with different values of 𝐺𝑆𝑄 . The

results are shown in Figure 8. When 𝐺𝑆𝑄 is small, the errors of

these two mechanisms are very close. When 𝐺𝑆𝑄 increases, the

error of LS increases rapidly, and loses the utility (error larger than

query result) very soon. Meanwhile, the error of R2T increases very

slowly with 𝐺𝑆𝑄 . This confirms our analysis that the error of LS

grows near linearly as𝐺𝑆𝑄 , while that of R2T grows logarithmically.

The important consequence is that, with R2T, one can be very

conservative in setting the value of 𝐺𝑆𝑄 . This gives the DBA a

much easier job, in case s/he has little idea on what datasets the

database is expected to receive. Meanwhile, recall that𝐺𝑆𝑄 is public

information, so using a larger 𝐺𝑆𝑄 reveals less information about

the private dataset.

11 FUTUREWORK
One interesting future direction is how to handle group-by queries.

One simple solution is to just convert a group-by query (e.g., group-

by NATION) intomultiple queries, eachwith a different predicate (e.g,

NATION =′ US′). Note that the privacy budget will also have to be

split to the groups according to various DP composition theorems

[15]. However, there is potential to do better by computing the

answers for all groups in one shot. For self-join-free queries, this is

precisely the mean estimation problem in high dimensions, which

has received much attention in the statistics and machine learning

community [2, 3, 18, 27, 33]. Self-joins add another challenge that

is definitely worth studying in more depth, which may expose a

deeper connection between statistics/machine learning and query

processing.
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A THE ERROR BOUND OF [37]
[37] makes truncation by tuples’ sensitivity and the algorithm to

find the truncation threshold is based on an upper bound on tuple

sensitivities. It is denoted as ℓ in [37], but we observe that this is

just the global sensitivity. So we denote this given upper bound as

𝐺𝑆𝑄 . Note that a trivial method is to set 𝜏 = 𝐺𝑆𝑄 , which has no

bias while the error is 𝑂 (𝐺𝑆𝑄 log(1/𝛽)/𝜀) with probability 1 − 𝛽 .
The mechanism for choosing 𝜏 in [37] is DP, but we show below

that it is not much better than this naive choice, on any instance

I. More precisely, we show that its error is Ω(𝐺𝑆𝑄/(log(𝐺𝑆𝑄 )𝜀))
with at least constant probability.

Recall, the algorithm first constructs a DP-version of query result

𝑄̂ (I) = 𝑄 (I) + 𝐿𝑎𝑝 (
𝐺𝑆𝑄

𝜀
) .

Based on this, we can see,

Pr[𝑄̂ (I) ≥ 𝑄 (I) +𝐺𝑆𝑄/𝜀] =
1

2𝑒
.

Then, recall 𝑄 (I, 𝜏) is the query result after truncating the tuples

with sensitivity larger than 𝜏 , and 𝑄 (I, 𝜏) ≤ 𝑄 (I). Then, when
𝑄̂ (I) ≥ 𝑄 (I) +𝐺𝑆𝑄/𝜀, for any 𝜏 < 𝐺𝑆𝑄/(6 log(𝐺𝑆𝑄/𝛽)),

Pr[𝑄 (I, 𝜏) + 𝐿𝑎𝑝 (2𝜏/𝜀) + 𝐿𝑎𝑝 (4𝜏/𝜀) ≥ 𝑄̂ (I)]
≤Pr[𝑄 (I) + 𝐿𝑎𝑝 (2𝜏/𝜀) + 𝐿𝑎𝑝 (4𝜏/𝜀) ≥ 𝑄̂ (I)]
≤Pr[𝐿𝑎𝑝 (2𝜏/𝜀) ≥ 𝐺𝑆𝑄/(3𝜀)] + Pr[𝐿𝑎𝑝 (4𝜏/𝜀) ≥ 2𝐺𝑆𝑄/(3𝜀)]

≤ 𝛽

𝐺𝑆𝑄

By a union bound, the SVT stops before 𝜏 = 𝐺𝑆𝑄/(6 log(𝐺𝑆𝑄/𝛽))
with probability less than 𝛽 . Above all, with probability at least 1

2𝑒 −
𝛽 , the truncation threshold selected is at least𝐺𝑆𝑄/(6 log(𝐺𝑆𝑄/𝛽)).
Denote 𝐸 as the event 𝜏 ≥ 𝐺𝑆𝑄/(6 log(𝐺𝑆𝑄/𝛽)) and Pr[𝐸] ≥ 1

2𝑒 −𝛽 .
Then, we have

Pr[|𝑄 (I, 𝜏) + 𝐿𝑎𝑝 (𝜏/𝜀) −𝑄 (I) | ≥ 𝐺𝑆𝑄/(6𝜀 log(𝐺𝑆𝑄/𝛽)) |𝐸]
≥Pr[𝑄 (I, 𝜏) + 𝐿𝑎𝑝 (𝜏/𝜀) ≤ 𝑄 (I) −𝐺𝑆𝑄/(6𝜀 log(𝐺𝑆𝑄/𝛽)) |𝐸]
≥Pr[𝐿𝑎𝑝 (𝜏/𝜀) ≤ −𝐺𝑆𝑄/(6𝜀 log(𝐺𝑆𝑄/𝛽)) |𝐸] (13)

=
1

2𝑒
(14)

(13) is because, for any 𝜏 , 𝑄 (I, 𝜏) ≤ 𝑄 (I).
Above all,

Pr[|𝑄 (I, 𝜏) + 𝐿𝑎𝑝 (𝜏/𝜀) −𝑄 (I) | ≥ 𝐺𝑆𝑄/(6𝜀 log(𝐺𝑆𝑄/𝛽))]
≥Pr[|𝑄 (I, 𝜏) + 𝐿𝑎𝑝 (𝜏/𝜀) −𝑄 (I) | ≥ 𝐺𝑆𝑄/(6𝜀 log(𝐺𝑆𝑄/𝛽)) |𝐸] × Pr[𝐸]

≥( 1
2𝑒
− 𝛽) 1

2𝑒
.

By setting 𝛽 = 1

4𝑒 , with probability at least
1

8𝑒2
, we have

|M(I) −𝑄 (I) | ≥ 𝐺𝑆𝑄/(6𝜀 log(4𝑒𝐺𝑆𝑄 )).
Note that this analysis holds for every instance I, namely the

mechanism in [37] adds the same amount of noise to all instances,

which equals the worst-case noise (ignoring a logarithmic factor).
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