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Reservoir sampling [Waterman ’??; Vitter ’85]

Maintain a (uniform) sample (w/o replacement) of size s from a
stream of n items

When the i-th item arrives

With probability 1− s/i, throw it away

With probability s/i, use it to replace an item in the current
sample chosen uniformly at ranfom

Every subset of size s has equal probability to be the sample
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Reservoir sampling [Waterman ’??; Vitter ’85]

Maintain a (uniform) sample (w/o replacement) of size s from a
stream of n items

When the i-th item arrives

With probability 1− s/i, throw it away

With probability s/i, use it to replace an item in the current
sample chosen uniformly at ranfom

Correctness: intuitive

Every subset of size s has equal probability to be the sample

Space: O(s), time O(1)
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Sampling from a sliding window

time

[Babcock, Datar, Motwani, SODA’02; Gemulla, Lehner, SIGMOD’08; Braverman,
Ostrovsky, Zaniolo, PODS’09]
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Sampling from a sliding window

time

window length: W

Time based window and sequence based window

[Babcock, Datar, Motwani, SODA’02; Gemulla, Lehner, SIGMOD’08; Braverman,
Ostrovsky, Zaniolo, PODS’09]
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Sampling from a sliding window

Space: Θ(s logw)

time

window length: W

Time based window and sequence based window

[Babcock, Datar, Motwani, SODA’02; Gemulla, Lehner, SIGMOD’08; Braverman,
Ostrovsky, Zaniolo, PODS’09]

w: number of items in the sliding window

Time: Θ(logw)



4-1

Sampling from distributed streams

Maintain a (uniform) sample (w/o replacement) of size s from k
streams of a total of n items

· · ·

S1
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time

C

coordinator

sites

Primary goal:
communication

Secondary goal:
space/time at coordinator/site
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Sampling from distributed streams

Maintain a (uniform) sample (w/o replacement) of size s from k
streams of a total of n items

· · ·

S1

S2

S3

Sk

time

C

coordinator

sites

Primary goal:
communication

Secondary goal:
space/time at coordinator/site

Applications:

Internet routers
Sensor networks
Distributed computing
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Why existing solutions don’t work

· · ·
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When k = 1, reservoir sampling has communication Θ(s log n)



5-2

Why existing solutions don’t work

· · ·

S1

S2

S3

Sk

time

C

coordinator

sites

When k = 1, reservoir sampling has communication Θ(s log n)

When k ≥ 2, reservoir sampling has cost O(n) because it’s costly
to track i



5-3

Why existing solutions don’t work

· · ·

S1

S2

S3

Sk

time

C

coordinator

sites

When k = 1, reservoir sampling has communication Θ(s log n)

When k ≥ 2, reservoir sampling has cost O(n) because it’s costly
to track i

Tracking i approximately?

Sampling won’t be uniform



5-4

Why existing solutions don’t work

· · ·

S1

S2

S3

Sk

time

C

coordinator

sites

When k = 1, reservoir sampling has communication Θ(s log n)

When k ≥ 2, reservoir sampling has cost O(n) because it’s costly
to track i

Tracking i approximately?

Sampling won’t be uniform

Key observation:
We don’t have to know the
size of the population in order
to sample!
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Previous results on distributed streaming

A lot of heuristics in the database/networking literature

But random sampling has not been studied, even heuristically
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Previous results on distributed streaming

A lot of heuristics in the database/networking literature

Threshold monitoring, frequency moments [Cormode, Muthukrish-

nan, Yi, SODA’08]

Entropy [Arackaparambil, Brody, Chakrabarti, ICALP’08]

Heavy hitters and quantiles [Yi, Zhang, PODS’09]

Basic counting, heavy hitters, quantiles in sliding windows [Chan,

Lam, Lee, Ting, STACS’10]

But random sampling has not been studied, even heuristically



6-3

Previous results on distributed streaming

A lot of heuristics in the database/networking literature

Threshold monitoring, frequency moments [Cormode, Muthukrish-

nan, Yi, SODA’08]

Entropy [Arackaparambil, Brody, Chakrabarti, ICALP’08]

Heavy hitters and quantiles [Yi, Zhang, PODS’09]

Basic counting, heavy hitters, quantiles in sliding windows [Chan,

Lam, Lee, Ting, STACS’10]

All of them are deterministic algorithms, or use randomized
sketches as black boxes

But random sampling has not been studied, even heuristically
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Our results on random sampling

window upper bounds lower bounds
infinite O((k + s) log n) Ω(k + s log n)

sequence-based O(ks log(w/s)) Ω(ks log(w/ks))
time-based O((k + s) logw) Ω(k + s logw)

(per window)
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Our results on random sampling

window upper bounds lower bounds
infinite O((k + s) log n) Ω(k + s log n)

sequence-based O(ks log(w/s)) Ω(ks log(w/ks))
time-based O((k + s) logw) Ω(k + s logw)

Applications

Heavy hitters and quantiles can be tracked in Õ(k + 1/ε2)
Beats deterministic bound Θ̃(k/ε) for k � 1/ε
Also for sliding windows

ε-approximations in bounded VC dimensions: Õ(k + 1/ε2)

ε-nets: Õ(k + 1/ε)
. . .

(per window)
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The basic idea: Binary Bernoulli sampling



8-2

The basic idea: Binary Bernoulli sampling
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1
11111
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Conditioned upon a row having ≥ s active items, we can draw
a sample from the active items
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The basic idea: Binary Bernoulli sampling

0 1 1 1 1 1 10 0 0 0 0 0 0
0 0 0

1
11111

11 0 0

Conditioned upon a row having ≥ s active items, we can draw
a sample from the active items

The coordinator could maintain a Bernoulli sample of size be-
tween s and O(s)
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Sampling from an infinite window

· · ·
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Initialize i = 0

In round i:

Sites send in every item w.p. 2−i

(This is a Bernoulli sample with prob. 2−i)
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Initialize i = 0

In round i:

Sites send in every item w.p. 2−i

(This is a Bernoulli sample with prob. 2−i)

Coordinator maintains a lower sample and a higher
sample: each received item goes to either with
equal prob.

(The lower sample is a Bernoulli sample with prob. 2−i−1)
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Sampling from an infinite window

· · ·

S1

S2

S3

Sk

C

Initialize i = 0

In round i:

Sites send in every item w.p. 2−i

(This is a Bernoulli sample with prob. 2−i)

Coordinator maintains a lower sample and a higher
sample: each received item goes to either with
equal prob.

(The lower sample is a Bernoulli sample with prob. 2−i−1)

When the lower sample reaches size s, the coordi-
nator broadcasts to advance to round i← i+ 1
Discard the upper sample

Split the lower sample into a new lower sample and
a higher sample
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Sampling from an infinite window: Analysis

Communication cost of round i: O(k + s)

Coordinator maintains a lower sample and a higher sample: each
received item goes to either with equal prob.

Expect to receive O(s) sampled items before round ends
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Sampling from an infinite window: Analysis

Communication cost of round i: O(k + s)

Coordinator maintains a lower sample and a higher sample: each
received item goes to either with equal prob.

Expect to receive O(s) sampled items before round ends

Broadcast to end round: O(k)

Number of rounds: O(log(n/s))

In round i, need Θ(s) items being sampled to end round

Each item has prob. 2−i to contribute: need Θ(2is) items

Communication: O((k + s) log n)

Lower bound: Ω(k + s log n)

Site space: O(1), time: O(1)
Coordinator space: O(s), total time: O((k + s) log n)
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Sampling from a sliding window: Idea

time

sliding window

expired windows frozen window current window

Sample for sliding window =
a subsample of the (unexpired) sample of frozen window +
a subsample of the sample of current window
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time

sliding window

expired windows frozen window current window

Sample for sliding window =
a subsample of the (unexpired) sample of frozen window +
a subsample of the sample of current window

Key: As long as either Bernoulli sample has size ≥ s, we
can subsample the sample with the larger probability to
match up their probabilities
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Current window: Run our infinite-window algorithm

A Bernoulli sample with prob. 2−i such that size ≥ s
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Sampling from a sliding window: Idea

time

sliding window

expired windows frozen window current window

Sample for sliding window =
a subsample of the (unexpired) sample of frozen window +
a subsample of the sample of current window

Key: As long as either Bernoulli sample has size ≥ s, we
can subsample the sample with the larger probability to
match up their probabilities

Current window: Run our infinite-window algorithm

A Bernoulli sample with prob. 2−i such that size ≥ s
Frozen window: Need to have the same
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Dealing with the frozen window

time

sliding window

expired windows frozen window current window

0 0 0 0 0 0 0 0
0 0 0

00

Keep all the levels? Need O(w) communication
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sliding window

expired windows frozen window current window
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0 0 0

00

Keep all the levels? Need O(w) communication

s = 2

Keep most recent sampled items in a level until s of them are
also sampled at the next level. Total size: O(s logw)
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Dealing with the frozen window

time

sliding window

expired windows frozen window current window

0 0 0 0 0 0 0 0
0 0 0

00

Keep all the levels? Need O(w) communication

s = 2

Keep most recent sampled items in a level until s of them are
also sampled at the next level. Total size: O(s logw)
Guaranteed: There is a blue window with ≥ s sampled items
that covers the unexpired portion of the frozen window
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Dealing with the frozen window: The algorithm

0 0 0 0 0 0 0 0
0 0 0

00

s = 2

Each site builds its own level-sampling structure for the current
window until it freezes

The level-sampling structure

Needs O(s logw) space and O(1) time per item

Necessary unless communication is Ω(w)
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Dealing with the frozen window: The algorithm

0 0 0 0 0 0 0 0
0 0 0

00

s = 2

Each site builds its own level-sampling structure for the current
window until it freezes

The level-sampling structure

Needs O(s logw) space and O(1) time per item

When the current window freezes

For each level, do a k-way merge to build the level of the global
structure at the coordinator
Total communication O((k + s) logw)

Necessary unless communication is Ω(w)
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Future directions

Applications

Heavy hitters and quantiles can be tracked in Õ(k + 1/ε2)
Beats deterministic bound Θ̃(k/ε) for k � 1/ε
Also for sliding windows

ε-approximations in bounded VC dimensions: Õ(k + 1/ε2)

ε-nets: Õ(k + 1/ε)
. . .
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Future directions

Applications

Heavy hitters and quantiles can be tracked in Õ(k + 1/ε2)
Beats deterministic bound Θ̃(k/ε) for k � 1/ε
Also for sliding windows

ε-approximations in bounded VC dimensions: Õ(k + 1/ε2)

ε-nets: Õ(k + 1/ε)
. . .

Is random sampling the best way to solve these problems?

. . .

New result: Heavy hitters and quantiles can be tracked in
Õ(k +

√
k/ε), using a different sampling method
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The End

T HANK YOU

Q and A


