
I/O-Efficient Construction of Constrained
Delaunay Triangulations

Pankaj K. Agarwal1?, Lars Arge2,1??, and Ke Yi1? ? ?

1 Department of Computer Science, Duke University, Durham, NC 27708, USA.
{pankaj,large,yike}@cs.duke.edu

2 Department of Computer Science, University of Aarhus, Aarhus, Denmark.
large@daimi.au.dk

Abstract. In this paper, we designed and implemented an I/O-efficient
algorithm for constructing constrained Delaunay triangulations. If the
number of constraining segments is smaller than the memory size, our
algorithm runs in expected O(N

B
logM/B

N
B

) I/Os for triangulating N

points in the plane, where M is the memory size and B is the disk block
size. If there are more constraining segments, the theoretical bound does
not hold, but in practice the performance of our algorithm degrades
gracefully. Through an extensive set of experiments with both synthetic
and real data, we show that our algorithm is significantly faster than
existing implementations.

1 Introduction

With the emergence of new terrain mapping technologies such as Laser altime-
try (LIDAR), one can acquire millions of georeferenced points within minutes
to hours. Converting this data into a digital elevation model (DEM) of the un-
derlying terrain in an efficient manner is a challenging important problem. The
so-called triangulated irregular network (TIN) is a widely used DEM, in which a
terrain is represented as a triangulated xy-monotone surface. One of the popular
methods to generate a TIN from elevation data—a cloud of points in

� 3—is to
project the points onto the xy-plane, compute the Delaunay triangulation of the
projected points, and then lift the Delaunay triangulation back to

� 3 . However,
in addition to the elevation data one often also has data representing various
linear features on the terrain, such as river and road networks, in which case
one would like to construct a TIN that is consistent with this data, that is,

? Supported in part by NSF under grants CCR-00-86013, EIA-01-31905, CCR-02-
04118, and DEB-04-25465, by ARO grants W911NF-04-1-0278 and DAAD19-03-1-
0352, and by a grant from the U.S.–Israel Binational Science Foundation.

?? Supported in part by the US NSF under grants CCR–9984099, EIA–0112849, and
INT–0129182, by ARO grant W911NF-04-1-0278, and by an Ole Rømer Scholarship
from the Danish National Science Research Council.

? ? ? Supported by NSF under grants CCR-02-04118, CCR–9984099, EIA–0112849, and
by ARO grant W911NF-04-1-0278.

where the linear features appear along the edges of the TIN. In such cases it is
desirable to compute the so-called constrained Delaunay Triangulation (CDT)
of the projected point set with respect to the projection of the linear features.
Roughly speaking, the constrained Delaunay triangulation of a point set P and
a segment set S is the triangulation that is as close to the Delaunay triangu-
lation of P under the constraint that all segments of S appear as edges of the
triangulation.

The datasets being generated by new mapping technologies are too large
to fit in internal memory and are stored in secondary memory such as disks.
Traditional algorithms, which optimize the CPU efficiency under the RAM model
of computation, do not scale well with such large amounts of data. This has led
to growing interest in designing I/O-efficient algorithms that optimize the data
transfer between disk and internal memory. In this paper we study I/O-efficient
algorithms for planar constrained Delaunay triangulations.

Problem statement. Let P be a set of N points in
� 2 , and let S be a set of

K line segments with pairwise-disjoint interiors whose endpoints are points in
P . The points p, q ∈ � 2 are visible if the interior of the segment pq does not
intersect any segment of S. The constrained Delaunay triangulation CDT(P, S)
is the triangulation of S that consists of all segments of S, as well as all edges
connecting pairs of points p, q ∈ P that are visible and that lie on the boundary
of an open disk containing only points of P that are not visible from both p and
q. CDT(P, ∅) is the Delaunay triangulation of the point set P . Refer to Figure 1.
For clarity, we use segments to refer to the “obstacles” in S, and reserve the
term “edges” for the other edges in the triangulation CDT(P, S).

We work in the standard external memory model [2]. In this model, the
main memory holds M elements and each disk access (or I/O) transmits a block
of B elements between main memory and continuous locations on disk. The
complexity of an algorithm is measured in the total number of I/Os performed,
while the internal computation cost is ignored.

Related results. Delaunay triangulation is one of the most widely studied prob-
lems in computational geometry; see [5] for a comprehensive survey. Several
worst-case efficient O(N log N) algorithms are known in the RAM model, which

s

(a)

s

(b)

s

(c)

Fig. 1. (a) The point set P of 7 points and segment set S of 1 segment s. (b) DT(P) =
CDT(P, ∅). (c) CDT(P, S).

are based on different standard paradigms, such as divide-and-conquer and
sweep-line. A randomized incremental algorithm with O(N log N) expected run-
ning time was proposed in [12]. By now efficient implementations of many of the
developed algorithms are also available. For example, the widely used software
package triangle, developed by Shewchuk [16], has implementations of all three
algorithms mentioned above. Both CGAL [7] and LEDA [14] software libraries
also offer Delaunay triangulation implementations.

By modifying some of the algorithms for Delaunay triangulation, O(N log N)
time RAM-model algorithms have been developed for constrained Delaunay
triangulations [8, 15]. However, these algorithms are rather complicated and
do not perform well in practice. A common practical approach for computing
CDT(P, S), e.g. used by triangle [16], is to first compute DT(P) and then add
the segments of S one by one and update the triangulation.

Although I/O-efficient algorithms have been designed for Delaunay triangu-
lations [10, 11, 13], no I/O-efficient algorithm is known for the constrained case.

Our results. By modifying the algorithm of Crauser et al. [10] we develop the first
I/O-efficient constrained Delaunay triangulation algorithm. It uses O(N

B logM/B
N
B)

I/Os expected, provided that |S| ≤ c0M , where c0 is a constant. Although our
algorithm falls short of the desired goal of having an algorithm that performs
O(N

B logM/B
N
B) I/Os irrespective of the size of S, it is useful for many prac-

tical situations. We demonstrate the efficiency and scalability of our algorithm
through an extensive experimental study with both synthetic and real-life data.
Compared with existing constrained Delaunay triangulation packages, our algo-
rithm is significantly faster on large datasets. For example it can process 10GB
of real-life LIDAR data using only 128MB of main memory in roughly 7.5 hours!
As far as we know, this is the first implementation of constrained Delaunay tri-
angulation algorithm that is able to process such a large dataset. Moreover, even
when S is larger than the size of main memory, our algorithm does not fail, but
its performance degrades quite gracefully.

2 I/O-Efficient Algorithm

Let P be a set of N points in
� 2 , and let S be a set of K segments with pairwise-

disjoint interiors whose endpoints lie in P . Let E be the set of endpoints of
segments in S. We assume that points of P are in general position. For simplicity
of presentation, we include a point p∞ at infinity in P . We also add p∞ to
E. Below we describe an algorithm for constructing CDT(P, S) that follows
the framework of Crauser et al. [10] for constructing Delaunay triangulations.
However, we first introduce the notion of extended Voronoi diagrams, originally
proposed by Seidel [15], and define conflict lists and kernels.

Extended Voronoi diagrams. We extend the plane to a more complicated surface
as described by Seidel [15]. Imagine the plane as a sheet of paper Σ with the
points of P and the segments of S drawn on it. Along each segment s ∈ S we

“glue” an additional sheet of paper Σs, which is also a two-dimensional plane,
onto Σ; the sheets are glued only at s. These K + 1 sheets together form a
surface ΣS . We call Σ the primary sheet, and the other sheets secondary sheets.
P “lives” only on the primary sheet Σ, and a segment s ∈ S “lives” in the
primary sheet Σ and the secondary sheet Σs. For a secondary sheet Σs, we
define its outer region to be the set of points that do not lie in the strip bounded
by the two lines normal to s and passing through the endpoints of s.

Assume the following connectivity on ΣS: When “traveling” in ΣS , whenever
we cross a segment s ∈ S we must switch sheet, i.e., when traveling in a secondary
sheet Σs and reaching the segment s we must switch to the primary sheet Σ, and
vice versa. We can define a visibility relation using this switching rule. Roughly
speaking, two points x, y ∈ ΣS are visible if we can draw a line segment from x to
y on ΣS following the above switching rule. More precisely, x and y are visible if:
x, y ∈ Σ and the segment xy does not intersect any segment of S; x, y ∈ Σs and
the segment xy does not intersect s; x ∈ Σ, y ∈ Σs and the segment xy crosses
s but no other segment; or x ∈ Σs, y ∈ Σt, and the segment xy crosses s and t
but no other segment. For x, y ∈ ΣS , we define the distance d(x, y) between x
and y to be the length of the segment connecting them if they are visible, and
d(x, y) = ∞ otherwise.

For p, q, r ∈ ΣS , if there is a point y ∈ ΣS so that d(p, y) = d(q, y) = d(r, y),
then we define the circumcircle C(p, q, r; S) = {x ∈ ΣS | d(x, y) = d(p, y)}.
Otherwise C(p, q, r; S) is undefined. Note that portions of C(p, q, r; S) may lie
on different sheets of ΣS . We define D(p, q, r; S) to be the open disk bounded
by C(p, q, r; S), i.e., D(p, q, r, ; s) = {x ∈ ΣS | d(x, y) < d(p, y)}. Refer to Fig-
ure 2(a). Using the circumcircle definition, the constrained Delaunay triangula-
tion can be defined in the same way as standard Delaunay triangulations, i.e.,
CDT(P, S) consists of all triangles 4uvw, u, v, w ∈ P , whose circumcircles do
not enclose any point of P . We define the extended Voronoi region of a point
p ∈ P as EV(p, S) = {x ∈ ΣS | d(x, p) ≤ d(x, q), ∀q ∈ P}, and the extended
Voronoi diagram of P (with respect to S) as EVD(P, S) = {EV(p, S) | p ∈ P}.
Seidel [15] showed that CDT(P, S) is the dual of EVD(P, S), in the sense that

c

e

d

a

b

g

f

(a)

a
b

c

d

e

f

g

(b)

a
b

c

d

e

f

g

(c)

Fig. 2. (a) For the point set of Figure 1(a), a portion of D(a, b, d; S) lies in the pri-
mary sheet (unshaded), the other portion lies in the secondary sheet Σbe (shaded). (b)
CDT(P, S) (solid lines) and the portion of EVD(P, S) (dashed lines) that lies in the
primary sheet. (c) The portion of EVD(P, S) (dashed lines) that lies in the secondary
sheet Σbe.

an edge pq appears in CDT(P, S) if and only if EV(p, S) and EV(q, S) share
an edge. Refer to Figure 2(b) and 2(c). This duality relation will be useful in
extending the algorithm by Crauser et al. [10] to computing CDT(P, S).

Conflict lists and kernels. Let R ⊆ P be a subset of points such that E ⊆ R. Let
e = pq be an edge of CDT(R, S), and let 4pqu and 4pqv be the two triangles
adjacent to e. (Since p∞ ∈ R, each edge is adjacent to two triangles.) We define
the conflict list [9] of e, denoted by P|e ⊆ P , as the set of points of P that lie in
D(p, q, u; S) ∪ D(p, q, v; S). If there exists a point p′ ∈ P|e, then at least one of
4pqu and 4pqv does not appear in CDT(R ∪ {p′}, S).

One basic step in our algorithm will be to compute a triangulation of each P|e

and then merge the results together to form CDT(P, S). Let Ie = {e} if e ∈ S,
and ∅ otherwise. Then the triangulation we will compute for P|e is CDT(P|e, Ie).
In order to identify the triangles of CDT(P|e, Ie) that appear in CDT(P, S),
we define the notion of the kernel of e, denoted by τ(e), which is contained in
EV(p, S)∪EV(q, S). A point x ∈ EV(p, S) (resp. x ∈ EV(q, S)) lies in τ(e) if the
ray −→px (resp. −→qx) intersects the common edge between EV(p, S) and EV(q, S).
Refer to Figure 3. Note that the kernel of an edge e can be determined with
knowing only e and its two adjacent triangles in CDT(R, S).

g

τ(bp∞)

f

a
b

c

d

e
τ(ad)

τ(bc)

(a)

a
b

c

d

g
e

f

(b)

Fig. 3. (a) The kernels of edges ad, bc, and bp∞. (b) The kernel of the edge be; the
darker part lies in the primary sheet, and the lighter part lies in the secondary sheet
Σbe.

The following properties of conflict lists and kernels, whose proofs are omitted
from this abstract, lead to a recursive algorithm for computing CDT(P, S).

(i) The interiors of τ(e), e ∈ CDT(R, S) are pairwise disjoint.
(ii) {τ(e) | e ∈ CDT(R, S)} covers the points of ΣS that do not lie in an outer

region.
(iii) Let E ⊆ R ⊆ P . For any edge e ∈ CDT(R, S) and for any u, v, w ∈ P|e

such that C(u, v, w; S) is defined with ξ being the center, if ξ ∈ τ(e) and
D(u, v, w; Ie) ∩ P|e = ∅, then D(u, v, w; S) ∩ P = ∅.

(iv) Let E ⊆ R ⊆ P . For any 4uvw ∈ CDT(P, S) with circumcenter ξ, if
e is the edge of CDT(R, S) such that ξ ∈ τ(e), then u, v, w ∈ P|e and
D(u, v, w; Ie) ∩ P|e = ∅.

These properties imply that if we have computed CDT(R, S), we can com-
pute CDT(P, S) by repeating the following steps for each e ∈ CDT(R, S): Com-
pute CDT(P|e, Ie) and report a triangle 4uvw ∈ CDT(P|e, Ie) if the center of
C(u, v, w; Ie) lies inside τ(e). Below we describe how to do this efficiently.

Our algorithm. As mentioned, the overall structure of our algorithm is the same
as that of the algorithm of Crauser et al. [10]. We call a subset R ⊆ P a p-sample
if R is obtained by choosing each point of P with probability p. We choose a
sequence of subsets of P , called a gradation:

P1 ⊆ P2 ⊆ · · · ⊆ Pl = P,

where E ⊆ P1 and Pi \E is a (B/M)-sample of Pi+1 \E. P1 is small enough so
that CDT(P1, S) can be computed in main memory.

Initially, our algorithm constructs CDT(P1, S) using an internal memory al-
gorithm. Then we scan P and for each point p ∈ P \ P1 determine the edges of
CDT(P1, S) that it is in conflict with; for each such edge e, we generate an (e, p)
pair. In the end we sort these pairs to create the conflict lists for all the edges
of CDT(P1, S).

Next, we proceed in l−1 rounds. In the i-th round, we are given CDT(Pi, S)
and the conflict lists for all the edges of CDT(Pi, S), and construct CDT(Pi+1, S)
and the conflict lists for the edges of CDT(Pi+1, S) (the conflict lists need not
be generated for the last round). This is accomplished by the following steps.

1. For each edge e of Ti = CDT(Pi, S), we scan its conflict list and determine
Pi+1|e.

2. We consider each Pi+1|e in turn:

2.1 Let te = d|Pi+1|e|/c1(M/B)e. We first take a 1/(c2te log te)-sample Ye

of Pi+1|e; we add the four vertices of the two adjacent triangles of e if
they are not chosen in the sample. Then we compute Te = CDT(Ye, Ie)
using an internal memory algorithm. Next for each edge e′ of Te we
determine (Pi+1|e)|e′ by scanning Pi+1|e on disk. If for any e we have
|(Pi+1|e)|e′ | > c1M/B, we repeat this step by taking a new sample Ye.

2.2 For each edge e′ of Te, we load (Pi+1|e)|e′ into memory and compute
Te′ = CDT((Pi+1|e)|e′ , Ie′). We report only the triangles of Te′ that have
their circumcircles centered inside τ(e)∩τ(e′). We then scan P|e to build
the conflict lists for these triangles (unless this is the last round). We do
so by allocating one main memory block for each of the O(M

B) triangles
and writing points to the relevant block as they are processed; when a
block is full it is written to disk.

3. After all edges of CDT(Pi, S) have been processed, Ti+1 = CDT(Pi+1, S)
is simply all the triangles reported in Step 3. The conflict list for an edge
of CDT(Pi+1, S) is simply the union of the conflict lists of its two adjacent
triangles.

Analysis of I/O. We wish to follow the analysis of Crauser et al. [10] that is
based on the bounds on the expected size of the conflict lists and their higher
moments [9]. However, unlike [10], Pi is not a completely random sample of Pi+1

in our case, which makes the analysis more complicated. Nevertheless, we can
prove similar bounds on the expected size of conflict lists. The following lemma
summarizes the main technical result, whose proof is given in the full version of
the paper.

Lemma 1. Let R be a p-sample of P \ E. For any constant integer c ≥ 1,

E

∑

e∈CDT(R∪E,S)

|P|e|c

 = O

(|R ∪ E|
pc

)

.

In our algorithm, Pi \ E is a pi-sample of P \ E, therefore,

E

[

∑

e∈Ti

|P|e|c
]

= O

(|E| + |Pi \ E|
pc

i

)

= O

(|E|
pc

i

+
|P \E|
pc−1

i

)

, (1)

Assuming |E| ≤ c1M , we have that |E| ≤ c′1E[|Pi − E|] for all i, which means
that “on average” at least a constant fraction of the samples in Pi are random.
In this case (1) becomes O(N/pc−1

i). Setting c = 1 yields that the expected total
size of the conflict lists is linear.

Since the conflict list size is expected linear, the initialization step of our
algorithm takes expected O(N

B logM/B
N
B) I/Os. In each round, Step 1 takes

O(N
B) I/Os, and since Step 2.1 is repeated only a constant number of times with

high probability, the total cost of Step 2 is O
(

∑

e∈Ti
te log te · |P|e|

B

)

with high

probability. Using (1) we can argue that the expected value of this expression is
O(N

B), with details left in the full version of the paper. Summing this expected
cost over all rounds of the algorithm, we obtain the following.

Theorem 1. The constrained Delaunay triangulation of a set of N points
� 2

and a set of segments S can be computed in O(N
B logM/B

N
B) expected I/Os,

provided that |S| ≤ c0M , where c0 is a constant.

3 Experiments

Simplified algorithm and implementation details. We implemented and experi-
mented with a simplified version of the theoretical algorithm described in Sec-
tion 2. The main observation behind our simplification is that one round of the
multi-round theoretical algorithm is enough to handle most real-world datasets.
Even if we only have 128MB of main memory, which is more than the amount of
memory needed to triangulate 0.1 million points, about (105)2 = 1010 points can
be processed with just one round. This naturally leads to the following simple
and practical algorithm:

1. Compute a random sample P1 of P of size c ·max{K,
√

N} that includes all
endpoints of segments in S, where c is a constant.

2. Construct CDT(P1, S) in memory using the triangle package.
3. For each point p ∈ P in turn we determine the edges that p is in conflict with,

generating a pair (e, p) for each such edge e ∈ CDT(P1, S). We then sort all
these pairs to construct the conflict list P|e for each edge e. If any conflict
list is larger than M , we restart the algorithm and take a new sample.

4. For each edge e ∈ CDT(P1, S) in turn we load its conflict list P|e into memory
and construct CDT(P|e, Ie) using the triangle package. Then we report all
the triangles whose circumcenters are inside τ(e).

Note that since we compute CDT(P1, S) in Step 2, we require that both K
and

√
N are smaller than the memory size.

Since Step 3 is the only nontrivial step in the algorithm, we describe it in a
little more detail. We first scan through the input points, and find conflicting
edges with CDT(P1, S) kept in internal memory. To find the edges in conflict
with a point p (internal memory) efficiently, it is sufficient to find all triangles in
conflict with p; 4uvw is in conflict with p if p ∈ D(u, v, w; S). Since all triangles
in conflict with p are connected, we simply first locate the triangle containing p
and then perform a BFS search to find all triangles that are in conflict with p.
Rather than using a complicated (internal memory) point location structure to
find the triangle of CDT(P1, S) containing p, we pre-sort all points according to
the Hilbert space-filling curve, which has high spatial locality, and use a simple
point-location algorithm while processing the points in Hilbert order: To locate
a point p, we start from the triangle γ where the previous point was located
and “walk towards” p by traversing all triangles intersected by the line segment
from the centroid of γ to p. Since the locations of consecutive points are likely
to be very close (due to the Hilbert ordering), we in practice perform each point
location query in constant time. At the end of Step 3 we sort the list of edge-point
pairs.

In practice, the efficiency of our simplified algorithm mainly depends on
the total size of the conflict lists. The theoretical analysis in Section 2 shows
that the expected total size is linear and in practice the constant is roughly
9. We reduce the total conflict size and thus improve the overall efficiency of
the algorithm by combining several adjacent edges into a single “edge group”,
computing the conflict list for each edge group, and solving the subproblem for
each edge group. Nevertheless, some technical subtleties need to be taken care
of when implementing this idea, which we explain in details in the full version.

Experimental setup and datasets. We implemented our simplified constrained
Delaunay triangulation algorithm in C++ using TPIE [4]. We used double to
store the coordinates of each point. For experimentation, we used a 2.4GHz Intel
XEON machine with hyperthreading, running Linux with kernel 2.4.5-smp, and
a local disk system consisting of four 10000RPM 72GB SCSI disks in RAID-0
configuration. The machine had 1GB main memory, but we restricted it to use
only 128MB of memory in order to obtain a large data size to memory size ratio.
All input, output and temporary files were stored on the local disk system.

Fig. 4. Sample datasets of 1000 points from uni-
form distribution with segments. Fig. 5. LIDAR data.

We experimented with both synthetic and real-life data. For the synthetic
data, we used four different distributions that have been used to evaluate the
performance of Delaunay triangulation algorithms: uniform, normal, Kuzmin,
and line singularity. See [6] for a definition of these distributions. Due to lack
of space, we only report results on the uniform distribution in this abstract.
Complete experiment results can be found in the full version of the paper.

After generating a point set P from one of the distributions, we generate
the segment set S as follows: To obtain a segment s ∈ S, we first choose one
endpoint uniformly at random from P . With some probability α we choose the
other endpoint uniformly at random from P ; with probability 1−α we choose it
uniformly at random from the endpoints of the segments already in S. We add s
to S if it does not intersect any other segment in S and the length of s is smaller
than some threshold δ. In our experiments we fixed α = 0.2. An example of the
segments generated this way are shown in Figure 4.

Our real-life datasets consist of LIDAR data for the Neuse River Basin of
North Carolina [1]. This data consist of points p = (x, y, z) in

� 3 and to obtain
a point set P in

� 2 we simply used the x and y coordinates. We broke the data
into a number of “tiles” geographically, and concatenated different subsets of the
tiles together to create 9 datasets of increasing sizes. For the segments S, we used
road data segments obtained from the TIGER/Line data [17]. The numbers of
points and segments of the datasets are listed in Table 1; the last dataset covers
the entire Neuse River Basin and has half of billion points. A portion of the
LIDAR data is shown in Figure 5.

Dataset 1 2 3 4 5 6 7 8 9

points (million) 16.8 27.7 44.5 58.5 90.8 116.2 163.1 257.1 503.7

segments (thousand) 19.5 27.8 55.7 44.9 50.5 77.3 137.3 627.1 755.0

Input file size (MB) 336 554 890 1176 1816 2324 3262 5142 10074

Table 1. The number of points and segments in each dataset of the Neuse River Basin.

Delaunay triangulation experiments. We first investigate the performance of our
algorithm when S = ∅, that is, when we are computing standard Delaunay
triangulations. We compared our external memory algorithm (EM) with the
(internal memory) divide-and-conquer (D&C) and incremental (INC) algorithm
as implemented in the triangle package [16]. Since it is known that pre-sorting
the points along some space-filling curve improves the performance of D&C and
especially INC greatly with modern memory hierarchies [3], we sorted the points
along the Hilbert curve in all our experiments. If the points are not sorted, D&C
starts thrashing and takes more than 10 hours to complete on a dataset of only
5 million points; INC starts thrashing on an even smaller dataset of 2 million
points. The time used to perform the Hilbert curve sort is not included in the
computation times reported below.

The experimental results of our experiments on the uniform distribution with
datasets of sizes varying from 106 to 107 are shown in Figure 6. Note that the
128MB main memory can only hold the data structure for triangulating roughly
1 million points. The results from the other distributions are similar. In all
experiments, INC performs best. Its running time is almost linear in the data size
because its data structure is visited in a highly local manner. The running time
of our EM algorithm is around 20% worse than INC because of the overhead in
the conflict lists. Although the D&C algorithm is faster than the two algorithms
as long as the dataset fits in main memory, as soon as the dataset size grows
larger, its performance quickly degenerates.

Constrained Delaunay triangulation experiments. Next we compared our EM
algorithm with the algorithm (INC) implemented in triangle [16], which first
constructs a Delaunay triangulation on the input points P (using the INC algo-
rithm discussed above), and then inserts all the segments in S one by one. As
before we pre-sorted the points by Hilbert values; we sorted the segments by the
Hilbert value of one of their endpoints.

The running times of our first set of experiments on the uniform distribution
are shown in Figure 7. We fixed the number of points to be 107 and generated
up to 105 segments, each of length at most δ = 0.003. The range of the number

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

points (million)

ru
nn

in
g

tim
e

(s
ec

on
ds

)

D&C
INC
EM

Fig. 6. Delaunay triangulation re-
sults on uniform distribution.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

segments (× 103)

ru
nn

in
g

tim
e

(s
ec

on
ds

)

INC
EM

Fig. 7. Constrained Delaunay tri-
angulation results on uniform dis-
tribution.

of segments are chosen to resemble the segment-to-point ratios of the real-life
LIDAR datasets, as well as larger ratios. The experimental results show that
our EM algorithm performs significantly better than INC. The main reason for
this is probably that while our algorithm incrementally inserts points in a small
constrained Delaunay triangulation in memory (CDT(P1, S)), the INC algorithm
incrementally inserts segments in a much larger (and larger than main memory)
constrained Delaunay triangulation containing all the points.

The performance of the EM algorithm starts to (very slowly) degenerate at
around 60,000 segments. This can be explained by the fact that the memory
usage of the algorithm almost only depends on the sample size |P1|; at K =
60, 000 the sample is about the size of the main memory (we use about 5MB per
10,000 points, and sample 3K points; the system daemons use at least 30MB).
Although in theory our algorithm only works when the sample fits in internal
memory, we see that thrashing does not happen when this assumption is violated.
Instead the performance of the algorithm degrades quite gracefully because the
algorithm has a very local memory access pattern. Note that as the number of
segments approaches N , our algorithm will degenerate into INC.

Next we investigated how the segment length affects performance. Using 107

points from the uniform distribution, we generated 10,000 segments with varying
δ from 0.001 to 0.1 using only segments of length between δ/2 and δ. The results
of the experiments with these datasets are given in Figure 8. The results show
that the running times of both algorithms are relatively unaffected by segment
length. Maybe somewhat counter-intuitively, the running time of EM decreases
as the segments get longer. This is probably because while longer segments
increase the time to triangulate the sample, they also reduce the conflict list size
somewhat.

The running times of our experiments with the LIDAR datasets are shown
in Figure 9. Note that the smallest LIDAR dataset is larger than the largest of
our synthetic dataset, thus, due to insufficient address space on a 32-bit machine
(there is a 4GB limit on the address space for each process), we were unable to

1 2 4 8 10 20 40 80
0

200

400

600

800

1000

1200

1400

δ (× 10−3)

ru
nn

in
g

tim
e

(s
ec

on
ds

)

INC
EM

Fig. 8. Constrained Delaunay trian-
gulation results with varying segment
lengths.

Fig. 9. Constrained Delaunay trian-
gulation results on real datasets.

run INC except on the smallest dataset. In Figure 9 we show a breakdown of
the running time of the EM algorithm into different phases: triangulating the
samples, generating the conflict lists, sorting the conflict lists, and building the
sub-triangulations. Except on the last two datasets, the total running time is
dominated by the last three phases, which essentially depends on the number
of points. On the last two datasets, the number of segments is much larger
than in the other datasets, and the time spent on building CDT(P1, S) starts to
be significant. However, since P1 is still much smaller than the entire dataset,
our algorithm is still much faster than building the entire constrained Delaunay
triangulation directly.

References

1. North Carolina Flood Mapping Program. http://www.ncfloodmaps.com.
2. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988.
3. N. Amenta, S. Choi, and G. Rote. Incremental constructions con brio. In Proc.

19th Annu. ACM Sympos. Comput. Geom., pages 221–219, 2003.
4. L. Arge, O. Procopiuc, and J. S. Vitter. Implementing I/O-efficient data structures

using TPIE. In Proc. European Symposium on Algorithms, pages 88–100, 2002.
5. F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R. Sack and J. Urrutia,

editors, Handbook of Computational Geometry, pages 201–290. Elsevier Science
Publishers B.V. North-Holland, Amsterdam, 2000.

6. G. E. Blelloch, G. L. Miller, J. C. Hardwick, and D. Talmor. Design and imple-
mentation of a practical parallel Delaunay algorithm. Algorithmica, 24(3):243–269,
1999.

7. The CGAL Reference Manual, 1999. Release 2.0.
8. L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97–108, 1989.
9. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational

geometry, II. Discrete Comput. Geom., 4:387–421, 1989.
10. A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos. Randomized

external-memory algorithms for some geometric problems. International Journal
of Computational Geometry & Applications, 11(3):305–337, June 2001.

11. M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory
computational geometry. In Proc. IEEE Symposium on Foundations of Computer
Science, pages 714–723, 1993.

12. L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction
of Delaunay and Voronoi diagrams. Algorithmica, 7:381–413, 1992.

13. P. Kumar and E. A. Ramos. I/O-efficient construction of voronoi diagrams. Tech-
nical report, 2002.

14. K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge, UK, 2000.

15. R. Seidel. Constrained Delaunay triangulations and Voronoi diagrams with obsta-
cles. Computer Science Division, ??, June 1989. UC Berkeley.

16. J. R. Shewchuk. Triangle: engineering a 2d quality mesh generator and Delaunay
triangulator. In First Workshop on Applied Computational Geometry. Association
for Computing Machinery, May 1996.

17. TIGER/LineTM Files, 1997 Technical Documentation. Washington, DC, Septem-
ber 1998. http://www.census.gov/geo/tiger/TIGER97D.pdf.

