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Clustering - overview

A general clustering problem:

Given a set V of points in a metric space, partition V
into a set of disjoint clusters such that a certain objective
function is minimized,

subject to some
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Clustering - overview

A general clustering problem:

Given a set V of points in a metric space, partition V
into a set of disjoint clusters such that a certain objective
function is minimized,

subject to some

cluster-level constraints: impose restrictions, for exam-
ple, on the number of clusters (exactly k clusters) or
on the size of each cluster (at least l elements).

instance-level constraints: specify whether particular
pair of items can be clustered together based on some
background knowledge.
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Clustering with diversity

all points partitioned into one cluster must have
distinct colors;

`-diversity: Given a set V of points in a metric space,
each of which has a color, subject to:

each cluster has size ≥ l.

Goal (this paper): minimize max{diameter of clusters}.
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Clustering with diversity

all points partitioned into one cluster must have
distinct colors;

`-diversity: Given a set V of points in a metric space,
each of which has a color, subject to:

each cluster has size ≥ l.

⇒ `-anonymity

Goal (this paper): minimize max{diameter of clusters}.
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The main motivation

`-diversity is motivated from privacy preservation for data pub-
lication (Machanavajjhala et. al. 2006), follows `-anonymity
(a.k.a. k-anonymity, Samarati 2001).
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The main motivation

`-diversity is motivated from privacy preservation for data pub-
lication (Machanavajjhala et. al. 2006), follows `-anonymity
(a.k.a. k-anonymity, Samarati 2001).

pneumonia

pneumonia

pneumonia

pneumonia

HIV

HIV

bronchitis

bronchitis

bronchitis

dyspepsia

DiseaseT-1D(Name)

1 (Adam)

2 (Bob)

3 (Calvin)

4 (Daisy)

5 (Elam)

6 (Frank)

7 (George)

8 (Henry)

9 (Ivy)

10 (Jane)

Age Gender Degree

29

25

25

29

40

45

35

37

50

60

M

M

M

F

F

F

M

M

M

M

M.Sc.

M.Sc.

B.Sc.

B.Sc.

B.Sc.

B.Sc.

B.Sc.

B.Sc.

Ph.D.

Ph.D.

(a) The microdata

sensitive
attribute

quasi-identifier (QI)

pneumonia

pneumonia

pneumonia

pneumonia

HIV

HIV

bronchitis

bronchitis

bronchitis

dyspepsia

DiseaseQIs

(25-29, M, MSc)

(25-29, *, BSc)

(40-45, M, BSc)

(35-37, M, BSc)

(50-60, F, PhD)

(b) A 2-anonymous table
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(c) An 2-diverse table

(25-29, M, *)

(25-29, *, *)

(50-60, F, PhD)

(35-40, M, BSc)

(37-45, M, BSc)
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Previous work

`-anonymity

A 2-approximation in the metric space is known
(Aggarwal el. al. 2006).
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But no theoretical result.
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Previous work

`-anonymity

A 2-approximation in the metric space is known
(Aggarwal el. al. 2006).

Many heuristic solutions have been proposed in the DB commu-
nity (i.e. LeFevre et. al. 2006, Ghinita et. al. 2007).
But no theoretical result.

`-diversity

Outliers (remove some points to get better clusters)

First considered by Charikar et. al. 2001 for facility location
and k-median.

A 4-approximation is known for `-anonymity
(Aggarwal el. al. 2006).
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Related work on instance-level constraints

ML constraints and CL constraints (Wagstaff and Cardie 2000)

must-link (ML): two points must be clustered together.
cannot-link (CL): two points must be separated.

`-diverse clustering can be seen as a special case where nodes
with the same color must satisfy CL constraints.

No approximation algorithm is studied.
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Related work on instance-level constraints

ML constraints and CL constraints (Wagstaff and Cardie 2000)

must-link (ML): two points must be clustered together.
cannot-link (CL): two points must be separated.

`-diverse clustering can be seen as a special case where nodes
with the same color must satisfy CL constraints.

No approximation algorithm is studied.

Correlation clustering (Bansal et. al. 2004)

Minimize the violation of the given constraints.

Best approximation algorithms are due to Ailon et. al. 2008
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Our results for l-diversity

A 2-approximation algorithm

(if the problem has feasible solutions).

A matching lower bound assuming P 6= NP

(even there are only 3 colors)

An O(1)-approximation algorithm for the infeasible case.

(if the problem does not have a feasible solution, we remove the

least possible number of points to get a feasible solution)
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2-approximation algorithm
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Recall `-diversity: Given a set V of points in a metric
space, each of which has a color, subject to:

1. each cluster has size ≥ l;

2. all points partitioned into one cluster must have dis-
tinct colors.

Goal: try to minimize the largest diameter of clusters.

Problems and definitions
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Recall `-diversity: Given a set V of points in a metric
space, each of which has a color, subject to:

1. each cluster has size ≥ l;

2. all points partitioned into one cluster must have dis-
tinct colors.

Goal: try to minimize the largest diameter of clusters.

Problems and definitions

Given V , construct G(V,E) with

• each v ∈ V has a color c(v);

• for each pair of points u,v with distinct colors, creat an
edge e = (u, v) with weight w(e), which is the distance
of u, v in the metric space.

• diameter of C ⊆ V : maxu,v∈C(w(e(u, v))).
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Definitions (cont.)

star forest: a forest where each
connected component is a star.
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with no isolated point.
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each component containing at least ` colors.

` = 3
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Definitions (cont.)

star forest: a forest where each
connected component is a star.

spanning star forest: a star forest
with no isolated point.

semi-valid spanning star forest: a spanning star forest with
each component containing at least ` colors.

` = 3

valid spanning star forest: a semi-valid spanning star forest
with each component containing points with distinct colors.
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A review on 2-approximation for `-anonymity

General idea of the algorithm in Aggarwal el. al. 2006.

1. Let e1, e2, . . . be the edge of G in a non-decreasing
order of weights.

2. Consider each graph Gi formed by the first i edges
Ei = {e1, e2, . . . , ei}.

3. For each Gi = (V,Ei), try to
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find a maximal independent set (IS) I s.t.

(1) there is a spanning star forest in Gi with the
nodes in I being the star centers,

(2) each star has at least ` nodes.
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A review on 2-approximation for `-anonymity

General idea of the algorithm in Aggarwal el. al. 2006.

1. Let e1, e2, . . . be the edge of G in a non-decreasing
order of weights.

2. Consider each graph Gi formed by the first i edges
Ei = {e1, e2, . . . , ei}.

3. For each Gi = (V,Ei), try to

find a maximal independent set (IS) I s.t.

(1) there is a spanning star forest in Gi with the
nodes in I being the star centers,

(2) each star has at least ` nodes.

Let the diameter of the OPT clustering be d∗ with
w(ei∗) = d∗. Aggarwal el. al. shows that the trial on
Gi∗ must succeed.

⇒ 2-approximation (SOL ≤ 2d∗)
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Our algorithm for `-diversity

Our algorithm for `-diversity follows the same frame-
work but we try to

find a maximal IS I s.t.

there is a valid spanning star forest in Gi with the
nodes in I being the star centers.
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Our algorithm for `-diversity

Our algorithm for `-diversity follows the same frame-
work but we try to

find a maximal IS I s.t.

there is a valid spanning star forest in Gi with the
nodes in I being the star centers.

We can also prove that the algorithm will succeed on Gi∗ ,
⇒ 2-approximation.
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Our algorithm for `-diversity

Our algorithm for `-diversity follows the same frame-
work but we try to

find a maximal IS I s.t.

there is a valid spanning star forest in Gi with the
nodes in I being the star centers.

We can also prove that the algorithm will succeed on Gi∗ ,
⇒ 2-approximation.

The additional challenge: nodes in a star have
distinct colors.



13-1

Two tests

S-TEST(Gi, I): check if there exists a semi-valid span-
ning star forest in Gi with nodes in I being star centers.

⇒
S-TEST
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Two tests

S-TEST(Gi, I): check if there exists a semi-valid span-
ning star forest in Gi with nodes in I being star centers.

V-TEST(Gi, I): check if there exists a valid spanning
star forest in Gi with nodes in I being star centers.

⇒⇒
S-TEST V-TEST
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The 2-approximate algorithm

1. Let I be an arbitrary maximal IS in Gi

2. While S-TEST(Gi, I) is passed

(a) (S, S′)← V-TEST(Gi,I) /* S ⊆ V − I, S′ ⊆ I */

(b) If S = ∅ then Succeed; else

i. I ← I − S′ + S
/* |S′| < |S|, |I| increase and I is still an IS */

ii. Add nodes to I until it is a maximal IS

3. Fail;

We just perform the trial on graphs G1, G2, . . . one by
one, until we find on some Gi a valid spanning forest
with a maximal independent set as centers.
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The 2-approximate algorithm

1. Let I be an arbitrary maximal IS in Gi

2. While S-TEST(Gi, I) is passed

(a) (S, S′)← V-TEST(Gi,I) /* S ⊆ V − I, S′ ⊆ I */

(b) If S = ∅ then Succeed; else

i. I ← I − S′ + S
/* |S′| < |S|, |I| increase and I is still an IS */

ii. Add nodes to I until it is a maximal IS

3. Fail;

We just perform the trial on graphs G1, G2, . . . one by
one, until we find on some Gi a valid spanning forest
with a maximal independent set as centers.

redistribute points
and
pick new centers
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The 2-approximate algorithm

1. Let I be an arbitrary maximal IS in Gi

2. While S-TEST(Gi, I) is passed

(a) (S, S′)← V-TEST(Gi,I) /* S ⊆ V − I, S′ ⊆ I */

(b) If S = ∅ then Succeed; else

i. I ← I − S′ + S
/* |S′| < |S|, |I| increase and I is still an IS */

ii. Add nodes to I until it is a maximal IS

3. Fail;

We just perform the trial on graphs G1, G2, . . . one by
one, until we find on some Gi a valid spanning forest
with a maximal independent set as centers.

Claim: Both tests succeed on Gi∗ .
⇒ ∃ a valid spanning star forest on Gi∗
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Lowerbound

Theorem: There is no polynomial-time approximation al-
gorithm for `-diversity that achieves an approximation fac-
tor less than 2 unless P = NP.

By reduction to 3D-matching.
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Lowerbound

Theorem: There is no polynomial-time approximation al-
gorithm for `-diversity that achieves an approximation fac-
tor less than 2 unless P = NP.

By reduction to 3D-matching.

Holds even there are only 3 colors.

If there are 2 colors, the problem can be solved in polynomial
time by finding perfect matchings in the G1, G2, . . ..



16-1

The infeasible case (high-level sketch)

If some color has more than bn/lc points, there is no fea-
sible solution, thus we must remove some points.

Least number of points that should be removed to get a
feasible solution can be computed, say, k points.

Goal: Compute an optimal clustering by deleting k points.
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sible solution, thus we must remove some points.

Least number of points that should be removed to get a
feasible solution can be computed, say, k points.

Goal: Compute an optimal clustering by deleting k points.

Additional challenge: have to decide (even know k):

which points should be deleted?
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The infeasible case (high-level sketch)

If some color has more than bn/lc points, there is no fea-
sible solution, thus we must remove some points.

Least number of points that should be removed to get a
feasible solution can be computed, say, k points.

Goal: Compute an optimal clustering by deleting k points.

Additional challenge: have to decide (even know k):

which points should be deleted?

Our strategy: to find

a valid star forest spanning n− k nodes in G28
i∗ .

⇒ 56-approximation



17-1

Futher work

Try to minimize the sum of the diameters of the clusters.
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Futher work

Try to minimize the sum of the diameters of the clusters.

Design approximation algorithms for the problem by
removing any fixed number of points.
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Futher work

Try to minimize the sum of the diameters of the clusters.

Design approximation algorithms for the problem by
removing any fixed number of points.

Consider other instance-level constraints like the gen-
eral Must-Link and Cannot-Link constraints,
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The End

T HANK YOU

Q and A


