
An Information-Theoretic Approach to Detecting

Changes in Multi-Dimensional Data Streams

Tamraparni Dasu Shankar Krishnan Suresh Venkatasubramanian Ke Yi

AT&T Labs – Research Duke University

Abstract

An important problem in processing large data streams is detecting changes in the underly-
ing distribution that generates the data. The challenge in designing change detection schemes
is making them general, scalable, and statistically sound. In this paper, we take a general,
information-theoretic approach to the change detection problem, which works for multidimen-
sional as well as categorical data. We use relative entropy, also called the Kullback-Leibler
distance, to measure the difference between two given distributions. The KL-distance is known
to be related to the optimal error in determining whether the two distributions are the same
and draws on fundamental results in hypothesis testing. The KL-distance also generalizes tradi-
tional distance measures in statistics, and has invariance properties that make it ideally suited
for comparing distributions.

Our scheme is general; it is nonparametric and requires no assumptions on the underlying
distributions. It employs a statistical inference procedure based on the theory of bootstrapping,
which allows us to determine whether our measurements are statistically significant. The scheme
is also quite flexible from a practical perspective; it can be implemented using any spatial parti-
tioning scheme that scales well with dimensionality. In addition to providing change detections,
our method generalizes Kulldorff’s spatial scan statistic, allowing us to quantitatively identify
specific regions in space where large changes have occurred.

We provide a detailed experimental study that demonstrates the generality and efficiency of
our approach with different kinds of multidimensional datasets, both synthetic and real.

1 Introduction

We are collecting and storing data in unprecedented quantities and varieties—streams, images,
audio, text, metadata descriptions, and even simple numbers. Over time, these data streams change
as the underlying processes that generate them change. Some changes are spurious and pertain to
glitches in the data. Some are genuine, caused by changes in the underlying distributions. Some
changes are gradual and some are more precipitous.

We would like to detect changes in a variety of settings:

Data cleaning: Spurious changes affect the quality of the data. In this context, we might ask,
“Given a gold standard D0, is the dataset at hand, D1, different? If so, can we isolate the sections
that are different?” The gold standard can be something that we have seen in the past or an ideal
state that we wish the data to be in. Some examples of spurious changes are missing values, default
values erroneously set, discrepancy from an expected stochastic process, etc. A detailed discussion
of data glitches and the data quality problem in general can be found in [11]. Detecting changes
and departures from the benchmark is important because many critical decisions depend on the

1

data being accurate. Corporations spend billions of dollars every year managing and cleaning their
business operations databases. Very often, glitches in business and data processes can result in
subtle shifts that cannot be detected manually or by aggregate analysis.

Data modeling: Similarly, many corporations, scientific projects and government agencies rely
on complex models to summarize, monitor, analyze, predict and forecast. Shifts in underlying
probability distributions can cause these models to fail spectacularly. While much effort is spent in
building, validating and putting these models in place, there is very little done in terms of detecting
changes. Sometimes, the models might be too insensitive to change, reflecting the change only after
a big shift in the distributions.

Alarm systems: Some changes are transient, and yet important to detect; network traffic mon-
itoring is one of the best examples of a situation where it is hard to posit realistic underlying
models, and yet some anomaly detection approach is needed to detect (in real time) shifts in
network behavior along a wide array of dimensions.

1.1 Desiderata

Any change detection mechanism has to satisfy a number of criteria to be viable. Crucial features
are:

• Generality: Applications for change detection come from a variety of sources, and the notion
of “change” varies from setting to setting. Thus, a general approach to defining change is
very important.

• Scalability: Any approach must be scalable to very large datasets, and be able to adapt
to streaming settings as well if necessary. There are sophisticated methods one can apply to
small data sets, including methods like logistic regression [26] and proportional hazards [8];
these typically require multiple passes over the data and thus are not suitable for large or
streaming datasets. An important aspect of scalability is dealing with multidimensional data.
A change detection scheme must be able to work with multidimensional data directly in order
to capture spatial relationships and correlations.

• Statistical soundness: One of the key problems with a change detection mechanism is
determining the significance of an event. By connecting a change detection mechanism to
statistically rigorous approaches for significance testing, we ensure that any changes reported
by the method can be evaluated objectively, allowing the method to be used for a diverse set
of applications. This also reflects the above desire for generality.

A natural approach to detecting change in data is to model the data via a distribution. One
can then compare representative statistics like means or fit simple models like linear regression to
capture variable interactions. Such approaches aim to capture some simple aspects of the joint
distribution (e.g. centrality, relationships between some specific attributes) rather than the entire
multivariate distribution.

The parametric approach is very powerful when data is known to come from specific distri-
butions. Parameter estimation is a very well-studied area, and a wide variety of methods can be
used to estimate distributions precisely. Moreover, if distributional assumptions hold, parametric
methods require very little data in order to work successfully. However, the generality requirement

2

for change detection is violated; data that one typically encounters may not arise from any standard
distribution, and thus parametric approaches are not applicable.

Approaches in the database community (where data scarcity is not an issue!) have thus focused
on nonparametric methods. Loosely, nonparametric methods are those that make no distributional
assumptions on the data. Statistical tests that have been used in this setting include the Wilcoxon
test and the Kolmogorov-Smirnov test, the multinomial test, and variants. Here, as before, the
approach used is to compute a test statistic (a scalar function of the data), and compare the values
computed to determine whether a change has occurred.

1.2 An Information-theoretic Approach

The above tests attempt to capture a notion of distance between two distributions. A measure that
is one of the most general ways of representing this distance is the relative entropy from information
theory, also known as the Kullback-Leibler (or KL) distance. The KL-distance has many properties
that make it ideal for estimating the distance between distributions:

• Given a set of data that we wish to fit to a distribution in a family of distributions, the max-
imum likelihood estimator is the one that minimizes the KL-distance to the true distribution.

• The KL-distance generalizes standard tests of difference like the t-test, chi-square and the
Kulldorff spatial scan statistic; the t-test is equivalent to the KL distance between two normal
distributions, the chi-square function is the first term in the Taylor expansion of the KL
distance function, and the Kulldorff spatial scan statistic is the KL-distance between a data
distribution and an underlying Poisson distribution.

• An optimal classifier that attempts to distinguish between two distributions p and q will have
a false positive (or false negative) error proportional (in the limit) to an exponential in the
KL-distance from p to q (the exponent is negative, so the error decreases as the distance
increases)[7, §12.8].

• It is an example of an α-divergence, one among a class of distributional distances that include
the Hellinger distance (but not `1 or `2) and have various geometric invariance properties.

Intuitively, the KL-distance between distributions behaves like Euclidean distance in
� n ; here

the “points” are distributions that lie on the simplex, rather than
� n . Using the KL-distance allows

us not only to measure the distance between distributions, but attribute a meaning to this value.
Further, an information-theoretic distance can be defined independent of the inherent dimension-
ality of the data, and is even independent of the spatial nature of the data, when one invokes the
theory of types. Thus, we can isolate the definition of change from the data representation itself,
cleanly separating the computational aspects of the problem from the distance estimation itself.

There are advantages to the information-theoretic approach from a computational perspective
as well. Tests like the Wilcoxon and Kolmogorov-Smirnov cannot be easily extended to data in
more than a single dimension. This is principally because these tests rely on data being ordered
(they are rank-based statistics), and thus in two or more dimensions, the lack of a unique ordering
renders them ineffective (for further discussion of this issue, see the section in [31, §14.8]). The
work by Kifer, Ben-David and Gehrke [21] proposes a modification of the Kolmogorov-Smirnov
test that in principle could be extended to higher dimensions, but technical challenges need to be
overcome to make this work; indeed, they leave this as an open question in their paper.

The KL-distance has long been utilized to measure distances between distributions. In ma-
chine learning and classification, many problems are being viewed through the lens of information

3

theory, and the KL-distance and related measures are being exploited in many situations where
the traditional measure of choice was `2 or some other metric. We discuss these developments in
Section 7.

1.3 Bootstrapping and Statistical Significance

The choice of distance function used to determine change is one aspect of the change detection
problem. Another is statistical significance. How do we determine whether the measure of change
returned is significant or not? A statistical approach poses the question by specifying a null hy-
pothesis (in this case, that change has not occurred), and then asking “How likely is it that the
measurement could have been obtained under the null hypothesis?”. The smaller this value (the
so-called “p-value”), the more likely it is that the change is significant1.

For parametric tests, significance testing is fairly straightforward. For some nonparametric tests
also, significance testing can be performed by exploiting certain special properties of the tests used
(e.g.,[21]). However, if we wish to determine statistical significance in more general settings, we
need a more general approach to determining confidence intervals.

The bootstrap method, first developed by Efron, is a data-centric approach to determining con-
fidence intervals for inferences on data. Intuitively the bootstrap method determines, by repeated
sampling (with or without replacement) from the data, whether a specific measurement on the data
is significant or not. The use of the bootstrap is particularly relevant to streaming settings, as one
of the key features of bootstrap methods is to make strong inferences from small datasets.

Bootstrap methods satisfy the goal of generality that we stated earlier; they also provide sta-
tistical soundness and are well suited for use with nonparametric methods (Ganti et al. [15] have
used bootstrapping in their data mining system FOCUS; see Section 7 for more details). We will
use them extensively in this paper.

1.4 Our Contributions

In this paper, we present a general information theoretic approach to the problem of multi-dimen-
sional change detection. Our specific contributions are:

• The use of the Kullback-Leibler distance as a measure of change in multi-dimensional data,
and a demonstration of the statistical guarantees it provides.

• The use of bootstrap methods to establish the statistical significance of the distances we
compute.

• An efficient algorithm for change detection on streaming data that scales well with dimension.
Our approach is “plug-and-play”: any spatial data partitioning scheme that scales well with
dimension may be used; we are not dependent on any particular choice of structure, like quad
trees or k-d trees.

• An approach for identifying subregions of the data that have the highest changes. This
approach is based on the observation that the Kulldorff scan statistic, often used for identi-
fying spatial regions of high density in a population, is a special case of the Kullback-Leibler
distance.

• Empirical demonstration (both on real and synthetic data) of the accuracy of our approach.

1Other authors refer to the “critical region”: essentially the interval of values where the result is deemed significant.

4

Our methods are framed in terms of the comparison between a reference and a test dataset.
This abstraction lends itself naturally to stream-based change detection (where the two sets are
two windows on the stream) as well other kinds of dynamic data settings.

We present a birds-eye view of our scheme in Section 2, followed by a more detailed discussion
on information-theoretic fundamentals (Section 3) and the theory of bootstrapping (Section 4). Al-
gorithmic details are presented in Section 5, followed by a detailed experimental study in Section 6.
Related work is discussed in Section 7.

2 An Overview

We start with a birds-eye view of our change detection scheme, presenting the mechanics of the
approach while omitting proofs and justifications.

Let x1, x2, . . . be a stream of objects. For the purpose of this paper, we will assume that
each xi is a point in

� d . A window Wi,n denotes the sequence of points ending at xi of size n:
Wi,n = (xi−n+1, . . . , xi). We will drop the subscript n when the context is clear. Distances are
measured between distributions constructed from points in two windows Wt and Wt′ .

In general, using different-sized windows allows one to detect changes at different scales, and we
can run our scheme with different window sizes in parallel for this purpose. A standard approach
that we will use is to choose window sizes that increase exponentially (having sizes n, 2n, 4n, and
so on). Each window size can be processed independently. Thus in what follows, we will describe
a change detection scheme for a fixed window size n, and run one instance of this scheme for each
window size. Note that we assume that the time a point arrives is its time stamp; we do not
consider streams where data might arrive out of (time) order.

We consider two sliding window models. In the adjacent windows model, the two windows that
we measure the difference between are Wt and Wt−n, where t is the current time. In the fix-slide
windows model [21], we measure the difference between a fixed window Wn and a sliding window
Wt. The first model better captures the notion of “rate of change” at the current moment, while
the second one is more suitable for change detection when gradual changes may cumulate over time,
and thus the adjacent window model will repeatedly only detect small changes.

Each window Wt defines an empirical distribution Ft, and we compute the distance dt =
d(Ft, Ft′) from Ft to Ft′ , where t′ is either t − n or n depending on the sliding window model
we are using. Section 3 describes the computation of dt in more detail.

This distance is our measure of the difference between the two distributions (and thus the two
windows). The next step is to determine whether this measurement is statistically significant.
Formally, we assert the null hypothesis

H0 : Ft = Ft′

and wish to determine the probability of observing the value dt if H0 is true.
To determine this, we use bootstrap estimates. Using methods that we describe in more detail

in Section 4, we generate a set of k bootstrap estimates d̂i, i = 1 . . . k. These estimates form an
empirical distribution from which we construct a critical region (dhi,∞). If dt falls into this region,
we consider that H0 is invalidated. Since we test H0 at every time step, in order to improve
robustness, we only signal a change after we have seen γn distances larger than dhi in a row, where
γ is a small constant defined by the user. The idea is that a true change should be more persistent
than a false alarm, which might be transient, and we term γ the persistence factor. If no change
has been reported, we update the windows and repeat the procedure. The update algorithm will
be discussed in Section 5.

5

The above algorithm is summarized in Algorithm 2.1.

Algorithm 2.1 Change detection algorithm (for a fixed window size)

t← 2n;
t′ ← n;
Construct windows Wt and Wt′ ;
Compute dt = d(Ft, Ft′);
Compute bootstrap estimate d̂i, i = 1, . . . , k and critical region (dhi,∞);
c← 0;
while not at end of stream do

if dt > dhi then
c← c + 1;
if c ≥ γn then
Signal change;
Start over;

end if
else
c← 0;

end if
Slide window Wt (and Wt′ if required);
Update dt;

end while

3 Information-theoretic Distances

The measure we use to compare distributions is the Kullback-Leibler distance, also called the relative
entropy [7, Sec 2.3].

Definition 3.1 The relative entropy or Kullback-Leibler distance between two probability mass
functions p(x) and q(x) is defined as2

D(p‖q) =
∑

x∈X

p(x) log
p(x)

q(x)
,

where the sum is taken (in the discrete setting) over the atoms of the space of events X .
If the distributions p and q are normally distributed with common variance σ2 and means

µp, µq, then D(p‖q) = c · d2, where d = (µp − µq)/σ is the measure of difference used in Student’s
t-test [32]. Another interesting property of the KL-distance is its relation to the χ2 statistic [32],
where χ2(p, q) =

∑

x(p(x) − q(x))2/q(x). It is not hard to show that χ2 is twice the first term in
the Taylor expansion of D(p‖q), i.e.,

D(p‖q) =
1

2
χ2 + · · · .

The relative entropy is a member of a more general class of distances called the Ali-Silvey
distances (or f -divergences), defined as

F (p | q) = Ep[f(q/p)],

2All logarithms are base 2 in this paper.

6

where f is a strictly convex function. The ratio (q/p) is called the likelihood ratio, and its impor-
tance derives from the Neyman-Pearson theorem, which shows that a decision region based on the
likelihood ratio has optimal error probability when doing hypothesis testing. We describe this con-
nection in more detail in Appendix A. Informally, if we are in a hypothesis testing scenario where
we have to determine whether sampled data arises from distributions F or G, then the probability
of misclassifying the data is proportional to 2−D(F‖G).

Although the relative entropy is referred to as a distance, it is important to note that it is
not symmetric, and thus not a metric. This lack of symmetry can be inconvenient in certain
settings. As a result, many variants have been proposed that seek to address its lack of symmetry
and non-metric nature, while preserving its relation to classifier error rate. Examples (which are
also Ali-Silvey distances) include the Chernoff distance, the Bhattacharya distance and the Jensen-
Shannon divergence. However, all of the above measures have other disadvantages, and have shown
no conclusive superiority in experimental settings. In the rest of this paper, we will focus on the
KL-distance, while noting that any of the above measures (since they can be expressed in terms of
the KL-distance) can be used in our framework.

3.1 Constructing a Distribution from a Stream

The relative entropy is defined on a pair of probability mass functions. How do we map sequences
of points to distributions? The answer lies in the theory of types, due to Csiszár and Körner [10].
Let w = {a1, a2, . . . an} be a multiset of letters from a finite alphabet A. The type Pw of w is thus
vector representing the relative proportion of each element of A in w

Pw(a) =
N(a | w)

n
.

Thus each set w defines a empirical probability distribution Pw. For each set, we compute
the corresponding empirical distribution, and compute the distance between the two distributions,
viewed as mass functions. Gutman[16] has shown that types retain (asymptotically) the same
classifier properties as true distributions. Moreover, the empirical distributions are the maximum
likelihood estimators of the true distribution.

For d-dimensional data, the “alphabet” will consist of a letter for each leaf of the quad tree
used to store the data (to be discussed in details in Section 5), with the count being the number
of points in that cell. One further advantage of the use of types is that categorical data can be
processed in exactly the same way (with a letter associated with each value in the domain).

One problem with this approach is that the ratio p/q is undefined if q = 0. A simple correction
suggested by Krichevsky and Trofimov [24] replaces the estimate Pw(a) by the estimate

Pw(a) =
N(a|w) + 0.5

n + |A|/2
.

To summarize, given two windows W1,W2, and their associated multisets of letters w1,w2

constructed from the alphabet defined over quad tree leaf cells, the distance from W1 to W2 is

D(W1‖W2) =
∑

a∈A

Pw1
(a)

Pw1
(a)

Pw2
(a)

.

7

4 Bootstrap Methods and Hypothesis Testing

The bootstrap method, first developed by Efron, is a method for determining the significance (or
p-value) of a test statistic, as well as eliminating bias and improving confidence intervals when
doing statistical testing. Our proposed approach for estimating change relies on estimating the
relative entropy between two empirical distributions. Empirical likelihood is a nonparametric, data
driven method and uses a likelihood based approach for statistical inference. Its relationship to
bootstrap along with the advantages and disadvantages of each are discussed in [28]. Viewed as
a test statistic, the relative entropy has an (unknown exact) distribution over an (unknown) data
distribution. Thus, standard approaches (which require at least one of the unknowns to be known)
are ineffective in this context3. The bootstrap method can be used to estimate the standard error,
bias, and confidence intervals of a test statistic. Its connection to hypothesis testing comes via
confidence intervals.

In the hypothesis testing scenario pertaining to data change, the null hypothesis asks whether
two distributions F,G are identical

H0 : F = G.

Once an observation is made (in this case the calculation of d̂ = D(F̂ ‖Ĝ), where F̂ and Ĝ are the
empirical distributions of F and G), the achievable significance level (ASL) of the observation is
the likelihood that d̂ arises naturally under H0, i.e.,

PrH0
(d̂∗ ≥ d̂)

where d̂∗ is a random variable measuring d under H0.
Notice that d̂∗ = 0 is an equivalent statement of the null hypothesis. Thus, if we can determine

an interval [0, dhi] such that d̂ lies in this range with probability 1−α, then this is equivalent to an
ASL of α (more details can be found in [14, Chapter 15]). This method is known as the percentile
method.

The bootstrapping procedure works as follows: given the empirical distributions P̂ derived
from the counts P (see Section 3), we sample k sets S1, . . . Sk, each of size 2n. Treating the first n
elements Si1 as coming from one distribution F , and the remaining n elements Si2 = Si − Si1 as
coming from the other distribution G, we compute bootstrap estimates d̂i = D(Si1‖Si2).

Once we fix the desired ASL α, we choose the (1 − α)-percentile of these bootstrap estimates
as dhi. We call (dhi,∞) the critical region, if d̂ > dhi, the measurement is statistically significant
and invalidates H0.

4.1 Sample Sizes

Bootstrap procedures are a form of Monte Carlo sampling over an unknown distribution. Asymptot-
ically, the bootstrap sample distribution approaches the true underlying distribution. The crucial
question here is: how fast?

Given a confidence point θ̂[α] such that Pr(θ ≤ θ̂[α]) = α, it is said to be first-order accurate if

Pr(θ ≤ θ̂[α]) = α + O(n− 1

2),

and second-order accurate if
Pr(θ ≤ θ̂[α]) = α + O(n−1),

3Many of these approaches are based on computing the mean of a (unknown) data distribution. The mean has a
(known) Gaussian distribution, enabling significance testing.

8

where n is the number of samples.
Confidence intervals based on the percentile method are first-order accurate. It is possible to use

more complex procedures to determine confidence points that give second-order accurate confidence
bounds; we do not employ these methods in this paper, as they do not improve the quality of our
results significantly.

The number of bootstrap samples needed in practice depends on the kind of distribution being
sampled. Experiments and normal approximation suggest that about 500–1000 samples works well
for the percentile method.

5 Data Structures

From now on, we will assume that the data points in the streams lie in a d-dimensional hypercube.
In order to maintain the KL-distance between two empirical distributions, we need a way of defining
the “types”, i.e., a space partitioning scheme that subdivides the space into cells. In principle any
space partitioning scheme, for example a quad tree or a k-d-tree, works in our framework, but
we would like to use a structure that scales well with the size and dimensionality of the data,
and produces “nicely shaped” cells at the same time. The square cells induced by a quad tree are
intuitively good, but its 2d fan-out might hurt its scalability in high dimensions. On the other hand,
a k-d-tree scales well with dimensionality, but it might generates very skinny cells. The structure
that we propose, called a kdq-tree, is combination of these two space partitioning schemes that has
the advantages of both structures.

We will describe the structure in two dimensions; generalization to high dimensions will be
obvious. A kdq-tree is a binary tree, each of whose nodes is associated with a box. The box
associated with the root v is the entire unit square, which is then divided into two halves by a
vertical cut passing through its center. The two smaller boxes are then associated with the two
children of the root vl and vr. We then construct the trees rooted at vl and vr recursively, and
as we go down the tree, the cuts alternate between vertical and horizontal. We stop the recursion
if either the number of points in the box is below τ , or all the sides of the box have reached a
minimum length δ, where τ and δ are user specified parameters.

The following properties follow from a simple analysis of the structure.

Proposition 5.1 For a kdq-tree built on n points in d dimensions,

1. it has at most O(dn log(1
δ)/τ) nodes;

2. its height is at most O(d log(1
δ));

3. it can be constructed in time O(dn log(1
δ));

4. the aspect ratio of any cell is at most 2.

We can see that the kdq-tree’s size scales linearly as the dimensionality and the size of data,
at the same time it generates nicely shaped cells. It is also very cheap to maintain the counts
associated with the nodes, as the cost is proportional to the height of tree.

We build the kdq-tree on the first window W1, and will use the cells induced by this tree as the
types to form the empirical distributions for both W1 and W2 until a change has been detected, at
which point we rebuild the structure. The same structure is also used to compute the bootstrap
estimates.

9

Maintaining the KL-distance. Let Pv (resp. Qv) be the number of points from the set W1

(resp. W2) that are inside the cell associated with the leaf v of the kdq-tree. We would like to
maintain the KL-distance between P = {Pv} and Q = {Qv}:

D(P‖Q) =
∑

v

Pv + 1/2

|W1|+ L/2
log

(Pv + 1/2)/(|W1|+ L/2)

(Qv + 1/2)/(|W2|+ L/2)

= log
|W2|+ L/2

|W1|+ L/2
+

∑

v(Pv + 1/2) log Pv+1/2
Qv+1/2

|W1|+ L/2
,

where L is the number of leaves in the kdq-tree. Since |W1|, |W2| and L are readily known, we only
need to maintain

D̃(P‖Q) =
∑

v

(Pv + 1/2) log
Pv + 1/2

Qv + 1/2
.

Since the counts Pv, Qv can be updated in O(d log(1
δ)) time per time step, the KL-distance can

also be maintained incrementally in the same time bound.

Identifying regions of greatest difference. The kdq-tree structure for KL-distance based
change detection can also be used to identify the most different regions between the two datasets,
once a change has been reported. The idea is to maintain a special case of the KL-distance at each
node (internal or leaf) v of the kdq-tree. This special case is the Kulldorff spatial scan statistic [25],
which is defined at a node v as

DK(v) = Pv log
Pv

Qv
+ (|W1| − Pv) log

|W1| − Pv

|W2| −Qv
− |W1| log

|W1|

|W2|
.

Note that it is simply the KL-distance between W1 and W2 when there are only two bins: Bv

and its complement Bv. Kulldorff’s statistic basically measures how the two datasets differ only
with respect to the region associated with v. Specifically, it measures the log likelihood ratio of two
hypotheses: (1) that the region v has a different density from the rest of space, and (2) that all
regions have uniform density. Note that this statistic can be easily maintained as it depends only
on Pv and Qv.

However, one limitation of a such an approach is that we can only compute the Kulldorff
statistic in regions that correspond to the tree nodes. It remains an interesting open problem to
efficiently maintain the (general) region maximizing the Kulldorff’s statistic. The algorithm of Neill
and Moore [27] is designed for static data and it does not appear that their scheme can be made
dynamic, or even streaming.

6 Experiments

To demonstrate the generality of the KL distance-based change detection scheme, we conducted a
series of experiments with various kinds of datasets. The datasets consist primarily of synthetic
data, which are generated according to some standard distributions, continuous as well as discrete.
An advantage of using these simulated datasets is that we can control change events and see how
the change detections mechanisms react to different types of changes. We also included telephone
usage data obtained from a major telephone company’s network, to see how our scheme performs
on a more realistic dataset. In this paper, we focus on experiments using data streams in two or
higher dimensions, for which our method appears to be the first streaming change detection scheme

10

in the database literature that has a sound statistical basis. Finally, we also present some results
in one dimension comparing our scheme with some of the previously known 1D change detection
techniques.

In all the experiments, we use the following default values for some of the parameters, unless
specified otherwise.

Parameter Symbol Value

Minimum side length of a cell δ 2−10

Maximum number of points in a cell τ 100
Persistence factor γ 5%

Achievable significance level (ASL) α 1%
Number of bootstrap samples k 500

Table 1: Default values for some parameters in the experiments.

6.1 Evaluating the Accuracy of the Kullback-Leibler Distance

We know that the Kullback-Leibler distance measures how different one distribution is from another,
and equals zero if the two distributions are identical. In order to see how it varies as the amount
of difference changes, we did several test runs with simulated data streams generated according to
2D normal distributions.

In these test runs, each data stream consists of N = 500, 000 points, each of which is generated
independently from a 2D normal distribution with certain parameters. These points are divided
into groups of 50,000. Within one group, the parameters stay the same, which means that a change
happens every 50,000 points. We use the adjacent windows model, where we slide two adjacent
windows, both of size n = 20, 000, through the stream, and measure the KL distances between the
two sliding windows. More precisely, we report the distance D(Wt‖Wt−n) between windows Wt

and Wt−n for t = 2n, 2n + 1, . . . , N . This intuitively measures the “rate of change” of the stream
at time t.

For this series of tests, we did not use bootstrapping to detect change, since our goal was merely
to demonstrate the behavior of the Kullback-Leibler distance on changing data.

Test 1: Varying the mean µ. In the first data stream, the standard deviation and correlation
are fixed at σ1 = σ2 = 0.2, ρ = 0, and the mean is set to be µ1 = µ2 = 0.2 + 0.06(i − 1) for the ith
group, i = 1, . . . , 10, namely the center of the 2D Gaussian gradually moves from (0.2, 0.2) towards
(0.8, 0.8). Figure 1 shows how the Kullback-Leibler distance changes as we slide the two windows.
Observe that a change in the mean is usually easily detected, and the amount of difference only
depends on the difference between the means. This is the reason why the peaks almost have the
same height in Figure 1.

Test 2: Varying σ. In the second stream, we fix the mean and correlation at µ1 = µ2 = 0.5, ρ =
0, but vary the standard deviation with σ1 = σ2 = 0.1 + 0.02(i − 1) for group i. The results are
shown in Figure 2. Again, observe that a change in the standard deviation is also relatively easy
to identify, although the amount of change is not uniform for different σ values (intuitively since
as σ increases, the distribution gets more and more concentrated, and so the relative difference is
small).

11

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 105

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

t
K

L
di

st
an

ce

Figure 1: The KL distance between adjacent windows in a stream with varying (µ1, µ2). Changes
occur every 50, 000 points.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 105

0.04

0.06

0.08

0.1

0.12

0.14

0.16

t

K
L

di
st

an
ce

Figure 2: The KL distance between adjacent windows in a stream with varying (σ1, σ2). Changes
occur every 50, 000 points.

Test 3: Varying the correlation ρ. In the third stream, the mean and variance is fixed at
µ1 = µ2 = 0.5, σ1 = σ2 = 0.2, while the correlation is ρ = 0.08(i − 1) for group i, i.e., the
two coordinates of the data point start with being independent, and then become more and more
positively correlated. The results are shown in Figure 3. In this case, changes in the correlation are
reflected more subtly in the Kullback-Leibler distance, but we can still detect peaks every 50, 000
points, when the parameter changes. It is worth noting that such changes cannot be detected by
projecting the points onto the axes and using any 1D change detection scheme.

Test 4: An empirical case study. Our next experiment is on data obtained from a major
telephone company’s network. The data represent telecommunication usage in two major urban
centers. The data collected include total usage, time-of-day and length-of-usage related attributes.
Each urban region includes entities that use landlines and wireless phones, and what one would like
to determine is whether the two urban areas differ significantly in terms of land-line vs. wireless
line usage. In this particular example, the urban centers chosen are known to have significant
differences in their usage profiles.

Each dataset consists of 120,000 three-dimensional data points. We concatenate them into a

12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 105

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

t
K

L−
di

st
an

ce

Figure 3: The KL distance between adjacent windows in a the stream with varying ρ. Changes
occur every 50, 000 points.

stream of 240,000 points, and slide two adjacent windows of size 20,000 over this 3D data stream
in the same way as above. From Figure 4 we can clearly see a large spike as we move from the first
dataset to the the second, indicating a significant difference between these two datasets.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

x 105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

K
L

di
st

an
ce

Figure 4: The KL distance between adjacent windows in a 3D data stream obtained from telephone
usage in two urban centers. The change between urban centers occurs at t = 120, 000.

6.2 Evaluating the Change Detection Method

In the tests runs above, we have demonstrated how the Kullback-Leibler distance fluctuates as
the underlying distribution changes. In order to determine if a given measurement is statistically
significant enough to qualify as a “change”, we plug in the bootstrapping method and construct a
critical region (dhi,∞), as described in Section 4. When the measured distance falls into this region
in γn consecutive time steps, we report that a change has happened, as in Algorithm 2.1.

We adopt the fix-slide windows model of Kifer et al. [21], where we fix the first window at
Wn and slide the second window starting at W2n. There are two reasons for keeping the first
window fixed: Firstly, point-to-point changes might be slow, but over time they may eventually
accumulate and become significant. Keeping a fixed reference window allows us to capture such
gradual changes. Secondly, if we keep both windows moving and pass the point of change, we

13

will miss the change completely! If we keep the first window fixed, we have a chance of capturing
the change at a later time. Under the rationale “better late than never”, a late detection is still
considered to be better than a false negative. More precisely, following [21], we say a detection is
late if t > tc + 2n, where tc is the time of the actual change, and t is the time when the change is
reported.

Each simulated data stream consists of N = 5, 000, 000 two-dimensional points, generated from
a distribution F with parameters p1, . . . , pk. The N data points are divided into groups of 50, 000
points. The distribution F and all of its parameters are fixed at all times except for a particular
set of changing parameters pr1

, pr2
, . . . , which vary from group to group. We specify a step size ∆

to control the amount of change. When we reach a new group, for each changing parameter pri
, we

choose a random number in [−∆,−∆/2] ∪ [∆/2,∆] uniformly and add it to pri
. If pri

falls out a
predefined allowable region [pmin, pmax], we pick another random number and repeat. In this way,
we create a total of 5, 000, 000/50, 000 − 1 = 99 changes. The window size is fixed at n = 10, 000
unless otherwise specified.

In all our experiments, we report four statistics: the number of changes correctly detected, the
number of changes detected late, the number of false positives, and the number of misses changes
(false negatives). Note that there is an inherent tradeoff between false positives and false negatives,
and that our use of synthetic data is what makes evaluating false negatives possible. In statistical
terms, the tradeoff is between the power (1− false positive rate) and the sensitivity (1− false
negative rate) of the test.

Data sources. Using the procedure above, we generated three groups of streams from normal
distributions. In the first group, we fix the standard deviation σ1 = σ2 = 0.2 and correlation
ρ = 0.5, but vary the mean µ1 and µ2. They both start at 0.5, and then perform independent
random walks in [0.2, 0.8] with step size ∆ as described above. We chose ∆ to be 0.01, 0.02 and
0.05, respectively, to see how our change detection reacts to different amounts of changes. We use
M(∆) to denote the streams in this group with step size ∆. In the second group of streams, we
fix µ1 = µ2 = 0.5 and ρ = 0.5, while vary the standard deviation. Both σ1 and σ2 start at 0.2, and
then perform random walks within [0, 0.4] with step size ∆ = 0.01, 0.02, and 0.05, respectively. We
use D(∆) to denote the streams in this group. Finally, in the third group, we fix µ1 = µ2 = 0.5
and σ1 = σ2 = 0.2, but vary ρ, which starts with 0, and then random walks within [−1, 1] with step
size ∆ = 0.05, 0.1 and 0.2. We call these streams C(∆). As observed in Section 6.1, a change in
ρ is more difficult to detect than a change in the mean and standard deviation, and thus we have
intentionally chosen larger steps sizes for the C(∆) streams.

Test 1: Varying Data Sources. In our first experiment, we evaluate the efficacy of the change
detection method on the different data stream sources, with the results shown in Table 2. As
expected, the performance of our scheme increases as the amount of change gets larger. With
∆ = 0.05 for the M and D streams, and ∆ = 0.2 for the C streams, we can almost detect all
changes. The number of false positives is also quite acceptable, considering there are 5 million
points in each of the streams. Note the tradeoff between false positives and negatives; as one
decreases, the other increases.

Test 2: Varying the ASL. Next, we investigate how the ASL affects the performance of the
change detection scheme. The experiments are performed using the C streams, and we vary α from
5% to 0.2%. The results are summarized in Table 3. Since α determines the sensitivity of the change
detection scheme, lower values of α make it more difficult to reject the null hypothesis, leading to low

14

Stream Detected Late False Missed

M(0.01) 30 17 4 52
M(0.02) 70 20 4 9
M(0.05) 97 1 4 1

D(0.01) 36 20 1 43
D(0.02) 95 0 9 4
D(0.05) 92 4 7 3

C(0.1) 43 18 3 38
C(0.15) 83 10 4 6
C(0.2) 97 1 4 1

Table 2: Change detection results on different 2D normal data streams.

sensitivity, which in turns means less changes are detected but also less false positives (increasing
the power of the test). In practice, one should choose an appropriate value of α depending on
whether false positives or false negatives are more tolerable.

Stream α Detected Late False Missed

5% 63 15 11 21
C(0.1) 1% 43 18 3 38

0.2% 36 13 0 51

5% 88 8 21 3
C(0.15) 1% 83 10 4 6

0.2% 76 12 1 11

5% 96 1 26 2
C(0.2) 1% 97 1 4 1

0.2% 98 1 3 0

Table 3: Change detection results on the C streams with different ASLs.

Test 3: Varying the window size. We now vary the window size n to see how this affects
the performance of our change detection scheme. These experiments were still performed using the
C(∆) streams. Note that changing the window size does not affect the incremental maintenance
cost of our structure, though the space requirement and initial construction cost depends linearly
on n. A larger window size gives us a better approximation to the true underlying data distribution,
and so we expect our scheme to work better with larger window sizes. This is exactly what we
observe from Table 4.

Test 4: Varying the number of bootstrap samples. Finally, we vary k, the number of boot-
strap samples, and see how it affects the performance. Once again, we performed our experiments
with the C(∆) streams, and results are listed in Table 5. Note that k must be at least 1/α to be
meaningful. What is interesting (and is indicated by Efron and Tibshirani [14]), is that the number
of samples does not affect the quality of the results significantly. But if we use too few samples,
the robustness of the approach may be impaired, and we feel that k = 500 is a reasonable number
of samples, as also suggested by some other experimental studies.

15

Stream n Detected Late False Missed

5000 30 25 5 44
C(0.1) 10000 43 18 3 38

20000 62 7 0 30

5000 68 14 17 17
C(0.15) 10000 83 10 4 6

20000 91 1 1 7

5000 93 5 15 1
C(0.2) 10000 97 1 4 1

20000 99 0 0 0

Table 4: Change detection results on the C streams with different window sizes.

Stream k Detected Late False Missed

100 51 15 2 33
C(0.1) 500 43 18 3 38

2000 47 15 2 37

100 85 8 9 6
C(0.15) 500 83 10 4 6

2000 85 7 8 7

100 97 1 10 1
C(0.2) 500 97 1 4 1

2000 99 0 2 0

Table 5: Change detection results on the C streams with different number of bootstrap samples.

Test 5: Poisson distributions. Often, a more realistic model for multidimensional data (es-
pecially if it arises from natural spatial settings) is a Poisson distribution. We tested our scheme
using 2D (discrete) Poisson distributions, with data streams generated according to (X,Y) ∼
Poisson(500(1 − ρ), 500(1 − ρ), 500ρ), where ρ starts at 0.5 and then performs a random walks
between 0 and 1 with a step size ∆ = 0.05, 0.1, 0.2, in the same manner as before. The goal was
to keep the marginal distribution of X and Y the same (with λ = 500), and change the correlation
ρ. We summarize our results in Table 6; once again, larger ρ, corresponding to greater difference,
leads to better performance.

∆ Detected Late False Missed

0.05 60 10 1 29
0.1 67 17 1 15
0.2 98 1 5 0

Table 6: Change detection results on 2D Poisson data streams.

16

Test 6: Higher dimensions. To test the scalability and performance of our scheme in high
dimensions, we take the C(0.2) stream and extend it to d-dimensional streams by adding dimensions
in which the data distributions (also Gaussian) do not change. The idea is to see if our method is
able to detect the changes in one of the subspaces by working in the full space directly, rather than
mapping the points into the 2d subspaces and do the detection in each subspace individually. The
experiment results for different dimensions are listed in Table 7. We can see that as we add more
stationary dimensions, it becomes more difficult to detect the real changes, but even with 8 extra
dimensions (d = 10), our scheme still delivers a reasonable performance.

d Detected Late False Missed

4 89 1 7 9
6 84 10 8 5
8 83 5 7 11
10 65 12 6 22

Table 7: Change detection results on d-dimensional streams.

Test 7: Efficiency. The cost of our scheme consists of two parts: initial construction of the
kdq-tree and incremental updates. Since we reconstruct the kdq-tree only after a change has been
reported, and the frequency of changes depend on the data characteristics and the application,
it makes sense to measure the two kinds of cost separately. As indicated by Proposition 5.1,
incremental updates can be performed very efficiently, in time O(d log(1

δ)) per time step; the initial
construction takes O(kdn log(1

δ)) time, as we need to repeat for the k bootstrap samples, but it
still grows linearly in both d and n. To see how fast our scheme runs in practice, we measure the
two kinds of cost on the streams used in Test 6 with varying window sizes, and report the average
in Table 8. The other parameters assume their default values in Table 1. These running times
were obtained from our unoptimized code on a PC with a 3.0GHz Pentium 4 processor and 1GB
memory.

Note that the number listed in the table generally agree with the theoretical bounds, except that
the construction cost seems to be growing sub-linearly as dimensions. This is because the bound
given in Proposition 5.1 is the worst-case bound, which only happens under contrived examples.
The actual cost should be much smaller in most situations.

d n Construction (sec) Update (msec)

4 10000 4.52 0.014
6 10000 5.33 0.022
8 10000 5.46 0.029
10 10000 6.08 0.035
10 20000 13.68 0.036
10 30000 22.09 0.035
10 40000 30.83 0.034

Table 8: Running times with different n’s and d’s.

17

Figure 5: Visualization of the Kulldorff statistic at depth 8 of the kdq-tree. The hole is located at
(0.6, 0.6) and has radius 0.2.

6.3 Identifying Regions of Greatest Discrepancy

As we described in Section 5, we can augment the nodes in the quad tree with the Kulldorff’s
spatial scan statistic to further identify the regions where data have changed the most, once a
global change has been reported. To illustrate this, we generated a “hole” dataset consisting of
20,000 points. The first 10,000 points are generated from a normal distribution with mean (0.5,
0.5), standard deviation (0.2, 0.2) and correlation 0. The second 10,000 points are generated in the
same way, except that for points that fall into a circle centering at (0.6, 0.6) with a radius of 0.2,
we reject them with probability 1/2, effectively creating a stochastic “hole”. These streams are fed
into our scheme with the default parameters. Once we have built the initialized the structure on
the two windows Wn and W2n, a change is immediately reported. We then visualize the Kulldorff’s
statistic associated with the nodes at a certain level of the kdq-tree to identify the most different
region. In Figure 5, we show a visualization of the kdq-tree at depth 8 (with larger values being
represented with darker shades of gray), from which the hole can be easily observed.

6.4 Comparison with Prior Work in 1D

Our general change detection scheme works in any dimension, so it is also interesting to compare
our scheme with previously known schemes in 1D. In particular, we compare our scheme with the
well known Wilcoxon and Kolmogorov-Smirnov (KS) statistics [32], as well as the φ and Ξ statistics
recently proposed by Kifer et al. [21]. These statistics work only in 1D since they crucially rely
on the data being ordered. Being nonparametric, they all solely depend on the ranks of the data
points. The incremental maintenance costs of these statistics differ greatly. The Wilcoxon and KS
statistics can be maintained in O(log n) time per time step, which is comparable to the update
cost of our scheme. The cost to maintain the φ and Ξ statistics is O(n) per time step, which is
prohibitively high if the stream is coming in at a high rate.

The experimental setup is similar to that in [21]. Each data stream consists of 2 million points,
and there is a change every 20,000 points. We created three streams: The first stream is generated
from uniform distribution [0.5 − a, 0.5 + a] where a starts with 0.25 and performs a random walk
with step size ∆ = 0.01. We call this stream U . The second stream is generated from normal
distribution with fixed standard deviation σ = 0.2, while the mean µ starts at 0.5 and performs a
random walk between 0.2 and 0.8 with a step size of ∆ = 0.06. We call this stream Nµ. The third

18

stream is also generated from normal distribution, where the mean is fixed at µ = 0.5, while σ
starts at 0.2 and performs a random walk between 0 and 0.4 with step size ∆ = 0.06. This stream
is named Nσ. The window size is set to be n = 1000. The critical region for the Wilcoxon, KS, φ
and Ξ statistics are computed corresponding to size(20k, 0.05) according to [21]. This leads to a
low false positive rate, so in order to be comparable, we also lower the ASL to α = 0.02% and use
k = 1000 bootstrap samples4.

We list the result in Table 9. Our results generally agree with those obtained in [21]. Specifically,
the Wilcoxon statistic performs extremely badly except for changes that affect the median. The
KS statistic also primarily looks at changes near the median and does poorly on the N and Nσ

streams, but certainly better than Wilcoxon. The φ and Ξ statistics perform reasonably well across
different kinds of changes, but one should keep in mind its O(n) high maintenance cost, which is
exponentially higher than that of Wilcoxon, KL and our scheme. We can see that our KL based
approach does not show any obvious weakness, demonstrating its generality and robustness.

Stream Scheme Detected Late False Missed

Wilcoxon 0 1 1 98
KS 10 15 3 74

U φ 90 6 8 3
Ξ 81 10 2 8

KL 72 12 7 15

Wilcoxon 90 8 7 1
KS 89 9 8 1

Nµ φ 74 18 4 7
Ξ 86 13 9 0

KL 70 23 9 6

Wilcoxon 0 3 0 96
KS 40 19 6 40

Nσ φ 58 22 4 19
Ξ 57 25 4 17

KL 61 18 9 20

Table 9: Change detection results of different schemes in 1D.

7 Related Work

The Kullback-Leibler distance. The Kullback-Leibler distance is one of the most fundamental
measures in information theory and derives its importance from its role in estimating the proba-
bility of rare events [7]. It also has a very natural interpretation as a distance function between
distributions. As we described earlier, it is a special case of the Ali-Silvey distance [9], as well as a
special case of the Bregman distance [6], in both cases resulting as the unique measure satisfying

4There is a subtle issue at play here. The measures proposed by Kiferet al. draw on the special structure of the
Wilcoxon and KS tests, and thus have sampling distributions that are known and can be approximated independently

of the input data, which allows them a greater degree of control over the error, at the cost of being limited to these
special distributions. Our sampling distributions are defined by the bootstrap samples and are more general, but do
have a slightly weaker inherent false positive rate, which we improve by using a stronger ASL.

19

certain axioms over the unit simplex. The book by Čenkov[2] is a fascinating study of the geom-
etry of the probability simplex; intuitively, the KL-distance appears as a squared geodesic on the
manifold defined by probability distributions.

The Kullback-Leibler distance, because of its relation to the log likelihood ratio and Neyman-
Pearson classifiers, has been used extensively in classification and model selection problems in
machine learning [12, 13, 17, 22, 29, 30, 34].

Most recently, Johnson and Gruner [19] have suggested the idea of using the KL-distance to
decode neural signals presented as time series. They also develop the idea of using bootstrap
methods to evaluate the significance of their results.

Change detection schemes. A variety of change detection schemes have been studied in the
past. Schemes have been proposed for static datasets with specific structure [4, 5], time series
data [3, 20], and for detecting “burstiness” in data [23, 35]. There has been a significant amount of
work on anomaly detection in the networking community; due to space constraints we will defer all
discussion of the work in this area.

The definition of change has typically involved fitting a model to the data and determining
when the test data deviates from the built model [15, 18]. Other work has used statistical ideas of
outliers [35], or has built stochastic likelihood models [23].

In terms of the general formulation that we discussed in Section 1, two approaches are the most
directly connected to this paper. The paper by Ganti, Gehrke, Ramakrishnan and Loh [15] uses a
family of decision tree models to model data, and defines change in terms of the distance between
model parameters that encode both topological and quantitative characteristics of the decision
trees. They use bootstrapping to determine the statistical significance of their results.

The paper by Kifer, Ben-David and Gehrke [21] lays out a comprehensive nonparametric frame-
work for change detection in streams. They exploit order statistics of the data, and define gen-
eralizations of the Wilcoxon and Kolmogorov-Smirnoff test in order to define distance between
two distributions. Their method is effective on one-dimensional data streams; however, as they
point out, their approach does not trivially extend to higher dimensions. Aggarwal [1] considers
the change detection problem in higher dimensions based on kernel methods; however, his focus
is on detecting the “trends” of the data movement, which is different from our goal of detecting
statistically significant changes in the underlying distribution. His approach also has a much higher
computational cost.

Another approach that focuses on change detection in spatial data was developed by Kull-
dorff [25]. His work focuses on detecting unusually high disease rates relative to a population. Neill
and Moore [27] demonstrated how the Kulldorff distance could be used effectively to find regions
of high pattern (“disease”) density in a dataset. Their approach is based on a hierarchical data
structure that generalizes quad trees, and allows them to determine the maximum density region
over all, not just among those defined by the quad tree as in our paper. However, their approach is
static, and appears hard to generalize to data streams or dynamic data in general. As we indicated
in Section 5, the Kulldorff distance is a special case of the KL-distance.

Computing bootstraps. The bootstrap method was developed by Efron, and the book by
Efron and Tibshirani [14] is a definitive reference on bootstrap techniques. KL-distance estimates
have bias, and there has been some recent work [33] (for parametric families of distributions) on
improving the bootstrap estimates of the KL-distance and removing bias.

20

8 Conclusions and Further Questions

In summary, this paper presents a general scheme for nonparametric change detection in multidi-
mensional data streams, based on an information-theoretic approach to the data. Our formulation
is intrinsically multidimensional, and can even be used to incorporate categorical attributes in
data. Experiments indicate that this approach is comparable to more constrained (but powerful)
approaches in one dimension, and works efficiently and accurately in higher dimensions. However,
many intriguing questions remain. Firstly, it would be interesting to investigate more complex
bootstrap methods designed specifically for the KL-distance in order to improve its power and
significance, as well as eliminating its inherent bias.

Density estimation kernels could be used to replace the binning scheme we use to compute
the KL-distance. We have developed schemes on static data that make use of kernel methods
to smooth out the bins; however, these are not easily modified for the dynamic/streaming setting.
Kernel methods are typically used when an `2 approximation to an underlying density is acceptable.
However, in the information-theoretic setting we need kernels that can approximate the KL-distance
well.

Another direction would be to maintain approximate histograms. For `p metrics, histogram
construction is well understood. However, there are no such methods for the KL-distance. It is
possible that approximate histograms could be used to improve the performance of our algorithm
in higher dimensions.

References

[1] C. C. Aggarwal. A framework for diagnosing changes in evolving data streams. In SIGMOD,
2003.

[2] N. N. Čencov. Statistical Decision Rules and Optimal Inference, volume 14 of Translations in
Mathematics. American Mathematical Society, 1982.

[3] S. Chakrabarti, S. Sarawagi, and B. Dom. Mining surprising patterns using temporal descrip-
tion length. In VLDB, pages 606–617, 1998.

[4] S. S. Chawathe, S. Abiteboul, and J. Widom. Representing and querying changes in semistruc-
tured data. In ICDE, pages 4–13, 1998.

[5] S. S. Chawathe and H. Garcia-Molina. Meaningful change detection in structured data. In
SIGMOD, pages 26–37, 1997.

[6] M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman dis-
tances. Machine Learning, 48(1/2/3), 2002.

[7] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and Sons, Inc.,
1991.

[8] D. R. Cox and D. Oakes. Analysis of Survival Data. Chapman Hall, 1984.

[9] I. Csiszár. Why least squares and maximum entropy? an axiomatic approach to inference for
linear inverse problems. Ann. Statist., 19(4):2032–2066, 1991.

[10] I. Csiszár and J. Körner. Information Theory: Coding Theorems for Discrete Memoryless
Systems. Academic Press, 1981.

21

[11] T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, New
York, 2003.

[12] I. S. Dhillon, S. Mallela, and R. Kumar. Enhanced word clustering for hierarchical text
classification. In KDD, pages 191–200, 2002.

[13] I. S. Dhillon, S. Mallela, and R. Kumar. A divisive information-theoretic feature clustering
algorithm for text classification. J. Machine Learning Research, 3:1265–1287, 2003.

[14] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall, 1993.

[15] V. Ganti, J. Gehrke, R. Ramakrishnan, and W.-Y. Loh. A framework for measuring differences
in data characteristics. J. Computer and System Sciences, 2002.

[16] M. Gutman. Asymptotically optimal classification for multiple tests with empirically observed
statistics. IEEE Trans. Inf. Theory, 35:401–408, 1989.

[17] T. Hofmann. Probabilistic latent semantic indexing. In Proc. SIGIR, pages 50–57. ACM Press,
1999.

[18] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In KDD, pages
97–106, 2001.

[19] D. Johnson and C. Gruner. Information-theoretic analysis of neural coding. J. Computational
Neuroscience, 10:47–69, 2001.

[20] E. Keogh, S. Lonardi, and B. Y. Chiu. Finding surprising patterns in a time series database
in linear time and space. In KDD, pages 550–556, 2002.

[21] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. In VLDB, pages
180–191, 2004.

[22] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Information and Computation, 132:1–63, 1997.

[23] J. Kleinberg. Bursty and hierarchical structure in streams. Data Mining and Knowledge
Discovery, 7(4):373–397, 2003.

[24] R. E. Krichevsky and V. K. Trofimov. The performance of universal encoding. IEEE Trans.
Inf. Theory, 27:199–207, 1981.

[25] M. Kulldorff. A spatial scan statistic. Communications in Statistics: Theory and Methods,
26(6):1481–1496, 1997.

[26] P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman Hall, 1989.

[27] D. B. Neill and A. W. Moore. Rapid detection of significant spatial clusters. In KDD, 2004.

[28] A. B. Owen. Empirical Likelihood. CRC Press, 2001.

[29] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. In 31st Annual
Meeting of the ACL, pages 183–190, 1993.

22

[30] S. D. Pietra, V. D. Pietra, and J. Lafferty. Inducing features of random fields. IEEE Trans.
Pattern Analysis and Machine Intelligence, 19(4), 1997.

[31] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C.
Cambridge University Press, 1992.

[32] D. J. Sheskin. Handbook of Parametric and nonparametric statistical procedures. Chapman
and Hall/CRC, 3rd edition, 2004.

[33] R. Shibata. Bootstrap estimate of Kullback-Liebler information for model selection. Statistica
Sinica, 7:375–394, 1997.

[34] N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In Proc. 37th
Annual Allerton Conference on Communication, Control and Computing, pages 368–377, 1999.

[35] Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In KDD, pages
336–345, 2003.

A Information Theory and Classifiers

In general, let X1, . . . Xn be independent identically distributed (i.i.d) with respect to distribution
Q. Consider the two hypotheses H1 : Q = P1 and H2 : Q = P2. A test procedure is some
function g(x1, . . . xn) such that g(x1, . . . xn) = i implies that Hi is chosen. Since there are only two
hypotheses, we can also specify g by specifying the set A over which g = 1;the complement of A,
Ac, is then the set over which g = 2.

The two probabilities of error are α, the probability of choosing H2 when H1 is true, and β, the
converse. These are the so-called type-1 and type-2 errors, and can be written as

α = Pr(g(x1, . . . xn) = 2 | H1 true) = P n
1 (Ac)

and
β = Pr(g(x1, . . . xn) = 1 | H2 true) = P n

2 (A)

The goal of hypothesis testing is to design a test procedure that minimizes these two errors,
and the Neyman-Pearson theorem tells us that the likelihood ratio defines the best test procedure:

Theorem A.1 (Neyman-Pearson) For a given threshold T , if we choose as A the region

A(T) =

{

P1(X1, . . . Xn)

P2(X1, . . . Xn)
≥ T

}

with associated error probabilities α∗, β∗, then for any other region B with errors α, β, if α ≤ α∗,
then β ≥ β∗.

The relation between the likelihood ratio and the relative entropy can then be expressed via
Stein’s lemma[7, Sec 12.8].

Lemma A.1 (Stein’s Lemma) For distributions P1, P2 as before, with D(P1‖P2) <∞. let A be
an acceptance region for hypothesis H1. Let the associated probabilities of error be α, β, and for
0 < ε < 1

2 , let
βε = min

α<ε
β

23

Then

lim
ε→0

lim
n→∞

1

n
log βε = −D(P1‖P2)

To understand Stein’s Lemma, it is helpful to consider an extreme case. Suppose we have two
distributions P1 and P2 such that D(P1‖P2) = 0 (for discrete distributions, this is equivalent to
saying that P1 = P2). Suppose now that we wish to minimize β, given that α = 0. Stein’s Lemma
tells us that the best bound we can obtain for β is 2−nD(P1‖P2) = 0.5. How would we achieve this?
Since α = 0, we can never conclude H2 if H1 is true, and so one approach would be to conclude H1

always. In this case, since the distributions are identical, any input is equally likely to have come
from P1 or P2, and so we can do no better than a coin toss in determining correctly whether H2

holds, yielding β = 0.5.

24

