
Dynamic Structures for Top-k Queries

on Uncertain Data

Jiang Chen1? and Ke Yi2??

1 Center for Computational Learning Systems, Columbia University
New York, NY 10115, USA. criver@cs.columbia.edu

2 Department of Computer Science and Engineering, Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong. yike@cse.ust.hk

Abstract. In an uncertain data set S = (S, p, f) where S is the ground

set consisting of n elements, p : S → [0, 1] a probability function, and
f : S → R a score function, each element i ∈ S with score f(i) appears
independently with probability p(i). The top-k query on S asks for the set
of k elements that has the maximum probability of appearing to be the k

elements with the highest scores in a random instance of S. Computing
the top-k answer on a fixed S is known to be easy. In this paper, we
consider the dynamic problem, that is, how to maintain the top-k query
answer when S changes, including element insertion and deletions in
the ground set S, changes in the probability function p and the score
function f . We present a fully dynamic data structure that handles an
update in O(k log k log n) time, and answers a top-j query in O(log n+j)
time for any j ≤ k. The structure has O(n) size and can be constructed
in O(n log2 k) time. As a building block of our dynamic structure, we
present an algorithm for the all-top-k problem, that is, computing the
top-j answers for all j = 1, . . . , k, which may be of independent interest.

1 Introduction

Uncertain data naturally arises in a number of modern applications, e.g. im-
precise measurement in mobile and sensor data [6], fuzzy duplicates in data
warehouse [2], data integration [9], data cleaning [8, 4], etc. These applications
have called for a lot of research activities in modeling and querying uncertain
data in recent years. An uncertain data model represents a probability distri-
bution of all the possible instances of the data set. For example, in the basic
uncertain data model [5, 1], an uncertain data set S = (S, p) consists of a ground
set of elements S = {1, . . . , n} and a probability function p : S → [0, 1]. It is
assumed that each element i appears independently with probability p(i), i.e.,
the probability that S instantiates into I ⊆ S is

Pr[I | S] =
∏

i∈I

p(i)
∏

i∈S\I

(1 − p(i)).

? Supported in part by a research contract from Consolidated Edison.
?? Supported in part by Hong Kong Direct Allocation Grant (DAG07/08).

This basic model, in spite of its simplicity, has often been used to approximate
the uncertain nature of the underlying data set. We will also adopt this model in
this paper. In the following, we use I ∼ S to denote that I is a random instance
generated from S.

Top-k queries are perhaps the most common type of queries in such applica-
tions, and have attracted much attention recently. However, all of the existing
works can only handle one-time top-k computations [12, 10, 13]. When the un-
derlying data changes, i.e., when the associated probabilities change, or elements
are inserted or deleted, the algorithm has to recompute the answer to the query.
This is often unacceptable due to the inherent dynamic nature of the uncer-
tain data in many applications. For instance in data integration, the probability
p(i) represents the confidence of its existence, as more data becomes available
from different sources, it is conceivable that the confidence levels might expe-
rience frequent changes. In this paper, we are interested in designing dynamic
data structures that can be used to efficiently maintain the correct top-k answer
as the uncertain data set undergoes a series of updates, including probability
updates, element insertions and deletions.

Problem definition. There exist a few definitions for top-k queries in the litera-
ture. We adopt the following natural definition [12], which also requires a score
function f : S → R.

Definition 1. [12] Let S = (S, p, f) be an uncertain data set. For any I ⊆ S,
let Ψk(I) be the top-k elements in I according to the score function f ; if |I | < k,
define Ψk(I) = ∅. Let T be any set of k elements. The answer T ∗ to a top-k
query on S is T ∗ = argmaxT PrI∼S [Ψk(I) = T] = argmaxT

∑

Ψk(I)=T Pr[I | S].
Ties can be broken arbitrarily.

In other words, T ∗ is the set of k elements that has the maximum probability
of being at the top-k according to the score function in a randomly generated
instance. As a concrete example, S can be a collection of sensors deployed in an
environmental study, f represents their precipitation readings, and p measures
the probabilities that the sensors are functioning normally. Thus, the top-k result
gives us a good idea of where high precipitation occurs. Please see [12] for more
potential applications.

As a convention, we assume that all the scores are distinct and S is given in
the decreasing score order, i.e., f(1) > f(2) > · · · > f(n). Thus the probability
of a set T of size k being the top-k elements PrI∼S [Ψk(I) = T] becomes

∏

j∈T

p(j)
∏

j<l(T),j 6∈T

(1 − p(j))

where l(T) is the last element in T . The problem becomes finding the set of k
elements T ∗ that maximizes the above quantity. In this paper, we break ties by
choosing the T ∗ with a smaller l(T ∗).

Previous work. Quite a few uncertain data models have been proposed in the
database literature [11, 3, 1, 5]. They range from the basic model that we use in
this paper, to powerful models that are complete, i.e., models that can repre-
sent any probability distribution of the data set instances. However, complete
models have exponential complexities and are hence uninteresting computation-
ally. Some extensions to the basic model have been introduced to expand the
expressiveness of the model while keeping computation tractable. Notably, in
the TRIO [1] system, an uncertain data set consists of a number of x-tuples,
and each x-tuple may include a number of elements associated with probabil-
ities, and represent a discrete probability distribution of these elements being
selected. Independence is still assumed among the x-tuples.

Soliman et al. [12] first proposed the problem of top-k query processing in
an uncertain data set. Their algorithms have been recently improved by Yi et
al. [13], both in the basic uncertain data model and the x-tuple model. In the
basic model, if the elements are given in the sorted score order, there is a simple
O(n log k)-algorithm to compute the answer of the top-k query in one pass [13].
We scan the elements one by one, and maintain in a heap the k elements with
the highest probabilities seen so far. Every time the heap changes we also incre-
mentally compute the probability of these k elements being the top-k answer,
i.e., the probability that all of these k elements appear multiplied by the prob-
ability that none of the other seen elements appear. In the end we report the k
elements that achieve the maximum probability. However, this simple algorithm
is inherently static, it is not clear how to extend it to handle updates without re-
computation. As illustrated by the above sensor example, the uncertain data set
may experience frequent changes, therefore it is important to develop dynamic
algorithms for the problem.

There are a few other top-k query definitions proposed recently. For example,
Soliman et al. [12] also proposed the U-kRanks query that concerns with the
probability of an element appearing at a particular rank in a randomly generated
instance. Another different framework by Ré et al. [10] deals with the problem
of finding the k most probable answer for a given certain query, and there the
additional scoring dimension is not involved.

Our results. In this paper, we present a dynamic structure of size O(n) that
always maintains the correct answer to the top-k query for an uncertain data set
S. In fact, we support more general queries than just for a specific k. Given any
j ≤ k, our structure answers the top-j query in time O(log n+ j). We conjecture
that the problem does not necessarily become easier even if one only requires
support for the top-k query. Our structure takes O(k log k log n) time to process
a probability update, insert a new element into S, or delete an element from S.
Note that a score change can be simply accomplished by an element deletion
followed by an insertion. Given an uncertain data set whose elements are sorted
by score, it takes O(n log2 k) time to build the structure. The new structure uses
a different approach than the static algorithm, and is based on a decomposition
of the problem, which allows for efficient updates.

Before presenting our dynamic data structure, in Section 2 we consider a
generalized version of the top-k problem, the so called all-top-k problem, in
which we want to compute the top-j answers for all j = 1, . . . , k. We give an
O(n log2 k+k2)-time algorithm for this problem. This algorithm is also a building
block of our dynamic data structure, which we describe in Section 3.

2 The All-Top-k Problem

In this section, we consider a slightly generalized version of the basic top-k
problem. Given an uncertain data set S, in the all-top-k problem, we want to
compute the answers to all the top-j queries, for j = 1, . . . , k. Näıvely applying
the basic algorithm in [13] for each j would result in a total running time of
O(nk log k). Below we give an O(n log2 k + k2) algorithm, which will also be
useful in our dynamic structure presented in Section 3. Note that the k2 term
in the upper bound is necessary because this problem has a total result size of
Θ(k2).

Henceforth we will denote the top-j answer as T ∗
j . We first observe that once

we know l(T ∗
j), the last element in T ∗

j , the other j − 1 elements of T ∗
j are simply

the j − 1 highest-probability elements in [1, l(T ∗
j)]. In the following, we focus on

computing l(T ∗
j) for all j, and present an algorithm that runs in O(n log2 k) time.

After we have the l(T ∗
j)’s, the T ∗

j ’s can be computed easily in O(n log k + k2)
time by scanning all the elements again while keeping a heap of size k. If only
the probabilities of these top-j answers are required, O(n log k) time suffices.

Algorithm outline. To simplify our notation, we use lj (for 1 ≤ j ≤ k) to
denote l(T ∗

j), the last element in T ∗
j . We will progressively process the first i

elements of S and update the corresponding lj ’s, as i goes from 1 to n. When we
finish processing all n elements, we obtain the lj ’s for S. However, since there
are Θ(nk) such values (k values for each position i), we cannot even afford to
list all of them explicitly; instead, we store them in a “compressed list” that
allows for fast updates. The data structure makes essential use of the following
two properties of the changes these lj ’s may experience. The first property is
monotonicity. Note that the following lemma holds for all uncertainty data sets,
including those consisting of the first i elements of S.

Lemma 1. For any 1 ≤ j < j ′ ≤ k, we have that lj ≤ lj′ .

Proof. We only need to prove the case when j ′ = j+1, and the general statement
will be an easy consequence. Let T be a set of size j, and e 6∈ T , denote by r(T, e)
the ratio of the probability of T ∪{e} being the top-(j +1) set to that of T being
the top-j. We have3

3 In this paper, we use the following convention to handle the multiplication and
division of zeros. We keep a counter on how many zeroes have been applied to a
product: incrementing the counter for each multiplication by 0 and decrementing for
each division by 0. We interpret the final result as 0 if the counter is positive, or ∞

if negative.

r(T, e) =
PrI∼S [T ∪ {e} = Ψj+1(I)]

PrI∼S [T = Ψj(I)]
=

∏

h∈T∪{e} p(h)
∏

h<l(T∪{e}),h6∈T∪{e}(1 − p(h))
∏

h∈T p(h)
∏

h<l(T),h6∈T (1 − p(h))

=

{

p(e)
1−p(e) , if e < l(T),

p(e)
∏

l(T)<h<e(1 − p(h)), if e > l(T).

Note that when e > l(T), r(T, e) = p(e)
1−p(e)

∏

l(T)<h≤e(1 − p(h)) ≤ p(e)
1−p(e) .

Now assuming on the contrary lj > lj+1, let e be an element in T ∗
j+1 but

not in T ∗
j . We will show that T ∗

j ∪ {e} is more likely to be the top-(j + 1) set

than T ∗
j+1, which leads to contradiction. Since e < lj , r(T ∗

j , e) = p(e)
1−p(e) ≥ r(T, e)

for any T . Because lj > lj+1, by the definition of T ∗
j and our tie breaking rule,

we must have PrI∼S [T ∗
j = Ψj(I)] > PrI∼S [T ∗

j+1 \ {e} = Ψj(I)]. Therefore, the
probability that T ∗

j ∪ {e} is the top-(j + 1) answer is

Pr
I∼S

[T ∗
j = Ψj(I)] · r(T ∗

j , e) > Pr
I∼S

[T ∗
j+1 \ {e} = Ψj(I)] · r(T ∗

j , e)

≥ Pr
I∼S

[T ∗
j+1 \ {e} = Ψj(I)] · r(T ∗

j+1 \ {e}, e)

= Pr
I∼S

[T ∗
j+1 = Ψj+1(I)],

a contradiction.

The second property is that, when we process the i-th element, lj either
changes to i or stays the same because all newly added j-sets contains i. By
Lemma 1, if lj changes to i, so do all lj′ ’s for j ≤ j′ ≤ k. Thus, to process
element i, the problem basically becomes finding the smallest j such that lj
becomes i.

Updating the lj ’s. We store l1, . . . , lmin{i,k} in a list, both j and the value of
lj . By Lemma 1 this list is automatically in the increasing order of both j and
lj . We further compress the list by representing the lj ’s with equal values by
ranges. For example, if l1 = 1, l2 = l3 = l4 = 5, l5 = l6 = 6, then the list looks
like (1, [1, 1]), (5, [2, 4]), (6, [5, 6]). Suppose that we have a comparison method to
decide if lj becomes i for any j, then we can locate the minimum such j, denoted
j∗, as follows. We first visit the compressed list from right to left, checking the
boundaries of each range, until we locate the range that contains j∗. Next we do
a binary search inside the range to pin down its exact location. Finally, supposing
that the entry in the list whose range contains j∗ is (i′, [j1, j2]), we first truncate
all the trailing entries in the list, and then replace (i′, [j1, j2]) with (i′, [j1, j

∗−1])
(if j1 ≤ j∗) and (i, [j∗, i]). Note that a special case is when j∗ does not exist, i.e.,
no lj becomes i. In this case if i ≤ k, we append (i, [i, i]) to the list; otherwise
we do nothing.

We bound the number of comparisons per element as follows. In the first
step when we scan the list from right to left, if we pass an entry, then it will be
removed immediately. Thus, the amortized number of comparisons is O(1) for

the first step. The second step involves a binary search inside a range of length
at most k, which needs O(log k) comparisons. Therefore, the algorithm performs
O(n log k) comparisons for all n elements.

The comparison method. To complete the algorithm, we finally specify how to
conduct each comparison in the algorithm above, which decides whether some
lj should change to i. Let T ∗

j (l) be the highest-probability j-set whose last ele-
ment is l, i.e., T ∗

j (l) consists of l and the j − 1 elements in {1, . . . , l − 1} with
the largest probabilities. We need to compute both PrI∼S [Ψj(I) = T ∗

j (lj)] and
PrI∼S [Ψj(I) = T ∗

j (i)] and compare them. Recall that for a set T of size j,

Pr
I∼S

[Ψj(I) = T] =
∏

e∈T

p(e)
∏

e<l(T),e6∈T

(1 − p(e))

=
∏

e∈T

p(e)

1 − p(e)

∏

e≤l(T)

(1 − p(e)).

The second factor is simply a prefix-product and can be easily maintained for

all l(T) with a table of size O(n). To compute
∏

e∈T
p(e)

1−p(e) for T = T ∗
j (lj) and

T = T ∗
j (i), we build a data structure that supports the following queries: given

any j, l, return the product of p(e)/(1− p(e))’s for the j − 1 highest-probability
elements e in {1, . . . , l − 1}. Below we give such a structure, which answers a
query in O(log k) time and can be constructed in O(n log k) time. It is obvious
that with this structure, we can perform a comparison in O(log k) time, leading
to a total running time of O(n log2 k) to process all n elements.

Again we process the n elements one by one, and maintain a dynamic binary
tree (say a red-black tree) of k elements, storing the highest-probability elements
among the elements that have been processed, sorted by their probabilities. At
the leaf of the tree storing e, we maintain the value p(e)/(1− p(e)), and in each
internal node u the product of all p(e)/(1− p(e))’s in the subtree rooted at u. It
can be verified that this binary tree can be updated in O(log k) time per element.
The binary tree built after having processed the first lj −1 elements can be used

to compute
∏

e∈T
p(e)

1−p(e) for T = T ∗
j (lj) in O(log k) time. The same can be said

for i and T ∗
j (i). However, the comparison of T ∗

j (lj) and T ∗
j (i) requires queries

on both binary trees, which are not supported by the progressive processing.
To support queries for all binary trees that ever appear, we make the data

structure partially persistent, i.e., the structure has multiple versions, one cor-
responding to each binary tree ever built, and allows queries on any version,
but only allows updates to the current version. That is, when we process i, we
produce a new binary tree of version i without altering any of the previous ver-
sions. Since the binary tree clearly has bounded in-degree, we can use the generic
technique of Driscoll et al. [7] to make it partially persistent, without increasing
the asymptotic query and update costs. Thus, this persistent structure can be
built in O(n log k) time and supports a query on any version of the binary tree
in time O(log k). However, the space requirement increases to O(n log k).

This completes the description of the algorithm.

Theorem 1. There is an algorithm that computes l1, . . . , lk in O(n log2 k) time.

As described at the beginning of this section, this leads to the following
corollary.

Corollary 1. There is an algorithm that solves the all-top-k problem in O(n log2 k+
k2) time.

3 The Dynamic Data Structure

We present our dynamic data structure in this section. We begin with probabil-
ity updates, and assume that the ground set S is static. In Section 3.1, we de-
scribe our data structure, which can be updated in time with a näıve O(k2 log n)
algorithm. We then present a better node merging algorithm in Section 3.2, im-
proving the update time to O(k log k log n). Finally, in Section 3.3, we talk about
how to handle element insertions and deletions.

3.1 The data structure

The structure. We build a balanced binary tree T on {1, . . . , n}. Each leaf of T
stores between k and 2k elements. Thus there are a total of O(n/k) leaves, and
hence a total number of O(n/k) nodes in T . For any node u ∈ T , let Su be the
set of elements stored in the leaves of the subtree rooted at u, and Su be the
corresponding uncertain data set.

For each node u, we solve the all-top-k problem for Su, except that we do not
list or store the all-top-k sets (which takes time and space of Ω(k2)). Instead, we
only store the corresponding probabilities of the sets. More precisely, let T ∗

j (Su)
be the top-j answer for Su. We compute and store ρu

j = PrI∼Su [Ψj(I) = T ∗
j (Su)]

for all j = 1, . . . , k. Thus the all-top-k solutions for the whole set S can be found
at the root of the whole binary tree.

At each node u, we also compute k+1 auxiliary variables πu
j , for j = 0 . . . , k.

If we sort the elements in Su by their probabilities in descending order, and
suppose that eu

1 , eu
2 , . . . , eu

|Su| is such an order, then πu
j is defined as

πu
j =

j
∏

h=1

p(eu
h)

|Su|
∏

h=j+1

(1 − p(eu
h)). (1)

In other words, πu
j is the maximum probability for any j-set generated from Su.

Note that πu
0 =

∏

e∈Su(1− p(e)) is just the probability that none of Su appears.

This completes the description of our data structure. It is obvious that the
structure has a size of O(n).

Initializing and updating the πu
j ’s. Rewriting (1), we get

πu
j =

j
∏

h=1

p(eu
h)

1 − p(eu
h)

|Su|
∏

h=1

(1 − p(eu
h)) = πu

0 ·

j
∏

h=1

p(eu
h)

1 − p(eu
h)

. (2)

Hence πu
j is just the j-th prefix product of the list

p(eu

1
)

1−p(eu

1
) ,

p(eu

2
)

1−p(eu

2
) , . . . times πu

0 .

This suggests us to maintain the list up to the first k elements. These can be
prepared for all the leaves u in O(n log k) time by sorting the elements in each
Su by their probabilities. For an internal node u with children v and w, we just
merge the two lists associated with v and w, which takes O(k) time. To compute
πu

0 takes O(k) time per leave, but only O(1) time for an internal node because
πu

0 = πv
0πw

0 . Given the list and πu
0 , all πu

j ’s can be computed in time O(k) for u.
Thus it takes time O(n log k) to initialize all the πu

j ’s. When there is probability
change at a leaf, we can update all the affected πu

j ’s in O(k log n) time along the
leaf-to-root path.

Initializing and updating the ρu
j ’s. Now we proceed to the more difficult part,

maintaining the ρu
i ’s. For a leaf e, the ρe

j ’s can be computed by invoking the

algorithm in Section 2, taking O(k log2 k) time per leaf and O(n log2 k) overall.
For an internal node u, ρu

i can be computed as specified in the following lemma.

Lemma 2. Let u be an internal node with v and w being its left and right child,
respectively. For any 1 ≤ j ≤ k,

ρu
j = max{ρv

j , max
1≤h≤j

πv
j−hρw

h }. (3)

Proof. Recall that the leaves of the tree are sorted in the descending order of
score. Thus the left child of u, namely v, contains elements with higher scores.

By definition, ρu
j is the top-j query answer for the uncertain data set Su.

There are two cases for the top-j query answer. Either we choose all of these j
elements from Sv, which has a maximum probability of ρv

j , or choose at least
one element from Sw. The latter case is further divided into j sub-cases: We can
choose j − h elements from Sv and h elements from Sw, for h = 1, . . . , j. For
each sub-case, the maximum probability is πv

j−hρw
h .

The näıve way to maintain the ρu
j ’s is to compute (3) straightforwardly, which

takes Θ(k2) time per internal node. In Section 3.2 we present an improved node
merging algorithm that computes all ρu

j ’s for u in time O(k log k). This will

lead to an overall initialization time of (n log2 k) for the whole structure, and an
update time of O(k log k log n).

Querying the structure. Once we have the structure available, we can easily
extract the top-k query answer by remembering which choice we have made for
each ρu

j in Lemma 2. We briefly outline the extraction algorithm here. We visit
T in a top-down fashion recursively, starting at the root querying for its top-k

answer. Suppose we are at node u ∈ T with children v and w, querying for its top-
j answer. If ρu

j = ρv
j , then we recursively query v for its top-j answer. Otherwise,

suppose ρu
j = πv

j−hρw
h for some h. We report ev

1, . . . , e
v
j−h and then recursively

query w for its top-h answer. It is not difficult to see that this extraction process
takes O(log n + k) time in total.

Note that our data structure is capable of answering queries for any top-
j, j ≤ k. It is not clear to us whether restricting to only the top-k answer
will make the problem any easier. We suspect that the all-top-k feature of our
data structure is inherent in the problem of maintaining only the top-k answer.
For example, in the case when the probability of the element with the highest
score, namely p(1), is 0, we need to compute the top-k answer of the rest n − 1
elements. However, when p(1) is changed to 1, the top-k answer changes to {1}
union the top-(k − 1) answer of the rest of n− 1 elements. This example can be
further generalized. When p(1), p(2), . . . , p(k − 1) are changed from 0 to 1 one
after another, the top-k answer of the whole data set is changed from the top-k
answer, to the top-(k−1) answer, then to the top-(k−2) answer,. . . , and finally
to the top-1 answer of the rest n − k + 1 elements.

3.2 An improved node merging algorithm

Näıvely evaluating (3) takes Θ(k2) time. In this section, we present an improved
O(k log k)-time algorithm. In the following, we concentrate on computing the
second terms inside the max of (3), with which computing ρu

j ’s takes only k
max-operations. That is, we focus on computing ρ̄u

j = max1≤h≤j πv
j−hρw

h , for
j = 1, . . . , k.

Our algorithm exploits the internal structure of the problem. In Figure 1, we
represent each product πv

j−hρw
h by a square. Thus, each ρ̄u

j is the maximum over
the corresponding diagonal. We number the diagonals from top-left to bottom-
right, so that the product πv

j−hρw
h is in diagonal j. We will again make use of

the monotonicity property similar to that shown in Lemma 1. For two columns
h and h′ of Figure 1, we say column h beats column h′ at diagonal j, where
2 ≤ h ≤ j, if the product at the intersection of column h and diagonal j is larger
than that at the intersection of column h′ and diagonal j. The following lemma
shows that these comparisons between two columns exhibit monotonicity.

Lemma 3. For any 1 ≤ h′ < h ≤ j, if column h beats column h′ at diagonal j,
then column h beats column h′ at any diagonal j ′, where j ≤ j′ ≤ k.

Proof. By assumption, we have

πv
j−hρw

h > πv
j−h′ρw

h′ . (4)

Rewriting (4), we get

ρw
h

ρw
h′

>
πv

j−h′

πv
j−h

. (5)

· · ·

· · ·

· · ·

ρw
1 ρw

2 ρw
3 ρw

4 · · · ρw
k

πv
0

πv
2

πv
3

· · ·

πv
k−1

πv
1

· · ·

· · ·· · ·

Fig. 1. A square represents the product of the corresponding πv
j−h and ρw

h . Each ρ̄u
j is

the maximum on a diagonal.

Recalling (2), the RHS of (5) can be expressed as

j−h′

∏

t=j−h+1

p(ev
t)

1− p(ev
t)

,

which becomes smaller when j becomes larger (remember that the ev
t ’s are sorted

by probabilities in descending order). Therefore, (5), and hence (4), will also hold
if we replace j with j′.

We will progress column by column, and for each diagonal keep the current
“winner”, i.e., the column that beats all the other columns seen so far. After we
have processed column j (the last column that has intersection with diagonal
j), the winner for diagonal j then determines ρ̄u

j , and we can remove diagonal j
from the current maintained list.

By Lemma 3, the way how the winners change exhibits the same pattern as
the lj ’s do in Section 2. More precisely, when we process column j, if h∗ is the
minimum h such that the winner of diagonal h changes to column j, then all
diagonals after h∗ will have their winners changed to j. Thus, we can use the
same algorithm (using a compressed list) that we designed for computing the lj ’s
in Section 2 to maintain the list of winners. Since here comparing two columns
at a particular diagonal takes O(1) time (as opposed to O(log k) in Section 2),
the total running time is O(k log k).

Therefore, we can compute the ρu
j ’s in O(k log k) time for each node u. To

summarize, when the probability of an element changes, we first update all the
πu

j values for all the nodes on a leaf-to-root path, taking O(k) time per node.
Next, we recompute the ρu

j values at the leaf containing the updated element.

This takes O(k log2 k) time using our all-top-k algorithm of Section 2. Finally,
we update the other ρu

j values for all nodes on the leaf-to-root path in a bottom-
up fashion, taking O(k log k) time per node. The overall update cost is thus
O(k log2 k + k log k log n) = O(k log k log n).

3.3 Handling element insertions and deletions

We can handle element insertions and deletions using standard techniques. We
make the binary tree T a dynamic balanced binary tree, say a red-black tree,
sorted by scores. To insert a new element, we first find the leaf where the element
should be inserted. If the leaf contains less than 2k elements, we simply insert
the new element, and then update all the affected πu

i and ρu
i values as described

previously. If the leaf already contains 2k elements, we split it into two, creating
a new internal node, which becomes the parent of the two new leaves. After
inserting the new element into one of the two new leaves, we update the πu

i and
ρu

i values as before. When the tree gets out of balance, we apply rotations. Each
rotation may require the recomputation of the πu

i and ρu
i values at a constant

number of nodes, but this does not change the overall asymptotic complexity.
Deletions can be handled similarly.

Therefore, we reach the main result of this paper.

Theorem 2. There is a fully dynamic data structure that maintains an uncer-
tain data set under probability changes, element insertions and deletions that
takes O(k log k log n) time per update, and answers a top-j query in O(log n+ j)
time for any j ≤ k. The structure has size O(n) and can be constructed in
O(n log2 k) time. All bounds are worst-case.

4 Concluding Remarks

In this paper we present a dynamic data structure for the top-k problem with
an update cost of O(k log k log n). We conjecture that there is an inherent Ω(k)
lower bound for the problem. As a building block of our main result, we also
present an all-top-k algorithm that runs in O(n log2 k + k2) time.

Many directions for this problem remain elusive. For example, we have only
considered the basic uncertain data model. It would be interesting if we can
extend our approach to other more powerful models, such as the x-tuple model
[1]. Another orthogonal direction is to consider other top-k definitions [12, 10].

References

1. P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar, T. Sugihara,
and J. Widom. Trio: A system for data, uncertainty, and lineage. In VLDB, 2006.

2. R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in
data warehouses. In VLDB, 2002.

3. O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs: Databases with
uncertainty and lineage. In VLDB, 2006.

4. S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and efficient fuzzy
match for online data cleaning. In SIGMOD, 2003.

5. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In
VLDB, 2004.

6. A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-driven
data acquisition in sensor networks. In VLDB, 2004.

7. J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures
persistent. Journal of Computer and System Sciences, 38(1):86–124, 1989.

8. H. Galhardas, D. Florescu, and D. Shasha. Declarative data cleaning: Language,
model, and algorithms. In VLDB, 2001.

9. A. Halevy, A. Rajaraman, and J. Ordille. Data integration: the teenage year. In
VLDB, 2006.

10. C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probalistic
databases. In ICDE, 2007.

11. A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models for un-
certain data. In ICDE, 2006.

12. M. A. Soliman, I. F. Ilyas, and K. C. Chang. Top-k query processing in uncertain
databases. In ICDE, 2007.

13. K. Yi, F. Li, D. Srivastava, and G. Kollios. Improved top-k query processing in
uncertain databases. Technical report, AT&T Labs, Inc., 2007.

