
Optimal External Memory

Planar Point Enclosure

Lars Arge1?, Vasilis Samoladas2, and Ke Yi1?

1 Department of Computer Science, Duke University, Durham, NC 27708, USA.
{large,yike}@cs.duke.edu

2 Technical University of Crete, Greece. vsam@softnet.tuc.gr

Abstract. In this paper we study the external memory planar point en-
closure problem: Given N axis-parallel rectangles in the plane, construct
a data structure on disk (an index) such that all K rectangles containing
a query point can be reported I/O-efficiently. This problem has important
applications in e.g. spatial and temporal databases, and is dual to the
important and well-studied orthogonal range searching problem. Surpris-
ingly, we show that one cannot construct a linear sized external memory
point enclosure data structure that can be used to answer a query in
O(logB N + K/B) I/Os, where B is the disk block size. To obtain this
bound, Ω(N/B1−ε) disk blocks are needed for some constant ε > 0. With
linear space, the best obtainable query bound is O(log2 N + K/B). To
show this we prove a general lower bound on the tradeoff between the
size of the data structure and its query cost. We also develop a family of
structures with matching space and query bounds.

1 Introduction

In this paper we study the external memory planar point enclosure problem:
Given N axis-parallel rectangles in the plane, construct a data structure on disk
(an index) such that all K rectangles containing a query point q can be reported
I/O-efficiently. This problem is the dual of the orthogonal range searching prob-
lem, that is, the problem of storing a set of points in the plane such that the
points in a query rectangle can be reported I/O-efficiently. The point enclosure
problem has important applications in temporal databases; for example, if we
have a database where each object is associated with a time span and a key
range, retrieving all objects with key ranges containing a specific key value at a
certain time corresponds to a point enclosure query. Also, in spatial databases,
irregular planar objects are often represented in a data structure by their min-
imal bounding boxes; retrieving all bounding boxes that contain a query point,
i.e. a point enclosure query, is then the first step in retrieving all objects that
contain the query point. Point enclosure can also be used as part of an algo-
rithm for finding all bounding boxes intersecting a query rectangle, since such
a query can be decomposed into a point enclosure query, a range query, and

? Supported in part by the National Science Foundation through RI grant EIA–
9972879, CAREER grant CCR–9984099, ITR grant EIA–0112849, and U.S.–
Germany Cooperative Research Program grant INT–0129182.



two segment intersection queries. While a lot of work has been done on devel-
oping worst-case efficient external memory data structures for range searching
problems (see e.g. [3, 17] for surveys), the point enclosure problem has only been
considered in some very restricted models of computation [1, 14]. In this paper
we prove a general lower bound on the tradeoff between the size of an external
memory point enclosure structure and its query cost, and show that this trade-
off is asymptotically tight by developing a family of structures with matching
space and query bounds. Surprisingly, our results show that the point enclosure
problem is harder in external memory than in internal memory.

1.1 Previous work

The B-tree [13] is the most fundamental external memory data structure. It
uses O(N/B) disk blocks of size B to store N elements and can be used to
answer a one-dimensional range query in O(logB N + K/B) I/Os; an I/O is the
movement of one disk block between disk and main memory. These bounds are
optimal in comparison-based models of computation, and they are the bounds
we would like to obtain for more complicated external memory data structure
problems. In the study of such problems, a number of different lower bound
models have been developed in recent years: the non-replicating index model [21],
the external memory pointer machine model [25], the bounding-volume hierarchy
model [1], and the indexability model [20, 19]. The most general of these models
is the indexability model of Hellerstein, Koutsoupias, and Papadimitriou [20, 19].
To our knowledge, it captures all known external data structures for reporting
problems (that is, problems where the output is a subset of the objects in the
structure). In this model, the focus is on bounding the number of disk blocks
containing the answers to a query q, given a bound on the number of blocks
required by the data structure. The cost of computing what blocks to access to
answer the query (the search cost) is ignored. More formally, an instance of a
problem is described by a workload W , which is a simple hypergraph (O,Q),
where O is the set of N objects, and Q is a set of subsets of O. The elements of
Q = {q1, . . . , qm} are called queries. An indexing scheme S for a given workload
W = (O,Q) is a B-regular hypergraph (O,B), where each element of B is a
B-subset of O (called a block), and where O = ∪B. An indexing scheme S can
be thought of as a placement of the objects of O on disk pages, possibly with
redundancy. The cost of answering a query q is min{|B′| | B′ ⊆ B, q ⊆

⋃

B′},
i.e., the minimum number of blocks whose union contains all objects in the
query. The efficiency of an indexing scheme is measured using two parameters:
its redundancy r and its access overhead A. The redundancy r is defined to be
the average number of copies of an object stored in the indexing scheme, i.e.
r = B|B|/N , and the access overhead A is defined to be the worst-case ratio
between the cost of a query and the ideal cost d|q|/Be (where |q| denotes the
query output size). In other words, an indexing scheme with redundancy r and
access overhead A occupies rdN/Be disk blocks and any query q is covered by
at most Ad|q|/Be disk blocks.



Following the introduction of the indexability model, a sequence of results
by Koutsoupias and Taylor [22], Samoladas and Miranker [24] and Arge, Samo-
ladas, and Vitter [6] proved a tradeoff of r = Ω(log(N/B)/ log A) for the (two-
dimensional) orthogonal range searching problem in the model. Using this trade-

off, Arge, Samoladas and Vitter [6] proved that Ω(N
B

log(N/B)
log log

B
N ) space is needed to

design an indexing scheme that answers queries in O(logB N + K/B) I/Os, i.e.,
that two-dimensional range searching is harder than the one-dimensional case.
They also designed a structure with matching bounds; note that this struc-
ture works in the classical I/O-model [2] where the search cost is considered.
A similar bound was proven in the external memory pointer machine model by
Subramanian and Ramaswamy [25], and the result resembles the internal mem-
ory pointer machine case, where Θ(N log N/ log log N) space is needed to obtain
O(log N+K) query cost [11]. If only O(N/B) space can be used, Θ((N/B)ε) I/Os
are needed to answer a query [6]. If exactly dN/Be space is allowed, Θ(

√

N/B)
I/Os are needed [21].

Compared to orthogonal range searching, relatively little is known about the
dual point enclosure problem. Arge and Vitter [7] designed a linear space external
interval tree structure for the one-dimensional version of the problem where
the data is intervals. This structure answers point enclosure queries, also called
stabbing queries, in O(logB N +K/B) I/Os. The two-dimensional version of the
problem we consider in this paper can be solved using the linear space R-tree [18]
or its variants (see e.g. [17] for a survey); very recently Arge et al. [5] designed
a variant that answers a query in worst-case O(

√

N/B + K/B) I/Os. This is
optimal in the very restrictive bounding-volume hierarchy model [1]. However,
in the internal memory pointer machine model a linear size data structure that
can answer a query in the optimal O(log N + K) time has been developed [10].
Thus, based on the correspondence between internal and external memory results
for the range searching problem, as well as for the one-dimensional enclosure
problem, one would expect to be able to develop a linear space and O(logB N +
K/B) I/O query structure. No such structure is known.

1.2 Our results

Surprisingly, in this paper we show that in the indexability model it is not
possible to design a linear sized point enclosure indexing scheme that can answer
a query in O(logB N + K/B) I/Os. More precisely, we show that to obtain an
O(logB N + K/B) query bound, Ω(N/B1−ε) disk blocks are needed for some
constant ε > 0; with linear space the best obtainable query bound is Ω(log2 N +
K/B). Thus in some sense this problem is harder in external memory than in
internal memory. An interesting corollary to this result is that, unlike in internal
memory, an external interval tree cannot be made partially persistent without
increasing the asymptotic space or query bound. Refer to Table 1 for a summary
of tight complexity results for the orthogonal range search and point enclosure
problems when we are restricted to linear space or a logarithmic (base 2 or B)
query bound.

In section 2 we prove our lower bounds by proving a general tradeoff between
the size of a point enclosure indexing scheme and its query cost. To do so, we



Range searching Internal memory External memory

Query with linear space N ε [9] (N/B)ε [6]

Space with log (base 2 or B) query N log N
log log N

[10, 11] N
B

log(N/B)
log logB N

[6]

Point enclosure Internal memory External memory

Query with linear space log2 N [10] log2(N/B) New
Space with log (base 2 or B) query N [10] N/B1−ε New

Table 1. Summary of asymptotically tight complexity results for the orthogonal range
searching and point enclosure problems in the internal memory pointer machine model
and the external memory indexability model.

refine the indexability model in a way similar to [6]: We introduce parameters
A0 and A1 instead of A, and require that any query q can be covered by at
most A0 + A1d|q|/Be blocks rather than Ad|q|/Be blocks. With this refinement,
we prove the lower bound tradeoff A0A

2
1 = Ω(log(N/B)/ log r), which leads

to the results mentioned above. Interestingly, if the known tradeoff for range
search indexing schemes is expressed in the refined indexability model, it becomes
r = Ω(log(N/B)/ log(A0 ·A1)). Thus, the tradeoffs of the dual range search and
point enclosure indexing problems are symmetric with respect to r and A0, A1.

In Section 3 we show that our lower bound for the tradeoff is asymptotically
tight in the most interesting case A1 = O(1) by developing a family of external
memory data structures (where the search cost is considered) with optimal space
and query cost. More precisely, we describe a structure that, for any 2 ≤ r ≤ B,
uses O(rN/B) disk blocks and answers queries in O(logr(N/B) + K/B) I/Os.
The structure can be constructed in O(r N

B logM/B
N
B ) I/Os, where M is the size

of main memory.

2 Lower Bounds

2.1 Refined Redundancy Theorem

The Redundancy Theorem of [24, 19] is the main tool in most indexability model
lower bound results. We develop a version of the theorem for the refined index-
ability model, that is, the model where the access overhead A has been replaced
by two parameters A0 and A1, such that a query is required to be covered by at
most A0 + A1d|q|/Be blocks.

Theorem 1 (Redundancy Theorem [24, 19]). For a workload W = (O,Q),
where Q = {q1, q2, . . . , qm}, let S be an indexing scheme with access overhead
A ≤

√
B/4 such that for any 1 ≤ i, j ≤ m, i 6= j:

|qi| ≥ B/2 and |qi ∩ qj | ≤
B

16A2
,

then the redundancy of S is bounded by

r ≥ 1

12N

m
∑

i=1

|qi|.



We extend this theorem to the refined indexability model as follows.

Theorem 2 (Refined Redundancy Theorem). For a workload W = (O,Q),
where Q = {q1, q2, . . . , qm}, let S be an indexing scheme with access overhead
(A0, A1) with A1 ≤

√
B/8 such that for any 1 ≤ i, j ≤ m, i 6= j:

|qi| ≥ BA0 and |qi ∩ qj | ≤
B

64A2
1

,

then the redundancy of S is bounded by

r ≥ 1

12N

m
∑

i=1

|qi|.

Proof. Since for any i, |qi| ≥ BA0, qi is required to be covered by at most A0 +
A1d|qi|/Be ≤ 2A1d|qi|/Be blocks. If we set A = 2A1, S is an indexing scheme
that covers each query of Q by Ad|q|/Be blocks. Then applying Theorem 1 leads
to the desired result.

2.2 Lower bound for point enclosure

In order to apply Theorem 2 to the point enclosure problem we need to design
a workload W = (O,Q) such that each query is sufficiently large but the in-
tersection of any two is relatively small. To do so we use the point set called a
Fibonacci lattice, which was also used in previous results on orthogonal range
searching [22, 6, 19].

Definition 1 ([23]). The Fibonacci lattice Fm is a set of two-dimensional points
defined by Fm = {(i, ifk−1 mod m)|i = 0, 1, . . . , m − 1)}, where m = fk is the
kth Fibonacci number.

The following property of a Fibonacci lattice will be crucial in our lower
bound tradeoff proof.

Lemma 1 ([16]). For the Fibonacci lattice Fm and for α ≥ 0, any rectangle
with area αm contains between bα/c1c and dα/c2e points, where c1 ≈ 1.9 and
c2 ≈ 0.45.

Let m = λ αN
BA0

, where α is a parameter to be determined later, and 1 ≤ λ < 2
is chosen such that m is a Fibonacci number. The idea is to use the points in
Fm as queries to form Q and construct approximately N rectangles as objects
to form O; in the previous range searching tradeoff the roles of the points and
rectangles were reversed [6]. We may not construct exactly N rectangles but
the number will be between λN and 4λN , so this will not affect our asymptotic
result.

We construct rectangles of dimensions αti × m/ti, where t = (m/α)1/(BA0)

and i = 1, . . . , BA0. For each choice of i, the rectangles are constructed in a tiling

fashion on Fm until they cross the boundary. In this way, between m2

αm = λN
BA0



and 4 λN
BA0

rectangles are constructed on each layer (each i), for a total of Θ(N)
rectangles.

Since each point is covered by BA0 rectangles, one from each layer, the first
condition of Theorem 2 is satisfied. For the second one, consider any two different
query points q1 and q2 ∈ Fm, and let x and y be the differences between their
x and y-coordinates, respectively. Since the rectangle with q1 and q2 as corners
contains at least two points, namely q1 and q2 themselves, by Lemma 1, we have
xy ≥ c2m. We now look at how many rectangles can possibly cover both q1 and
q2. For a rectangle with dimension αti × m/ti to cover both points, we must
have αti ≥ x and m/ti ≥ y, or equivalently, x/α ≤ ti ≤ m/y. rectangle for each
i that can cover both points, thus, |q1 ∩ q2| is at most

⌈

logt

αm

xy

⌉

≤
⌈

log(α/c2)

log t

⌉

=

⌈

BA0
log(α/c2)

log(m/α)

⌉

≤ 1 + BA0
log(α/c2)

log(λN/(BA0))
.

The second condition holds as long as

1

B
+ A0

log(α/c2)

log(λN/(BA0))
≤ 1

64A2
1

. (1)

On the other hand, when (1) is satisfied, by Theorem 2, we have

r ≥ 1

12

mBA0

4λN
=

α

48
.

Therefore, any combination of α, A0 and A1 that satisfy (1) constitutes a lower
bound on the tradeoff of r, A0 and A1. When A0 and A1 are small enough,
namely A0 < (N/B)1−δ where 0 < δ < 1 is some constant, and A1 <

√

B/128,
we can simplify (1) to obtain the following:

Theorem 3. Let S be a point enclosure indexing scheme on the Fibonacci work-

load. If A0 ≤
(

N
B

)1−δ
for any fixed 0 < δ < 1, and A1 ≤

√

B/128, then its
redundancy r and access overhead (A0, A1) must satisfy

A0A
2
1 ≥ δ

128

log(N/B)

7 + log r
= Ω

(

log(N/B)

log r

)

.

The Fibonacci lattice is only one of many low-discrepancy point sets [23] we
could have used, but none of them would improve the result of Theorem 3 by
more than a constant factor. We note that the above proof technique could
also have been used to obtain a tradeoff in the original indexability model.
However, in that case we would obtain a significantly less informative tradeoff
of A = Ω(

√

log(N/B)/ log r).

2.3 Tradeoff implications

Query cost logB N . In indexing schemes with an O(logB N + K/B) query cost
we have A0 = O(logB N) and A1 = O(1). Assuming that A0 ≤ c0 logB

N
B , we

have

c0
log(N/B)

log B
A2

1 ≥ δ

128

log(N/B)

7 + log r
,



which is

log r ≥ δ

128c0A2
1

log B − 7, or r ≥ 1

128
Bδ/(128c0A2

1
).

Thus any such indexing scheme must have redundancy at least Ω(Bε), for some
small constant ε.

Corollary 1. Any external memory data structure for the point enclosure prob-
lem that can answer a query in O(logB N + K/B) I/Os in the worst case must
use Ω(N/B1−ε) disk blocks for some constant ε > 0.

Linear space. In linear space indexing schemes r is a constant. If we also want
A1 to be a constant, A0 has to be Ω(log N

B ) by Theorem 3. As mentioned,
this is a rather surprising result, since linear space structures with the optimal
O(log N + K) query time exist in internal memory [10].

Corollary 2. Any linear sized external memory data structure for the point
enclosure problem that answers a query in f(N) + O(K/B) I/Os in the worst
case must have f(N) = Ω(log2

N
B ).

Note however that our lower bound does not rule out linear size indexes with
a query cost of for example O(logB N +

√
log B K

B ).

Persistent interval tree. An interesting consequence of the above linear space
result is that, unlike in internal memory, we cannot make the external interval
tree [7] partially persistent [15] without either increasing the asymptotic space
or query bound. Details will appear in the full paper.

3 Upper Bounds

In this section, we develop a family of external memory data structures with
space and query bounds that match the lower bound tradeoff of Theorem 3.
In Section 3.1 we first develop a structure that uses O(rN/B) disk blocks and
answers queries in O(logB N · logr(N/B) + K/B) I/Os for any 2 ≤ r ≤ B.
In Section 3.2 we then discuss how to improve the query bound to obtain the
O(logr(N/B) + K/B) bound matching Theorem 3. These bounds are measured
in the classical I/O model [2], where the search cost is considered, and where
space used to store auxiliary information (such as e.g. “directories” or “internal
nodes”) is also counted when bounding the sizes of the structures.

3.1 Basic point enclosure structure

Base tree T . Let S be a set of N axis-parallel rectangles in the plane. Our
structure for answering point enclosure queries on S is similar to an internal
memory point enclosure structure due to Chazelle [10]. Intuitively, the idea is
to build an r-ary base tree3 T by first dividing the plane into r ≤ B horizontal

3 The fanout of the root of the base tree may be less than r to make sure that we have
O(N/B) nodes in the tree.



1
3

6

2

4
5

6

3

1

2

4

5

Fig. 1. Partitioning of rectangles among nodes in a 3-ary base tree.

slabs with approximately the same number of rectangle corners in each slab, and
then recursively construct a tree on the rectangles completely contained in each
of the slabs. The rectangles that cross one or more slab boundaries are stored in
a secondary structure associated with the root of T . The recursion ends when
the slabs contain at most 4B rectangle corners each. Refer to Figure 1.

The base tree T can relatively easily be constructed and the rectangles dis-
tributed to the internal nodes of T in O(N

B logM/B
N
B ) I/Os (the number of I/Os

needed to sort N elements): We first sort the rectangle corners by y-coordinate.
Then we construct the top Θ(logr

M
B ) levels of the tree, that is, O(M/B) nodes,

in O(N/B) I/Os. Finally, we distribute the remaining (sorted) rectangles to
the leaves of the constructed tree and recursively construct the corresponding
subtrees. Details will appear in the full version of this paper.

Now let Nv be the number of rectangles associated with an internal node
v in T . Below we describe how the secondary structure associated with v uses
O(rNv/B + r) blocks and can be constructed in O( rNv

B logM/B
Nv

B ) I/Os. Since
there are O(N/(Br)) internal nodes, and since each rectangle is stored in exactly
one leaf or internal node, this means that after distributing the rectangles to
nodes of T , all the secondary structures use O(rN/B) blocks and they can be
constructed in O( rN

B logM/B
N
B ) I/Os.

Answering a query on T . To answer a query q = (xq , yq) on T we simply query
the secondary structure of the root v of T , and then recursively query the tree
rooted in the node corresponding to the horizontal slab containing q. When we
reach a leaf, we simply load the at most B rectangles in the leaf and report
all rectangles that contain q. Below we describe how a query on the secondary
structure of v can be performed in O(logB N + Kv/B) I/Os, where Kv is the
number of reported rectangles. Thus a query is answered in O(logB N · logr

N
B +

K/B) I/Os overall.

Secondary structures. All that remains is to describe the secondary structure
used to store the Nv rectangles associated with an internal node v of T . The



structure actually consists of 2r small structures, namely two structures for
each of the r horizontal slabs associated with v. The first structure Ψ i

t for slab i
contains the top (horizontal) sides of all rectangles with top side in slab i, as well
as all rectangles that completely span slab i; the second structure Ψ i

b contains
the bottom (horizontal) sides of all rectangles with bottom side in slab i. The
structure Ψ i

t supports upward ray-shooting queries from a point q = (xq , yq), that
is, it can report all segments intersected by the vertical half-line from (xq , yq)
to (xq , +∞). Refer to Figure 2. Similarly, Ψ i

b supports downward ray-shooting
queries. Thus, it is easy to see that to answer a point enclosure query q = (xq , yq)
in v, all we need to do is to query the Ψ i

t and Ψ i
b structures of the slab i containing

point (xq , yq). Refer to Figure 3.

All Ψt and Ψb structures are implemented in the same basic way, using a (par-
tially) persistent B-tree [8, 4]. A persistent B-tree uses O(N/B) blocks, supports
updates in O(logB N) I/Os in the current version of the structure as normal
B-trees, and answers range queries in O(logB N +K/B) I/Os in all the previous
versions of the structure. In these bounds, N is the number of updates per-
formed on it. To build Ψt we simply imagine sweeping the plane with a vertical
line from −∞ to +∞, while inserting the y-coordinate y1 of a horizontal segment
(x1, y1, x2) when its left endpoint x1 is reached, and deleting it again when its
right endpoint x2 is reached. An upward ray-shooting query q = (xq , yq) can
then be answered in O(logB N + Kv/B) I/Os as required, simply by performing
a range query (yq , +∞) on the structure we had when the sweep-line was at xq .
Ψb is constructed in a symmetric manner.

The top horizontal segment of each of the Nv rectangles associated with v
can be stored in r Ψt structures, while the bottom segments are stored in exactly
one Ψb. Therefore, since a Ψt or Ψb structure on L segments uses O(L/B) blocks
and can be constructed in O( L

B logM/B
L
B ) I/Os [26], the 2r structures in v use

O(rNv/B +r) blocks and can be constructed in O( rNv

B logM/B
Nv

B ) I/Os overall.

Theorem 4. A set of N axis-parallel rectangles in the plane can be stored in
an external memory data structure that uses O(rN/B) blocks, such that a point
enclosure query can be answered in O(logB N · logr

N
B + K/B) I/Os, for any

2 ≤ r ≤ B. The structure can be constructed using O(r N
B logM/B

N
B ) I/Os.

(xq , yq)

(xq , +∞)

Fig. 2. An upward ray-shooting query.

report 1, 4

report 2, 3

2

1

4

3

Fig. 3. Answering a point enclosure query.



3.2 Improved point enclosure structure

In this section we sketch how to improve the O(logB N ·logr(N/B)+K/B) query
bound of the structure described in the previous section to O(logr(N/B)+K/B).
First note that the extra logB N -term was a result of the query procedure using
O(logB N) I/Os to search a secondary structure (a Ψt and a Ψb structure) on
each level of the base tree T . Since all of these structures are queried with the
same query point q, it is natural to use fractional cascading [12] to reduce the
overall search cost to O(logB N +logr(N/B)+K/B)) = O(logr(N/B)+K/B)).
However, in order to do so we need to modify the Ψt and Ψb structures slightly.
Below we first discuss this modification and then sketch how fractional cascading
can be applied to our structure. We will only consider the Ψt structure since the
Ψb structure can be handled in a similar way.

Modified secondary structure. The modification of the Ψt structure is inspired
by the so-called hive-graph technique of Chazelle [10]. In order to describe it,
we need the following property of a Ψt structure (that is, of a persistent B-tree),
which follows easily from the discussions in [8].

Lemma 2. Each of the O(L/B) leaves of a persistent B-tree Ψt on L segments
defines a rectangular region in the plane and stores the (at most) B segments
intersecting this region. The regions of all the leaves define a subdivision of the
minimal bounding box of the segments in Ψt and no two regions overlap. An
upward ray-shooting query on Ψt visits O(1 + K/B) leaves.

By Lemma 2 an upward ray shooting query q = (xq , yq) on a Ψt in node v will
visit O(1+Kv/B) regions (leaves) in the subdivision induced by the leaves. Now
suppose we have links from any region (leaf) to its downward neighbors. Given
the highest region that contains xq we could then follow these links downward
to answer the query. To find the relevant highest regions, we introduce a head
list consisting of the left x-coordinates of the O(L/B) highest regions in sorted
order, where each entry also has a pointer to the corresponding region/leaf. The
top region can then be found simply by searching the head list. Refer to Figure 4.

There is one problem with the above approach, namely that a region may
have more than B downward neighbors (so that following the right link may
require more than one I/O). We therefore modify the subdivision slightly: We
imagine sweeping a horizontal line from −∞ to ∞ and every time we meet the
bottom edge of a region with more than B downward links, we split it into
smaller regions with Θ(B) downward links each. We construct a new leaf for
each of these regions, all containing the relevant segments from the original
region (the segments intersecting the new region). Refer to Figure 5. Chazelle
showed that the number of new regions (leaves) introduced during the sweep is
O(L/B) [10], so the modified subdivision still consists of O(L/B) regions. It can
also be constructed in O( L

B logM/B
L
B ) I/Os. Due to lack of space, we omit the

details. They will appear in the full paper.



query

head list

Fig. 4. The leaves of a persistent B-tree
defines a rectangular subdivision.

head list

query

Fig. 5. Reorganizing the leaves in the
persistent B-tree (B = 2)

Lemma 3. A modified Ψt structure on L segments consists of O(L/B) blocks
and a head list of O(L/B) x-coordinates, such that after locating xq in the head
list, an upward ray-shooting query q = (xq , yq) can be answered in O(1 + K/B)
I/Os. The structure can be constructed in O( L

B logM/B
L
B ) I/Os.

Fractional cascading. We are now left with the task of locating xq in the head
list of each Ψt structure that we visit along a root-to-leaf path in the base tree
T . This repetitive searching problem can be solved efficiently by adapting the
fractional cascading technique [12] to the external memory setting, such that
after locating xq in the first head list, finding the position of xq in each of the
subsequent head lists only incurs constant cost. Again, due to space limitations
we omit the details. In the full version of this paper we show how the search cost
of our structure can be reduced to O(logr

N
B +K/B) I/Os while maintaining the

space and construction bounds; this leads to our main result.

Theorem 5. A set of N axis-parallel rectangles in the plane can be stored in
an external memory data structure that uses O(rN/B) blocks such that a point
enclosure query can be answered in Θ(logr

N
B + K/B) I/Os, for any 2 ≤ r ≤ B.

The structure can be constructed with O(r N
B logM/B

N
B ) I/Os.

References

1. P. K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammer, and H. J. Haverkort.
Box-trees and R-trees with near-optimal query time. In Proc. ACM Symposium

on Computational Geometry, pages 124–133, 2001.

2. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

3. L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and
M. G. C. Resende, editors, Handbook of Massive Data Sets, pages 313–358. Kluwer
Academic Publishers, 2002.

4. L. Arge, A. Danner, and S.-H. Teh. I/O-efficient point location using persistent
B-trees. In Proc. Workshop on Algorithm Engineering and Experimentation, 2003.



5. L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The priority R-tree: A prac-
tically efficient and worst-case optimal R-tree. In Proc. SIGMOD International

Conference on Management of Data, 2004.
6. L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and

optimal range search indexing. In Proc. ACM Symposium on Principles of Database

Systems, pages 346–357, 1999.
7. L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM

Journal on Computing, 32(6):1488–1508, 2003.
8. B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically

optimal multiversion B-tree. VLDB Journal, 5(4):264–275, 1996.
9. J. L. Bentley. Multidimensional divide and conquer. Communications of the ACM,

23(6):214–229, 1980.
10. B. Chazelle. Filtering search: a new approach to query-answering. SIAM J. Com-

put., 15(3):703–724, 1986.
11. B. Chazelle. Lower bounds for orthogonal range searching: I. the reporting case.

Journal of the ACM, 37(2):200–212, Apr. 1990.
12. B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique.

Algorithmica, 1:133–162, 1986.
13. D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, 1979.
14. M. de Berg, J. Gudmundsson, M. Hammar, and M. Overmars. On R-trees with low

stabbing number. In Proc. European Symposium on Algorithms, pages 167–178,
2000.

15. J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. Tarjan. Making data structures
persistent. Journal of Computer and System Sciences, 38:86–124, 1989.

16. A. Fiat and A. Shamir. How to find a battleship. Networks, 19:361–371, 1989.
17. V. Gaede and O. Günther. Multidimensional access methods. ACM Computing

Surveys, 30(2):170–231, 1998.
18. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc.

SIGMOD International Conference on Management of Data, pages 47–57, 1984.
19. J. Hellerstein, E. Koutsoupias, D. Miranker, C. Papadimitriou, and V. Samoladas.

On a model of indexability and its bounds for range queries. Journal of ACM,
49(1), 2002.

20. J. M. Hellerstein, E. Koutsoupias, and C. H. Papadimitriou. On the analysis of
indexing schemes. In Proc. ACM Symposium on Principles of Database Systems,
pages 249–256, 1997.

21. K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-
replicating index structures. In Proc. International Conference on Database The-

ory, LNCS 1540, pages 257–276, 1999.
22. E. Koutsoupias and D. S. Taylor. Tight bounds for 2-dimensional indexing schemes.

In Proc. ACM Symposium on Principles of Database Systems, pages 52–58, 1998.
23. J. Matoušek. Geometric Discrepancy. Springer, 1999.
24. V. Samoladas and D. Miranker. A lower bound theorem for indexing schemes and

its application to multidimensional range queries. In Proc. ACM Symposium on

Principles of Database Systems, pages 44–51, 1998.
25. S. Subramanian and S. Ramaswamy. The P-range tree: A new data structure

for range searching in secondary memory. In Proc. ACM-SIAM Symposium on

Discrete Algorithms, pages 378–387, 1995.
26. J. van den Bercken, B. Seeger, and P. Widmayer. A generic approach to bulk

loading multidimensional index structures. In Proc. International Conference on

Very Large Databases, pages 406–415, 1997.


