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Abstract. We consider the clustering with diversity problem: given a set of col-
ored points in a metric space, partition them into clusters such that each cluster
has at least ` points, all of which have distinct colors. We give a 2-approximation
to this problem for any ` when the objective is to minimize the maximum radius
of any cluster. We show that the approximation ratio is optimal unless P = NP,
by providing a matching lower bound. Several extensions to our algorithm have
also been developed for handling outliers. This problem is mainly motivated by
applications in privacy-preserving data publication.
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1 Introduction
Clustering is a fundamental problem with a long history and a rick collection of results.
A general clustering problem can be formulated as follows. Given a set of points P in
a metric space, partition P into a set of disjoint clusters such that a certain objective
function is minimized, subject to some cluster-level and/or instance-level constraints.
Typically, cluster-level constraints impose restrictions on the number of clusters or on
the size of each cluster. The former corresponds to the classical k-center, k-median,
k-means problems, while the latter has recently received much attention from various
research communities [1, 15, 16]. On the other hand, instance-level constraints specify
whether particular items are similar or dissimilar, usually based on some background
knowledge [3, 26]. In this paper, we impose a natural instance-level constraint on a
clustering problem, that the points are colored and all points partitioned into one cluster
must have distinct colors. We call such a problem clustering with diversity. Note that
the traditional clustering problem is a special case of ours where all points have unique
colors.

As an illustrating example, consider the problem of choosing locations for a number
of factories in an area where different resources are scattered. Each factory needs at least
` different resources allocated to it and the resource in one location can be sent to only
one factory. This problem corresponds to our clustering problem where each kind of
resource has a distinct color, and we have a lower bound ` on the the cluster size.

The main motivation to study clustering with diversity is privacy preservation for
data publication, which has drawn tremendous attention in recent years in both the
database community [7, 8, 21, 24, 28–30] and the theory community [1, 2, 11, 12, 22].
The goal of all the studies in privacy preservation is to prevent linking attacks [25].
Consider the table of patient records in Figure 1(a), usually called the microdata. There
are three types of attributes in a microdata table. The sensitive attribute (SA), such as
“Disease”, is regarded as the individuals’ privacy, and is the target of protection. The



2 Jian Li, Ke Yi, and Qin Zhang

pneumonia

pneumonia

pneumonia

pneumonia

HIV

HIV

bronchitis

bronchitis

bronchitis

dyspepsia

Disease

pneumonia

pneumonia

pneumonia

pneumonia

HIV

HIV

bronchitis

bronchitis

bronchitis

dyspepsia

Disease

pneumonia

pneumonia

pneumonia

pneumonia

HIV

HIV

bronchitis

bronchitis

bronchitis

dyspepsia

DiseaseT-1D(Name)

1 (Adam)

2 (Bob)

3 (Calvin)

4 (Daisy)

5 (Elam)

6 (Frank)

7 (George)

8 (Henry)

9 (Ivy)

10 (Jane)

Age Gender Degree QIs QIs

29

25

25

29

40

45

35

37

50

60

M

M

M

F

F

F

M

M

M

M

M.Sc.

M.Sc.

B.Sc.

B.Sc.

B.Sc.

B.Sc.

B.Sc.

B.Sc.

Ph.D.

Ph.D.

(center, radius)

(center, radius)

(center, radius)

(center, radius)

(center, radius)

(center, radius)

(center, radius)

(center, radius)

(a) (b) (c)

Fig. 1. (a) The microdata; (b) A 2-anonymous table; (c) An 2-diverse table;

identifier, in this case “Name”, uniquely identifies a record, hence must be ripped off
before publishing the data. The rest of the attributes, such as “Age”, “Gender”, and
“Education”, should be published so that researchers can apply data mining techniques
to study the correlation between these attributes and “Disease”. However, since these
attributes are public knowledge, they can often uniquely identify individuals when com-
bined together. For example, if an attacker knows (i) the age (25), gender (M), and ed-
ucation level (Master) of Bob, and (ii) Bob has a record in the microdata, s/he easily
finds out that Tuple 2 is Bob’s record and hence, Bob contracted HIV. Therefore, these
attributes are often referred to as the quasi-identifiers (QI). The solution is thus to make
these QIs ambiguous before publishing the data so that it is difficult for an attacker to
link an individual from the QIs to his/her SA, but at the same time we want to minimize
the amount of information loss due to the ambiguity introduced to the QIs so that the
interesting correlations between the QIs and the SA are still preserved.

The usual approach taken to prevent linking attacks is to partition the tuples into
a number of QI-groups, namely clusters, and within each cluster all the tuples share
the same (ambiguous) QIs. There are various ways to introduce ambiguity. A popular
approach, as taken by [1], is to treat each tuple as a high-dimensional point in the QI-
space, and then only publish the center, the radius, and the number of points of each
cluster. To ensure a certain level of privacy, each cluster is required to have at least k
points so that the attacker is not able to correctly identify an individual with confidence
larger than 1/k. This requirement is referred to as the k-ANONYMITY principle [1, 22].
The problem, translated to a clustering problem, can be phrased as follows: Cluster a
set of points in a metric space, such that each cluster has at least r points. When the
objective is to minimize the maximum radius of all clusters, the problem is called r-
GATHERING and a 2-approximation is known [1].

However, the k-ANONYMITY principle suffers from the homogeneity problem: A
cluster may have too many tuples with the same SA value. For example, in Figure 1(b),
all tuples in QI-group 1, 3, and 4 respectively have the the same disease. Thus, the
attacker can infer what disease all the people within a QI-group have contracted with-
out identifying any individual record. The above problem has led to the development
of many SA-aware principles. Among them, `-DIVERSITY [21] is the most widely de-
ployed [8, 13, 17, 21, 28, 29], due to its simplicity and good privacy guarantee. The prin-
ciple demands that, in each cluster, at most 1/` of its tuples can have the same SA value.
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Figure 1(c) shows a 2-diverse version of the microdata. In an `-diverse table, an attacker
can figure out the real SA value of the individual with confidence no more than 1/`.
Treating the SA values as colors, this problem then exactly corresponds to the cluster-
ing with diversity problem defined at the beginning, where we have a lower bound ` on
the cluster size.

In contrast to the many theoretical results for r-GATHERING and k-ANONYMITY
[1, 2, 22], no approximation algorithm with performance guarantees is known for `-
DIVERSITY, even though many heuristic solutions have been proposed [13, 19, 21].

Clustering with instance-level constraints and other related work. Clustering with
instance-level constraints is a developing area and begins to find many interesting ap-
plications in various areas such as bioinformatics [5], machine learning [26, 27], data
cleaning [4], etc. Wagstaff and Cardie in their seminal work [26] considered the follow-
ing two types of instance-level hard constraints: A must-link (ML) constraint dictates
that two particular points must be clustered together and a cannot-link (CL) constraint
requires they must be separated. Many heuristics and variants have been developed
subsequently, e.g. [27, 31], and some hardness results with respect to minimizing the
number of clusters were also obtained [10]. However, to the best of our knowledge, no
approximation algorithm with performance guarantee is known for any version of the
problem. We note that an `-diverse clustering can be seen as a special case where nodes
with the same color must satisfy CL constraints.

As opposed to the hard constraints imposed on any clustering, the correlation clus-
tering problem [6] considers soft and possibly conflicting constraints and aims at mini-
mizing the violation of the given constraints. An instance of this problem can be repre-
sented by a complete graph with each edge labeled (+) or (-) for each pair of vertices,
indicating that two vertices should be in the same or different clusters, respectively. The
goal is to cluster the elements so as to minimize the number of disagreements, i.e., (-)
edges within clusters and (+) edges crossing clusters. The best known approximations
for various versions of the problem are due to Ailon et al. [3]. If the number of clus-
ters is stipulated to be a small constant k, there is a polynomial time approximation
scheme [14]. In the Dedupalog project, Arasu et al. [4] considered correlation cluster-
ing together with instance-level hard constraints, with the aim of de-duplicating entity
references .

Approximation algorithms for clustering with outliers were first considered by Charikar
et al. [9]. The best known approximation factor for r-GATHERING with outliers is 4 due
to Aggrawal et al. [1].

Our results. In this paper, we give the first approximation algorithms to the clustering
with diversity problem. We formally define the problem as follows.

Definition 1 (`-DIVERSITY). Given a set of n points in a metric space where each of
them has a color, cluster them into a set C of clusters, such that each cluster has at least
` points, and all of its points have distinct colors. The goal is to minimize the maximum
radius of any cluster.

Our first result (Section 2) is a 2-approximation algorithm for `-DIVERSITY. The
algorithm follows a similar framework as in [1], but it is substantially more complicated.
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The difficulty is mainly due to the requirement to resolve the conflicting colors in each
cluster while maintaining its minimum size `. To the best of our knowledge, this is first
approximation algorithm for a clustering problem with instance-level hard constraints.

Next, we show that this approximation ratio is the best possible by presenting a
matching lower bound (Section 3). A lower bound of 2 is also given in [1] for r-
GATHERING. But to carry that result over to `-DIVERSITY, all the points need to have
unique colors. This severely limits to applicability of this hardness result. In Section 3
we give a construction showing that even with only 3 colors, the problem is NP-hard
to approximate within any factor strictly less than 2. In fact, if there are only 2 col-
ors, we show that the problem can be solved optimally in polynomial time via bipartite
matching.

Unlike r-GATHERING, an instance to the `-DIVERSITY problem may not have a
feasible solution at all, depending on the color distribution. In particular, we can easily
see that no feasible clustering exists when there is one color that has more than bn/`c
points. One way to get around this problem is to have some points not clustered (which
corresponds to deleting a few records in the `-DIVERSITY problem). Deleting records
causes information loss in the published data, hence should be minimized. Ideally, we
would like to delete points just enough such that the remaining points admit a feasible
`-diverse clustering. In Section 4, we consider the `-DIVERSITY-OUTLIERS problem,
where we compute an `-diverse clustering after removing the least possible number of
points. We give an O(1)-approximation algorithm to this problem.

Our techniques for dealing with diversity and cluster size constraints may be useful
in developing approximation algorithms for clustering with more general instance-level
constraints. Due to space constraints, we only provide complete details for our first
result. We refer interested readers to the full version of the paper for all missing details
and proofs [20].

2 A 2-Approximation for `-DIVERSITY

In this section we assume that a feasible solution on a given input always exists. We
first introduce a few notations. Given a set of n points in a metric space, we construct
a weighted graph G(V,E) where V is the set of points and each vertex v ∈ V has
a color c(v). For each pair of vertices u, v ∈ V with different colors, we have an
edge e = (u, v), and its weight w(e) is just their distance in the metric space. For any
u, v ∈ V , let distG(u, v) be the shortest path distance of u, v in graph G. For any set
A ⊆ V , let NG(A) be the set of neighbors of A in G. For a pair of sets A ⊆ V, B ⊆ V ,
let EG(A;B) = {(a, b) | a ∈ A, b ∈ B, (a, b) ∈ E(G)}. The diameter of a cluster
C of nodes is defined to be d(C) = maxu,v∈C(w(e(u, v))). Given a cluster C and
its center v, the radius r(C) of C is defined as maximum distance from any node of
C to v, i.e., r(C) = maxu∈C w(u, v). By triangle inequality, it is obvious to see that
1
2d(C) ≤ r(C) ≤ d(C).

A star forest is a forest where each connected component is a star. A spanning
star forest is a star forest spanning all vertices. The cost of a spanning forest F is the
length of the longest edge in F . We call a star forest semi-valid if each star component
contains at least ` colors and valid if it is semi-valid and each star is polychromatic, i.e.,
each node in the star has a distinct color. Note that a spanning star forest with cost R
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naturally defines a clustering with largest radius R. Denote the radius and the diameter
of the optimal clustering by r∗ and d∗, respectively.

We first briefly review the 2-approximation algorithm for the r-GATHERING prob-
lem [1], which is the special case of our problem when all the points have distinct colors.
Let e1, e2, . . . be the edges of G in a non-decreasing order of their weights. The general
idea of the r-GATHERING algorithm [1] is to first guess the optimal radius R by con-
sidering each graph Gi formed by the first i edges Ei = {e1, . . . , ei}, as i = 1, 2, . . . .
It is easy to see that the cost of a spanning star forest of Gi is at most w(ei). For each
Gi (1 ≤ i ≤ m), the following condition is tested (rephrased to fit into our context):

(I) There exists a maximal independent set I such that there is a spanning star forest
in Gi with the nodes in I being the star centers, and each star has at least r nodes.

It is proved [1] that the condition is met if the length of ei is d∗. The condition implies
the radius of our solution is at most d∗ which is at most 2r∗. Therefore, we get an 2-
approximation. In fact, the independent set I can be chosen greedily and finding the
spanning star forest can be done via a network flow computation.

Our 2-approximation for the `-diversity problem follows the same framework, that
is, we check each Gi in order and test the following condition:

(II) There exists a maximal independent set I such that there is a valid spanning star
forest in Gi with the nodes in I being the star centers.

The additional challenge is of course that, while condition (I) only puts a constraint
on the size of each star, condition (II) requires both the size of each star to be at least
` and all the nodes in a star have distinct colors. Below we first give a constructive
algorithm that for a given Gi, tries to find an I such that condition (II) is met. Next we
show that when w(ei) = d∗, the algorithm is guaranteed to succeed. The approximation
ratio of 2 then follows immediately.

To find an I to meet condition (II), the algorithm starts with an arbitrary maxi-
mal independent set I , and iteratively augments it until the condition is met, or fails
otherwise. In each iteration, we maintain two tests. The first one, denoted by flow test
F-TEST(Gi, I), checks if there exists a semi-valid spanning star forest in Gi with nodes
in I being star centers. If I does not pass this test, the algorithm fails right away. Oth-
erwise we go on to the second test, denoted by matching test M-TEST(Gi, I), which
tries to find a valid spanning star forest. If this test succeeds, we are done; otherwise the
failure of this test yields a way to augment I and we proceed to the next iteration. The
algorithm is outlined in Algorithm 1.

We now elaborate on F-TEST and M-TEST. F-TEST(Gi, I) checks if there is a span-
ning star forest in Gi with I being the star centers such that each star contains at least
` colors. As the name suggests, we conduct the test using a network flow computation.
We first create a source s and a sink t. For each node v ∈ V , we add an edge (s, v)
with capacity 1, and for each node oj ∈ I(1 ≤ j ≤ |I|), we create a vertex oj and
add an outgoing edge (oj , t) with capacity lower bound `. For each node oj ∈ I and
each color c, we create a vertex pj,c and an edge (pj,c, oj) with capacity upper bound
1. For any v ∈ V such that (v, oj) ∈ Ei or v = oj , and v has color c, we add an
edge from v to pj,c without capacity constraint. Finally, we add one new vertex o′j for
each oj ∈ I , connect all v ∈ V to o′j without capacity constraint if (v, oj) ∈ E or
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Algorithm 1: Algorithm to find an I in Gi to meet condition (II)
Let I be an arbitrary maximal independent set in Gi;1
while F-TEST(Gi, I) is passed do2

(S, S′)←M-TEST(Gi,I) /* S ⊂ V, S′ ⊆ I */;3
if S = ∅ then4

Succeed;5
else6

I ← I − S′ + S;7
Add nodes to I until it is a maximal independent set;8

Fail;9
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Fig. 2. The flow network construction. On the left is the original graph, I = {v2, v4}, ` = 2. On
the right is the corresponding flow network. Thick edges denote a feasible flow of value |I|` = 4.

v = oj , and connect o′j to t without capacity constraint. The capacity upper bound of
(pj,c, oj) forces at most one node with color c to be assigned to oj . Therefore, all nodes
assigned to oj have distinct colors. The capacity lower bounds of (oj , t)s require that
each cluster has at least ` nodes. Nodes o′js are used to absorb other unassigned nodes.
It is not difficult to see that there exists a semi-valid spanning star forest with nodes in
I being star centers in Gi if an n-units flow can be found. In this case we say that the
F-TEST is passed. See Figure 2 for an example. Note that a network flow problem with
both capacity lower bounds and upper bounds is usually referred to as the circulation
problem, and is polynomially solvable [18].

Once Gi and I pass F-TEST, we try to redistribute those vertices that cause color
conflicts. We do so by a bipartite matching test M-TEST(Gi, I) which returns two vertex
sets S and S′ that are useful later. Concretely, we test whether there exists a matching
in the bipartite graph B(I − C,C − I; EGi(I − C; C − I)) for each color class C
such that all vertices in C − I are matched. If such matchings can be found for all
the colors, we say that the M-TEST is passed. Note that all these matchings together
give a spanning star forest such that each star is polychromatic. However, this does
not guarantee that the cardinality constraint is preserved. The crucial fact here is that
I passes both F-TEST and M-TEST. In Lemma 2 we formally prove that there exists
a valid spanning star forest with nodes in I as star centers if and only if Gi and I
pass both F-TEST and M-TEST. To actually find a valid spanning star forest, we can
again use the network flow construction in F-TEST but without the o′j nodes. If M-
TEST fails, we know that for some color class C, there exists a subset S ⊆ C − I such
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that the size of its neighbor set |NB(S)| is less than |S| by Hall’s theorem [18]. In this
case, M-TEST returns (S, NB(S)); such a set S can be found by a maximum matching
algorithm. Then we update the independent set I ← I − NB(S) + S; we show that
I is still an independent set in Lemma 1. Finally, we add nodes to I arbitrarily until it
becomes a maximal independent set. Then, we start the next iteration with the new I .
Since |S| > |NB(S)|, we increase |I| by at least one in each iteration. So the algorithm
terminates in ≤ n iterations.

Before proving that Algorithm 1 is guaranteed to succeed when w(ei) = d∗, we
prove the two lemmas left in the description of our algorithm. The first lemma ensures
that I is always an independent set.

Lemma 1. The new set I ← I−S′+S obtained in each update is still an independent
set in Gi.

Proof. Since all vertices in S have the same color, there is no edge among them. There-
fore, we only need to prove that there is no edge between I − S′ and S, which is trivial
since S′ = NB(S). ut

The second lemma guarantees that we find a feasible solution if both tests are passed.

Lemma 2. Given Gi = G(V,Ei) and I , a maximal independent set of Gi, both F-
TEST(Gi,I) and M-TEST(Gi,I) are passed if and only if there exists a valid spanning
star forest in Gi with nodes in I being star centers.

Proof. The “if” part is trivial. We only prove the “only if” part. Suppose Gi and I pass
both F-TEST(Gi,I) and M-TEST(Gi,I). Consider a semi-valid spanning star forest ob-
tained in Gi after F-TEST. We delete a minimal set of leaves to make it a valid star (not
necessarily spanning) forest F . Consider the bipartite graph B(I −C;C − I, EGi(I −
C;C − I)) for each color class C. We can see F ∩ B is a matching in B. Since I
passes M-TEST, we know that there exists a maximum matching such that all nodes
in C − I can be matched. If we use the Hungarian algorithm to compute a maximum
matching with F ∩ B as the initial matching, the nodes in I − C which are originally
matched will still be matched in the maximum matching due to the property of the al-
ternating path augmentation3. Therefore, the following invariants are maintained: each
star is polychromatic and has at least ` colors. By applying the above maximum match-
ing computation for each color class, we obtain a valid spanning star forest in Gi. ut

Finally, we prove that Algorithm 1 is guaranteed to succeed on Gi∗ for the maximal
index i∗ such that w(ei∗) = d∗, where d∗ is the optimal cluster diameter of any valid
spanning star forest of G.

Lemma 3. Algorithm 1 will succeed on Gi∗ .

3 Recall that an augmenting path P (with respect to matching M ) is a path starting from un-
matched node, alternating between unmatched and matched edges and ending also at an un-
matched node (for example, see [23]). By taking the symmetric difference of P and M , which
we call augmenting on P , we can obtain a new matching with one more edge.
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Proof. Suppose C∗ = {C∗1 , . . . , C∗k∗} is the set of clusters in the optimal clustering
with cluster diameter d∗. Since Gi∗ include all edges of weights no more than d∗, each
C∗j induces a clique in Gi∗ for all 1 ≤ j ≤ k∗, thus it contains at most one node
in any independent set. Therefore, any maximal independent set I in Gi∗ can pass F-
TEST(Gi∗ , I), and we only need to argue that I will also pass M-TEST(Gi∗ , I). Each
update to the independent set I increases the size of I by at least 1 and the maximum
size of I is k∗. When |I| = k∗, each C∗j contains exactly one node in I and this I must
be able to pass M-TEST(Gi∗ , I). So Algorithm 1 must succeed in some iteration. ut

By Lemma 3, the cost of the spanning star forest found by Algorithm 1 is at most d∗.
Since the cost of the optimal spanning forest is at least d∗/2, we obtain a 2-approximation.

Theorem 1. There is a polynomial-time 2-approximation for `-DIVERSITY.

3 The Lower Bound
We show that `-DIVERSITY is NP-hard to approximate within a factor less than 2 even
when there are only 3 colors. Note that if there are 2 colors, the problem can be solved
in polynomial time by computing perfect matchings in the threshold graphs.

Theorem 2. There is no polynomial-time approximation algorithm for `-DIVERSITY
that achieves an approximation factor less than 2 unless P = NP .

4 Dealing with Unqualified Inputs
For the `-DIVERSITY problem, a feasible solution may not exist depending on the input
color distribution. The following simple lemma gives a necessary and sufficient condi-
tion for the existence of a feasible solution.

Lemma 4. There exists a feasible solution for `-DIVERSITY if and only if the number
of nodes with the same color c is at most bn

` c for each color c.

To cluster an instance without a feasible solution, we must exclude some nodes as out-
liers. The following lemma characterizes the minimum number of outliers.

Lemma 5. Let C1, C2, . . . , Ck be the color classes sorted in the non-increasing order
of their sizes.

1. Let p be the maximum integer satisfying
∑k

i=1 min (p, |Ci|) ≥ p`. The minimum
number of outliers is given by q =

∑k
i=1 max (0, |Ci| − p) and p is the number of

clusters when we exclude q outliers.
2. p` ≤ n− q < p(` + 1).

With lemma 5 at hand, it is natural to consider the following optimization problem:
find an `-DIVERSITY solution by clustering n−q points such that the maximum cluster
radius is minimized. We call this problem `-DIVERSITY-OUTLIERS. From Lemma 5
we can see that p is independent on the metric and can be computed in advance. In
addition, implicit from Lemma 5 is that the number of outliers of each color is also
fixed, but we need to decide which points should be chosen as outliers.

In the fortunate case where we have a color class C with exactly p nodes, we know
that there is exactly one node of C in each cluster of any feasible solution. By using a
similar flow network construction used in F-TEST, we can easily get a 2-approximation
using C as the cluster centers. However, the problem becomes much more difficult
when the sizes of all color classes are different from p.
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4.1 A Constant Approximation
We first define some notations. We call color classes of size larger than p popular colors
and nodes having such colors popular nodes. Other color classes have at most p nodes,
and these nodes are unpopular. We denote the set of popular nodes by P and the set
of unpopular nodes byN . Note that after removing the outliers, each popular color has
exactly p nodes and each cluster will contain the same number of popular nodes. Let
z be the number of popular nodes each cluster contains. We denote by Gd the power
graph of G in which two vertices u, v are adjacent if there is path connecting u and v
with at most d edges. The length of the edge (u, v) in Gd is set to be distG(u, v). Before
describing the algorithm, we need the following simple lemma.

Lemma 6. For any connected graph G, G3 contains a Hamiltonian cycle which can be
found in linear time.

The algorithm still adopts the thresholding method, that is, we add edges one by
one to get graphs Gi = (V,Ei = {e1, e2, . . . , ei}), for i = 1, 2, . . . , and in each Gi,
we try to find a valid star forest that spans Gi except q outliers. Let d∗ be the diameter
of the optimal solution that clusters n − q points, and i∗ be the maximum index such
that w(ei) = d∗. Let Gi[N ] be the subgraph of Gi induced by all unpopular nodes. We
define the ball of radius r around v to be B(v, r) = {u | u ∈ N ∧distG(v, u) ≤ r}. For
each Gi, we run the Algorithm: `-DIVERSITY-OUTLIERS(Gi) (see below). We proceed
to Gi+1 when the algorithm claims failure.

The high level idea of the algorithm is as follows: Our goal is to show that the
algorithm can find a valid star forest spanning n − q nodes in G28

i∗ . It is not hard to
see that this gives us an approximation algorithm with factor 28 × 2 = 56. First, we
notice that F-TEST can be easily modified to work for the outlier version by excluding
all o′j nodes and testing whether there is a flow of value n − q. However, the network
flow construction needs to know in advance the set of candidates of cluster centers.
For this purpose, we attempt to attach p new nodes which we call virtual centers to Gi

which serve as the candidates of cluster centers in F-TEST. In the ideal case, if these
virtual centers can be distributed such that each of them is attached to a distinct optimal
cluster, F-TEST can easily produce a 2-approximation. Since the optimal clustering is
not known, this is very difficult in general. However, we show there is way to carefully
distribute the virtual centers such that there is a perfect matching between these virtual
centers and the optimal cluster centers and the longest matching edge is at most 27d∗,
which implies that our algorithm can find a valid spanning star forest in G27+1

i∗ = G28
i∗

Algorithm: `-DIVERSITY-OUTLIERS(Gi).

1. If Gi[N ] has a connected component with < `− z nodes, we declare failure.
2. Pick an arbitrary unpopular node v such that |B(v, w(ei))| ≥ ` − z and delete

all vertices in this ball; repeat until no such node exists. Then, pick an arbitrary
unpopular node v and delete all vertices in B(v, w(ei)); repeat until no unpopular
node is left. Let B1, B2, . . . , Bk be the balls created during the process. If a ball
contains at least `− z unpopular nodes, we call it big. Otherwise, we call it small.

3. In Gi[N ], shrink each Bj into a single node bj . A node bj is big if Bj is big and
small otherwise. We define the weight of bj to be µ(bj) = |Bj |

`−z . Let the resulting
graph with vertex set {bj}kj=1 be Di.
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4. For each connected component C of Di, do

(a) Find a spanning tree TC of C3 such that all small nodes are leaves. If this is
not possible, we declare failure.

(b) Find (by Lemma 6) a Hamiltonian cycle P = {b1, b2, . . . , bh, bh+1 = b1} over
all non-leaf nodes of C such that distDi

(bj , bj+1) ≤ 9w(ei).

5. We create a new color class U of p nodes which will serve as “virtual centers” of
the p clusters. These virtual centers are placed in Gi “evenly” as follows. Consider
each connected component C in Di and the corresponding spanning tree TC of C3.
For each non-leaf node bj in TC , let L(bj) be the set of leaves connected to bj in
TC , and let η(bj) = µ(bj) +

∑
bx∈L(bj)

µ(bx) and δj =
∑j

x=1 η(bx). We attach
bδic − bδi−1c virtual centers to the center of Bi by zero weight edges. If the total
number of virtual centers used is not equal to p, we declare failure. Let Hi be the
resulting graph (including all popular nodes, unpopular nodes and virtual centers).

6. Find a valid star forest in H28
i using U as centers, which spans n − q nodes (not

including the nodes in U ) by using F-TEST. If succeeds, we return the star forest
found, otherwise we declare failure.

4.2 Analysis of the algorithm

We show that the algorithm succeeds on Gi∗ . Since we perform F-TEST on H28
i∗ in

which each edge is of length ≤ 28d∗, the radius of each cluster is at most 28d∗. There-
fore, the approximation ratio is 56.

Let Hi∗ be the graph obtained by adding virtual centers to Gi∗ as described above.
Let C∗ = {C∗1 , . . . , C∗p} be the optimal clustering. Let I∗ = {ν∗1 , . . . , ν∗p} be the set of
cluster centers of C∗ where ν∗i is the center of C∗i . We denote the balls grown in step 2
by B1, . . . , Bk. Let νi be the center of Bi.

The algorithm may possibly fail in step 1, step 4(a), step 5 and step 6. Obviously
Gi∗ can pass step 1. Therefore, we only check the other three cases.

Step 4(a) : We prove that the subgraph induced by all big nodes are connected in C3.
Indeed, we claim that each small node is adjacent to at least one big node in C from
which the proof follows easily. Now we prove the claim. Suppose bj is a small node and
all its neighbors are small. We know that in Gi∗ [N ], νj has at least `− z− 1 neighbors
because νj is an unpopular node and thus belongs to some optimal cluster. So we could
form a big ball around νj , thus contradicting to the fact that νj is in a small ball. To find
a spanning tree with all small nodes as leaves, we first assign each small node to one of
its adjacent node arbitrarily and then compute a tree spanning all the big nodes.

Step 5 : We can see that in each connected component C (with big nodes b1, . . . , bh)
in Di∗ , the total number of virtual centers we have placed is

∑h
i=1(bδic − bδi−1c) =

bδhc = b∑h
x=1 η(bx)c = b∑bj∈C µ(bj)c =

⌊
|C|
l−z

⌋
where |C| =

∑
bj∈C |Bj |, the

number of nodes in the connected component of Gi∗ [N ] corresponding to C. This is
at least the number of clusters created for the component C in the optimal solution.
Therefore, we can see the total number of virtual centers created is at least p. On the
other hand, from Lemma 5(2), we can see that p(`−z) ≤ |N | < (p+1)(`−z). Hence,
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p =
⌊
|N |
`−z

⌋
=

⌊P
C |C|
`−z

⌋
≥ ∑

C

⌊
|C|
`−z

⌋
. where the summation is over all connect

components. So, we prove that exactly p virtual centers were placed in Gi∗ .

Step 6 : We only need to show that there is a perfect matching M between U and the set
of optimal centers I∗ in H27

i∗ . We consider the bipartite subgraph Q(U, I∗, EH27
i∗

(U, I∗)).
From Hall’s theorem, it suffices to show that |NQ(S)| ≥ |S| for any S ⊆ U , which can
be implied by the following lemma.

Lemma 7. For any S ⊆ U , the union of the balls of radius 27d∗ around the nodes of
S, i.e,

⋃
u∈S B(u, 27d∗), intersects at least |S| optimal clusters in C∗.

Theorem 3. There is a 56-approximation for `-DIVERSITY-OUTLIERS.

5 Further Directions
This work results in several open questions. First, as in [1], we could also try to mini-
mize the sum of the radii of the clusters. However, this seems to be much more difficult,
and we leave it as an interesting open problem. Another open problem is to design con-
stant approximations for the problem with any fixed number of outliers, that is, for any
given number k, find an optimal clustering if at most k outliers can be removed.

As mentioned in the introduction, our work can be seen as a stab at the more gen-
eral problem of clustering under instance-level hard constraints. Although arbitrary CL
(cannot-link) constraints seems hard to approximate with respect to minimizing the
number of clusters due to the hardness of graph coloring [10], other objectives and
special classes of constraints, e.g. diversity constraints, may still admit good approxi-
mations. Besides the basic ML and CL constraints, we could consider more complex
constraints like the rules proposed in the Dedupalog project [4]. One example of such
rules says that whenever we cluster two points a and b together, we must also cluster c
and d. Much less is known for incorporating these types of constraints into traditional
clustering problems and we expect it to be an interesting and rich further direction.
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