
Lexicographically Optimal Smoothing

for Broadband Traffic Multiplexing

Stergios Anastasiadis∗ Peter Varman† Jeffrey Scott Vitter‡ Ke Yi§

Abstract

We investigate the problem of smoothing multiplexed net-
work traffic, when either a streaming server transmits data
to multiple clients, or a server accesses data from multiple
storage devices or other servers. We introduce efficient
algorithms for lexicographically optimally smoothing the
aggregate bandwidth requirements over a shared network
link. In the data transmission problem, we consider the case
in which the clients have different buffer capacities but no
bandwidth constraints, or no buffer capacities but different
bandwidth constraints. For the data access problem, we
handle the general case of a shared buffer capacity and indi-
vidual network bandwidth constraints. Previous approaches
in the literature for the data access problem handled either
the case of only a single stream or did not compute the
lexicographically optimal schedule.

Lexicographically optimal smoothing (lexopt smoothing)
has several advantages. By provably minimizing the variance
of the required aggregate bandwidth, maximum resource
requirements within the network become more predictable,
and useful resource utilization increases. Fairness in shar-

∗Department of Computer Science, Duke University, Durham,
N.C. 27708–0129. Support was provided in part by the National
Science Foundation through research grant CCR–0082986

†Department of Electrical and Computer Engineering, Rice
University, Houston, TX 77005. Part of this work was done
while visiting Duke University. Support was provided in part by
the National Science Foundation through research grant CCR–
0105565.

‡Department of Computer Science, Duke University, Durham,
N.C. 27708–0129. Support was provided in part by the Na-
tional Science Foundation through research grants CCR–9877133
and CCR–0082986 and by the Army Research Office through
grant DAAD19–01–1–0725.

§Department of Computer Science, Duke University, Durham,
N.C. 27708–0129.

ing a network link by multiple users can be improved,
and new requests from future clients are more likely to
be successfully admitted without the need for frequently
rescheduling previously accepted traffic. Efficient resource
management at the network edges can better meet quality
of service requirements without restricting the scalability of
the system.

1. Introduction

Increasing demand for real-time delivery of digital content
over data networks motivates the problem of building scal-
able data storage and transfer systems with quality of service
guarantees. Improving the network capacity by continuously
adding link bandwidth into the system is not always feasible
or efficient. Appropriate shaping of the data traffic at
the network edge has the potential of achieving higher
bandwidth utilization, without imposing scale limitations
onto the network architecture [17, 18]. In the description
that follows, we focus on the case of on-demand delivery
of stored media files to multiple different clients. However,
this is only one type of application example with potential
benefit from the above services.

Figure 1 illustrates a simplified network hierarchy that
allows on-demand delivery of stored media files to multiple
users. By requesting stored streams with known time-
dependent resource requirements, the clients essentially
specify what data is required, and when each portion

smooth

server
source

smooth

channels

server

link
client

clients

smooth

proxy

storage
devices

device

Figure 1: Hierarchical system model for streaming data distri-
bution. Downstream nodes are on the left and upstream nodes
on the right.



is actually needed. The source server node manages a
collection of secondary storage devices, where the media files
are originally stored. Memory space in the server is available
for buffering (or caching) data arriving from the disks. At
one or more intermediate layers, proxy servers between the
clients and the source server are responsible for handling the
client requests and communicating them appropriately back
to the source server node. Data transmission to the clients
is adjusted according to the buffer space and network link
capacity of each client and each proxy.

In this paper, we consider the generic problem of schedul-
ing network data transfers for streaming media files. In
Figure 1, downstream nodes are on the left and upstream
nodes on the right. A practical and scalable approach is
to do the scheduling one layer at a time, starting at the
downstream layers and proceeding to the upstream layers.
In the course of this layer-by-layer process, the scheduling
problem that arises at each layer falls into one of two basic
types:

1. At the proxy–client layer, we have an instance of
the data transmission problem, where multiple clients
share the network transmission bandwidth. After this
schedule is determined, we are left with a set of data
requests (with modified deadlines) that are passed
upstream from the proxy to the server (or perhaps
to another intermediate proxy), resulting in another
instance of the data transmission problem.

2. After scheduling the data transmissions from the server
to the proxies, we are left with a set of data requests
(with modified deadlines) that must be passed up-
stream to the disks. The resulting data access problem
has the characteristics that the server has a single
shared buffer to service disk channels with constraints
on individual data transfer rates.

Further variants and combinations of these two problems are
possible for more complicated networks. We briefly discuss
caching issues, which are subject of ongoing research, in
Section 8.

For both the data transmission and data access problems,
we introduce efficient algorithms for lexicographic optimal
smoothing (or simply lexopt smoothing) the aggregate band-
width requirements. Among all data transfer schedules,
the lexopt schedule is the one with minimum bandwidth
variance. In the data transmission problem, where multiple
clients share the network bandwidth, we consider two client
models. In the first, the clients have different buffer capac-
ities but no individual network bandwidth constraints; in
the second model, the clients have no buffer limitations but
different maximum link bandwidth capacities. For the data
access problem, we handle the general case of a shared buffer
with limited capacity and individual disk channel bandwidth
constraints. Previous approaches in the literature for the
data transmission and data access problems, handled either
the case of only a single stream or did not compute the
lexicographically optimal schedule. We examine previous
work in the next section.

Lexopt smoothing of the aggregate data traffic has several
advantages over alternative traffic shaping methodologies. It
will not only minimize the maximum aggregate bandwidth,

but it will also keep minimal the bandwidth requirements in
every time step of the aggregate data transfer sequence. By
reducing the time period during which the peak bandwidth
is actually utilized, the chances for successfully admitting
requests from additional clients can be improved. By
avoiding having to reschedule the entire accepted network
traffic every time a new playback request is considered, the
computation for admission control becomes independent of
the number of clients concurrently supported by the system.
The hierarchical approach for applying the lexopt process
itself, distributes the smoothing operation across multiple
layers in order to take advantage of buffering resources
available in the entire system.

The rest of this paper is structured as follows. In
Section 2, previous related work is presented. In Section 3,
the general data transmission problem is defined, while in
Section 4 and 5, algorithms for optimally solving two special
cases are described. In Section 6, the data access problem
is more formally introduced, and an optimal algorithm is
provided for a particular case. In Section 7, some prelim-
inary results from our experimentation with actual video
streams are summarized, while Section 8 briefly discusses
our conclusions and plans for future work.

2. Related Work

Variable bit-rate encoding of video streams can achieve qual-
ity equivalent to constant bit-rate encoding, while requiring
average bit rate that is significantly lower [13, 3, 7]. Data
prefetching techniques have been previously applied in order
to reduce bandwidth requirements of variable bit-rate data
transfers.

To compare different data transfer sequences with respect
to uniformity of bandwidth requirements over time, we
use the lexicographic optimality criterion [6, 5], formally
described in the next section. Salehi et al. [16] describe an
algorithm for lexicographically optimizing the data transfer
sequence of a single stream, when given a limited buffer
capacity at the client for prefetching. Feng and Rex-
ford [2] compare alternative methods for smoothing individ-
ual streams and demonstrate differences in the rate change
properties of the generated transfer sequences. McManus
and Ross [10] introduce a general dynamic programming
approach for generating a piecewise constant rate sequence
for a single stream, optimized according to criteria related
to the required buffer space and transfer rate. All these
solutions apply to individual streams without explicit con-
sideration of contention for network link bandwidth from
other concurrently served clients.

Zhao and Tripathi [19] describe an algorithm for mini-
mizing the maximum aggregate bandwidth required when
multiplexing several video streams over a common network
link connected to clients with different buffer constraints.
Comparative experimentation is limited to static sets of
streams rather than streams arriving and initiated dynami-
cally over time, as would typically happen in practice.

Hoang and Vitter [4] propose a lexicographic approach for
choosing the quantization level during MPEG video coding,
subject to the buffering constraints, so as to achieve the
most uniform visual quality of the transmitted video. Other



related research tries to improve network link utilization
for live video, where the resource requirements of a stream
can only be known for a limited time window rather than
the entire playback duration. Rexford et al. [14] use client
data prefetching for smoothing live video streams, where the
stream requirements are known only for a limited period of
time instead of the entire playback period. Mansour et al. [9]
examine several resource tradeoffs in live video smoothing.

Other studies have considered server-side resource man-
agement [11, 15, 12]. In particular, Anastasiadis et al. [1]
investigate the problem of lexicographically optimizing the
transfer of individual streams transferred from multiple disks
into a shared buffer.

In our experimentation, we assume that resource re-
quirements are reserved deterministically, rather than being
estimated based on statistics of the data transfer sizes.
Accurate statistical representation of video traffic is a non-
trivial problem, which we can avoid in the case of stored
streams sequentially accessed, because of the additional
information available about each stored stream. Prefetching
techniques can be successfully applied explicitly through
smoothing, as is demonstrated in the rest of this paper
and previous related work. They increase buffer space
requirements on the client side for improved network link
bandwidth utilization.

3. Data Transmission Problem Defini-
tion

We consider a set of K clients connected over a shared
network link to a source (or proxy) streaming media server.
Each stream k is described by the demand sequence dk of
length T , that specifies the minimum data requirements
dk(i) at time step i, 1 ≤ i ≤ T . That is, client k must
have in its buffer dk(i) bytes of stream k at time step i
in order for the decoding stream to continue uninterrupted.
The actual data can be transferred earlier (prefetched), but
must be held in the client’s buffer until the required time.
We define as Lk(i) the cumulative minimum amount of data
that the client must receive by time step i; in other words,
Lk(i) =

∑
q≤i dk(q).

When the local client buffer space is limited, the maxi-
mum cumulative amount of data that client k can receive
by time step i is given by Uk(i). The general constraint
that has to be met is Uk(i) ≥ Lk(i), for all 1 ≤ i ≤ T .
Assuming available buffer space at the client k equal to µk,
the cumulative upper bound can be derived from the lower
bound: Uk(i) = Lk(i − 1) + µk. In addition, the link
that connects a client k to the network might have limited
bandwidth ρk.

We define the transfer schedule of an individual stream k
to be the sequence sk that specifies the amount of data sk(i)
from stream k that is transferred to client k during time i. A
schedule is valid when it transfers to client k the cumulative
amount Lk(i) by step i without violating the buffer and
bandwidth constraints of the client. More specifically, for
each client k, we have Lk(i) ≤ ∑

1≤j≤i sk(j) ≤ Uk(i)
and sk(i) ≤ ρk, for i = 1, . . . , T . The aggregate transfer
schedule is the sequence sA of the total amount of data,

L (t)k

2

1

3

4
kd (t)

demand sequence t
cumulative lower bound

2

4

6

8

10

t

Figure 2: Example of pruning the lower bound of an individual
stream with bandwidth capacity ρ = 2.

sA(i) =
∑

k sk(i), transferred to all clients during time
step i.

To compare different transfer schedules with respect to
smoothness, we advocate using the lexicographic optimality
criterion [6, 5]. This criterion compares two vectors starting
from their first largest element. When the kth largest
elements are the same, it proceeds with comparing the
(k + 1)st largest element and so on until two respective
elements differ. The vector with the smaller (k+1)st largest
element is considered smoother than the other. Of course,
when transforming a data transfer sequence to a smoother
one, additional constraints apply as a result of validity
restrictions mentioned in the previous paragraph.

More formally, for any x = (x1, . . . , xn) ∈ Rn, let
the square bracket subscripts denote the elements of x in
decreasing order x[1] ≥ · · · ≥ x[n]. Given a parameter G, a
sequence x ∈ Rn is valid if xi ≥ 0, for each 1 ≤ i ≤ n, and∑n

i=1 xi = G. For any two valid sequences x, y, we say that
x is lexicographically smaller than y (denoted x ≺ y) if for
some 1 ≤ k ≤ n we have

x[i] = y[i], for 1 ≤ i < k;

x[k] < y[k].

We consider x to be smoother than y if x ≺ y. We
say that x∗ is lexicographically optimal if x∗ ≺ x for all
other valid x. As a corollary, the maximum element of x∗

is no larger than the maximum element of any other valid
sequence, or equivalently x∗ is minmax-optimal over all valid
sequences. Furthermore, among all those sequences with the
same smallest maximum element, x∗ minimizes the second-
highest element, and so on. Lexicographic optimality is thus
a stronger notion than minmax optimality.

4. Data Transmission to Clients with
Unlimited Buffer and Limited Band-
width

In this section we describe a newly derived algorithm for
constructing a lexicographically optimal schedule for data
transmission in which, for each 1 ≤ k ≤ K, client k has
limited network bandwidth ρk, but no memory constraints
(i.e., µk = +∞). Practically, this means that the client has
sufficient storage space to receive the entire file, and thus
data can be transmitted to (prefetched at) the client at any
time prior to its deadline.



LA (t)

client 2

client 1

convex hull

t

aggregate

cumulative lower bound

Figure 3: Example of aggregating the pruned lower bounds of
two streams, for the unlimited buffer/limited bandwidth network
multiplexing problem. Pruning keeps every demand sequence at
each time step bounded by the corresponding bandwidth limit.
Each segment on the convex hull corresponds to a critical interval,
and its slope is the critical rate.

4.1. The Algorithm

As a preprocessing step, the demand sequence of each stream
k is pruned so that its demand at any time step i is no
more than its link capacity ρk. This is done by examining
successive elements of the demand sequence from the last
element towards the first, moving at each step demand
exceeding ρk to the previous time step. We have to move
the data transfers backwards in order to avoid violating any
of the deadline restrictions. More specifically, we update
Lk(i) := max{Lk(i), Lk(i + 1) − ρk} as i decreases from
T − 1 to 1. An example of this pruning process is pictured
in Figure 2. A cumulative lower bound LA(i) at time step
i is obtained by summing Lk(i) for each stream k; that is,
LA(i) =

∑K
k=1 Lk(i) (see Figure 3).

Starting from point i = 0 of the cumulative lower bound
curve, we identify consecutive non-overlapping longest in-
tervals (i, j], called critical intervals, such that the line
segment from LA(i) to LA(j) does not meet the lower
bound anywhere other than its endpoints. The algorithm
below constructs a transfer schedule so that the aggregate
bandwidth for each critical interval is equal to the slope of
the line segment. The resulting schedule is lexicographically
optimal. Our algorithm has a complexity of O(KT ) for
pruning of the demand sequences, identification of the
critical intervals, and scheduling of the critical intervals.

All that remains is to show how to schedule each critical
interval. Let (i, j] be a critical interval, and let Rc denote
its critical rate, which corresponds to the slope of the line
segment from LA(i) to LA(j). We start with an initial
schedule consisting of the pruned lower bounds. That is,
the schedule consists of the pruned demand vectors with no
prefetching other than what was done during the pruning.
This schedule is valid, in that the bandwidth for stream k
is at most ρk; however, the aggregate bandwidth is highly
variable.

We do the following step iteratively until the aggregate
bandwidth at each time step is Rc: Let time step q be the
latest time in the critical interval for which sA(q) > Rc. And
let time step p be the latest time step earlier than q such
that sA(p) < Rc. We move min{sA(q) − Rc, Rc − sA(p)}

Input: K, ρk, dk, 1 ≤ k ≤ K
Output: sk, 1 ≤ k ≤ K with lexopt SA

1. prune dk into dp
k according to ρk, 1 ≤ k ≤ K

2. generate Lk from dp
k, 1 ≤ k ≤ K

3. generate LA from Lk, 1 ≤ k ≤ K
4. repeat

5. identify next critical interval (i, j] with Rc

6. calculate sk(t), i ≤ t < j, 1 ≤ k ≤ K (from Theorem 1)
7. until (total length of critical intervals = T)

Figure 4: Algorithm outline for the data transmission problem
with unlimited buffer and limited bandwidth.

data units from time step q to p. Precisely how we move
the data (i.e., how we determine which streams and how
much data from each stream) is described below in the proof
of Theorem 1. The steps of the algorithm are outlined in
Figure 4.

At the end of this process, we are left with a constant-
bandwidth transfer schedule of bandwidth Rc for the critical
interval. This final schedule is lexicographically optimal
and corresponds to an aggregate bandwidth that follows the
convex hull of Figure 3.

4.2. Optimality Proof

Lemma 1 From the line segments connecting consecutive
outer corners of the aggregate lower bound, we get a sequence
of rates that corresponds to a valid aggregate transfer sched-
ule.

Proof : For each line segment connecting consecutive outer
corners of the aggregate lower bound at time step i, the
corresponding rate is equal to

∑
k dp

k(i), where dp
k(i) is

the demand of stream k after pruning its lower bound.
Therefore, each stream k receives bandwidth dp

k(i), which
guarantees avoidance of both data starvation and bandwidth
overflow (due to pruning) during step i for client k.

Theorem 1 The algorithm in Section 4.1 produces the
lexicographically optimal data transmission curve, which
satisfies the upper and lower bounds for each stream.

Proof : We show by construction that, in each critical
interval, we obtain a valid aggregate transfer schedule such
that the aggregate bandwidth for each step in the interval
is equal to the critical rate of the interval. We start with
the valid aggregate schedule of Lemma 1, which corresponds
to scheduling each stream according to its pruned demand
sequence.

Let’s focus on any particular critical interval; we denote
the critical rate for the interval by Rc. For the algorithm in
Section 4.1, we need to show that we can transfer

min{sA(q)−Rc, Rc − sA(p)}
data units from time step q to time step p. The result of this
transfer is that either time step q or time step p will end up
with an aggregate bandwidth of Rc.

The only reason why we would not be able to transfer
the desired amount of data from time q to time p would



be if some streams at time step p would then be above
their bandwidth limit. Since the initial schedule is valid,
the individual bandwidth constraints are initially met. In
particular, the streams that are transmitting data at step q
are at or below their individual bandwidth limits. Since the
aggregate bandwidth at time step p is below that of time
step q, there must be at least one stream transmitting at
time q that is not transmitting at its bandwidth limit at
time p. We can therefore move data for that stream from
time step q to p. We continue in this manner until either
time step q or time step p is at the desired bandwidth Rc.

For each time step in the critical interval, we end up with
constant aggregate bandwidth Rc. By the nature of the
way Rc is computed, the average bandwidth for the time
steps in the critical interval is at least Rc. The constant-
bandwidth schedule for the critical interval is obviously the
one that is lexicographically minimal. The concatenation of
lexicographically optimal schedules for the critical intervals
is lexicographically optimal.

5. Data Transmission to Clients with
Limited Buffer and Unlimited Band-
width

As previously, we consider the scheduling of K distinct
streams, each of which consists of T transmission steps. For
the client model considered in this section, each client k has
a fixed amount µk of memory for prefetching, but there is
no bandwidth constraint (i.e., ρk = +∞). We allow real-
valued amounts of data transfer at each step. Our goal is to
compute the lexopt schedule.

5.1. The Algorithm

Our new algorithm initially follows the approach of Zhao and
Tripathi [19] and constructs, for each stream k, the lower
bound Lk(i) and upper bound Uk(i) on the data for that
stream that needs to be transmitted by time step i. The
lower bound Lk(i) is just the sum of the demands of stream k
between time steps 0 and i. The upper bound Uk(i), which
is µk units larger than Lk(i− 1), limits the amount of data
over and above the aggregate demand that can be prefetched
at time i for use in later time steps.

Our algorithm is iterative. In each iteration, transmissions
are scheduled for one or more disjoint intervals, (i, j]. These
critical intervals are then removed from further considera-
tion by the algorithm. When removing critical interval (i, j],
the demands at time step i and time steps greater than j are
modified to appropriately reflect the transmission sequence
computed for the interval (i, j]. The modified workload
is the input to the next iteration of the algorithm. Each
individual interval is found using the algorithm of Zhao and
Tripathi. Our contribution is to show that we can remove
each identified critical interval, followed by appropriate
adjustment of the transmission sequence, to compute the
lexopt schedule.

Every critical interval has an associated critical rate Rc,
which is the aggregate bandwidth required in that interval.
All intervals identified in the same iteration have the same
value of Rc, which is smaller than the critical rate in

saturating client

non−saturating
client after removal
of critical interval

after removal of
critical interval

time

datadata

data data

time time

time

accum.

accum. accum.

accum.

Figure 5: Example of critical interval removal in the case of
saturating and non-saturating streams. Note that no data transfer
occurs during the critical interval in the case of non-saturating
streams.

any previous iteration. The critical rate computed in any
iteration is the minimum bandwidth necessary to schedule
the modified aggregate workload at that iteration. This
sequence of critical rates generates the lexicographically
optimal aggregate transfer schedule.

Like the minmax algorithm of Zhao and Tripathi [19], our
algorithm achieves the following lower bound on the peak
transfer rate for the K streams:

Rc = max
i<j




∑
1≤k≤K

max

{
Lk(j)− Uk(i)

j − i
, 0

}


Let us now consider any interval (i, j] in which this lower
bound on peak transfer rate is achieved. As before, call
such an interval a critical interval. We schedule each critical
interval with a constant bandwidth equal to its critical rate,
using the algorithm implicit in Lemma 2.

For a critical interval, let the streams that have a positive
contribution to the above sum in the critical interval be
called saturating streams, and non-saturating streams be
those streams with zero contribution to the sum. Any
saturating stream k satisfies two key properties:

1. It cannot transmit any data needed for time steps
beyond j in any time step less than or equal to j.

2. At time step i, there must be exactly µk data units in
client k’s prefetch buffer.

In other words, for each critical region, the client buffer for
a saturating stream starts full and ends up empty. Non-
saturating streams do not transmit any data during the
critical interval.

These observations allow us to recursively reduce the
problem by stripping away all critical intervals (Figure 5).
When stripping any such (i, j] interval, the lower bound
at the boundary times i must be adjusted in accordance
with the observations above. The lower bound at time
step i for each saturating stream k must be increased by



Input: K, µk, dk, 1 ≤ k ≤ K
Output: sk, 1 ≤ k ≤ K

1. generate Lk from dk, 1 ≤ k ≤ K
2. generate Uk from Lk, 1 ≤ k ≤ K and µk

3. repeat

4. identify next critical interval (i, j] with Rc,
and list of saturating clients

5. update sk(t), i < t ≤ j, 1 ≤ k ≤ K,
for all saturating clients

6. set Lk(i) = Uk(i) for each saturating client k
7. reduce Lk(q), Uk(q) by Lk(j)− Uk(i),

for j < q and each saturating client k
8. set Lk(i) = Lk(j) for each non-saturating client k
9. remove interval (i, j] from Lk, Uk, 1 ≤ k ≤ K
10. until (total length of critical intervals=T)

Figure 6: Algorithm outline for the problem of data transmission
to clients with limited buffers and unlimited bandwidth.

Uk(i)−Lk(i), while the corresponding lower bound for non-
saturating streams must be increased by Lk(j) − Lk(i).
In addition, the bounds of saturating streams in all time
steps following j have to be reduced by the amount of
bytes transferred during the (i, j] interval, which is equal
to the quantity Lk(j)− Uk(i). Following these changes, the
recursion can now be applied (Figure 6).

If we do this stripping simultaneously for all critical
intervals, then the new problem instance will have a strictly
smaller peak rate than before. We then find the lower bound
on the peak rates for each of the new problems, and reapply
the above approach. We can then glue back the schedule
for the interval (i, j] into the resulting schedule. Because
of the strong property that every valid schedule that meets
the minmax bound must schedule the same transmissions
during time steps i + 1, i + 2, . . . , j, we end up with a
provably lexicographically minimum schedule.

5.2. Optimality Proof

Lemma 2 In every point of the critical interval, the aggre-
gate transmission rate Rc is both necessary and sufficient
for the clients to avoid underflow and overflow of their
buffers. In other words, there is a valid schedule such that the
aggregate bandwidth at each time step in the critical interval
is exactly Rc.

The above lemma is proved by Zhao and Tripathi [19].
We use that approach as a subroutine for finding the
lexicographically optimal schedule.

Theorem 2 When multiplexing streams for clients with
limited buffers, the process of iteratively identifying critical
intervals generates a valid lexicographically optimal sequence
of aggregate transfer rate requirements.

Proof : From Lemma 2, we know that the aggregate rate Rc

in each successive critical interval (i, j] is both necessary
and sufficient for the participating (saturating) stream to
avoid starvation or overflow. This results from the fact that
streams participating in (i, j] start with full buffer at i and
end with empty buffer at j. From the way that the lower
bound is updated when stripping out the interval (i, j], the
requirements up to i and after j of each saturating stream

kD [i][j]

i

j

j>i

T

1
1 T

Figure 7: Upper-triangular matrix for efficiently identifying
critical intervals in the algorithm for transmissions to clients with
limited buffer and unlimited bandwidth. All intervals of equal
length δ = j − i lie along a common diagonal.

are preserved. Since only saturating streams participate
in (i, j], the data transfer requirements of non-saturating
streams between i and j are shifted in time to point i,
thus prefetching the corresponding data before or at time
step i. Therefore, the original constraints of each stream
are correctly maintained during the iterative process. From
the way critical intervals are chosen, the minmax aggregate
bandwidth requirements of the current problem phase are
identified. Since at each iteration the returned bandwidth
is unavoidable, the generated sequence of aggregate rates is
lexicographically optimal.

5.3. Algorithm Complexity

A straightforward implementation of the lexopt algorithm
has a worst-case time complexity of O(KT 3). Every time
an interval is stripped out, recomputing the new minimum
bandwidth takes O(KT 2) time, and in the worst case there
are O(T ) stripping steps. By the use of appropriate data
structures it is possible to reduce the time for each stripping
step to O(KT log T ). We sketch the idea below.

For each stream k, an upper-triangular matrix Dk[i][j],
for 1 ≤ i < j ≤ T , is initialized with the values of
(Lk(j) − Uk(i))/(j − i), for j > i (Figure 7). In computing
Rc the maximum value in each Dk needs to be determined.
Stripping out interval (s, t] requires deleting entries in Dk

corresponding to the vertical strips s < j ≤ t, 1 ≤ i < j
and the horizontal strips s < i ≤ t, i < j ≤ T . The
reduced upper-triangular matrix consists of three disjoint
pieces: the left triangular portion 1 ≤ i < j ≤ s, the
right triangular portion t < i < j ≤ T , and the rectangular
portion 1 ≤ i ≤ s, t < j ≤ T (Figure 8).

In order to update the maxima of the entries in the matrix
after a critical interval is stripped, the matrix is organized
as a set of T − 1 diagonal stripes, with stripe w containing
entries Dk[i][w + i], for 1 ≤ w ≤ T − 1. When a critical
interval (s, t] is removed, each diagonal stripe may be broken
into two or three smaller segments. Each such segment lies
either in the left triangular portion, the right triangular
portion, or the rectangular portion of the reduced matrix.

Along a diagonal stripe, the entries in the two triangular
portions are unchanged by the removal of strip (s, t]. Entries
in the rectangular region correspond to pairs (i, j) that



t

s

rectangular
portion

left
triangular
portion

triangular
portion

right

auxiliary
binary tree of
diagonal stripe

Figure 8: Supplementary binary tree for each diagonal stripe.
The highlighted part has become inactive due to the removal of
the interval (s, t].

straddle the interval (s, t], and change value as discussed
earlier, for saturating and non-saturating streams. In
particular, if the current value for an entry Dk[i][j] in the
rectangular region is d, its value after removing the interval
(s, t] is given by dnew = d × w/(w − δ) −∆/(w − δ), where
w = j − i identifies the diagonal strip, δ = t − s is the
width of the stripped interval, and ∆ is the amount by which
Lk(j) is reduced by the stripping of interval (s, t]. This linear
transformation preserves the maximum element in the subset
to which it is applied, permitting us to avoid recomputing
dnew for all the pairs. Successive transformations can be
composed to compute new δ and ∆ values, requiring only one
pair of values to be maintained for each surviving segment
left after the removal of several critical intervals.

Each diagonal strip is organized as an independent com-
plete binary tree with the matrix elements as its leaves.
Initially the entire diagonal forms one strip. The interme-
diate tree nodes initially contain the maximum elements of
their respective subtrees. As intervals are stripped away,
contiguous sections of the leaves of the binary tree are
made invalid. In any iteration at most two sections are
invalidated. To update the maxima one traverses to the root
from the edges of the invalidated sections, recomputing the
new maxima along the paths. During this update the new
values of maxima encountered along the path are evaluated
using the transformation above. There are only a constant
number of such new endpoints created in every iteration,
and the traversal from the endpoint to the root requires
only a constant-time operation at every node: applying the
transformation on the old maxima encountered in the path,
invalidating any sibling that is the root of a subtree with
invalidated leaves, and computing the new maxima of the
(non-invalidated) children of every node on the path. Thus,
for each interval stripped away, the update time per diagonal
is O(log T ); since there are at most T − 1 diagonals in any
matrix and K streams, the worst-case complexity for each
stripping step is O(KT log T ), and the total complexity of
lexopt becomes O(KT 2 log T ).

Input: K, M, ρk, dk, 1 ≤ k ≤ K
Output: sk, 1 ≤ k ≤ K

1. generate Lk for each k, 1 ≤ k ≤ K, and LA

2. generate UA from LA, M
3. prune Lk,1 ≤ k ≤ K (from ρk) and update LA

4. calculate sA from shortest-path algorithm on LA,UA

5. update sk, 1 ≤ k ≤ K from sA

Figure 9: Algorithm outline for the data access problem with
shared buffer and channels with limited bandwidth.

6. Shared Buffer Data Access over Lim-
ited Bandwidth Channels

We now consider the general data access problem of access-
ing data with a shared buffer of size M . The data arrive
from K different storage devices over separate channels, each
with limited bandwidth ρk. For each storage device k, there
is a separate demand sequence dk specifying the amount
of data dk(i) that should be received from that device
during time step i. Our objective is to lexicographically
optimize the bandwidth requirements of the aggregate data
traffic arriving from all the channels. This is useful for
the particular case that the shared link connecting the
individual channels into memory is the bottleneck resource.
By achieving the lexopt objective, we expect that we can
improve the future chance of successfully accepting into the
server newly arriving streams.

6.1. The Algorithm

First, we obtain the cumulative lower bound LA(i) by sum-
ming up the corresponding Lk(i)’s of each stream: LA(i) =∑K

k=1 Lk(i). Next, the cumulative upper bound UA(i) is
computed as UA(i) = LA(i−1)+M . We then prune Lk(i) for
each individual stream as described in Section 4.1, and the
cumulative lower bound LA(i) is updated correspondingly.

Subsequently, we apply a smoothing algorithm, similar
to that of Lee and Preparata [8, 16], with lower and upper
bounds LA(i) and UA(i) respectively, in order to identify the
sequence of aggregate rates required over time. The total
complexity is O(KT ), since the construction of the lower
and upper bounds require O(KT ) time, while running the
smoothing algorithm on a single stream (LA, UA) takes O(T )
time [8, 16]. Our algorithm is outlined in Figure 9.

6.2. Optimality Proof

For purposes of proving the optimality of the schedule
generated by the above algorithm, we use an iterative process
of identifying critical intervals instead of the functionally
equivalent shortest-path algorithm for calculating critical
rates [8]. It has been shown in previous work [16] show that
the lexicographically optimal schedule for (L, U) is exactly
the shortest path in the feasible region.

Lemma 3 In each critical interval, the minimum data
access requirements for all channels are met without viola-
tion of any maximum bandwidth or shared buffer capacity
constraint.



lower bound

unreachable
regions

outermost
corners

Figure 10: Example of region that is unreachable by channel
transmission schedules.

Proof : There is no overflow of the shared buffer space, and
the data access requirements for all channels are met as a
consequence of always remaining between the cumulative
lower and upper bounds. By the definition of the critical
interval (i, j], if there is some point j′, for i < j′ < j,
where a lower bound violation occurs, then j′ would have
been chosen instead of j as the right endpoint because the
critical rate would be higher. Similarly, if there is some i′,
for i < i′ < j, where there is buffer overflow, the i′ would
be the preferred left endpoint of the critical interval instead
of i.

In order to prove that there is no point where the
bandwidth capacity of a channel has to be exceeded, we
show two properties:

1. The critical rate is never more than the sum of the
bandwidth capacities of the channels, and

2. There is no need for a channel to exceed its bandwidth
in order to avoid violating its corresponding lower
bound.

In order to show claim 1, we notice that the critical rate is
calculated as the exact rate to reach a lower bound point
from an upper bound point of the aggregate requirements.
Then, as a result of pruning the lower bounds of the
individual streams and the upper bound of the aggregate
requirements, the critical rate is no more than the sum of
the bandwidth capacities of the individual streams. (Note
that when we strip off a critical interval, the lower bound of
the left endpoint is set equal to its upper bound.)

Claim 2 is a consequence of the fact that, in any interval
of unitary length, a channel transmission never has to
start from a point located left of the (outermost) corner
of its lower bound. An example is shown in Figure 10.
From the aggregate transfer schedule sA, the individual
channel transfer schedules sk can be derived. The available
aggregate bandwidth at each time step is distributed across
the individual channels such that each of them meets its next
lower bound. Any excessive bandwidth from the current step
is used for meeting the lower bound of the second-next step
of each channel and so on.

Theorem 3 The aggregate transfer schedule returned by the
algorithm is valid and lexicographically optimal.

Proof : Validity is result of Lemma 3, while optimality
is consequence of the shortest-path approach followed for
constructing the aggregate schedule.

7. Experimentation and Discussion

For the problem of data transmission to clients with limited
buffer space, the ability of lexopt smoothing to minimize
the utilized bandwidth during the entire aggregate transfer
schedule can improve the probability of accepting new
playback requests under conditions of limited shared link
capacity.

In Figures 11 and 12, we can observe the bandwidth
requirements over time when the aggregate transfer schedule
of different streams has been smoothed using the lexopt
and minmax methods, respectively. For these experiments,
six different MPEG-2 clips with distinct statistical features
have been used that were generated with variable bit-rate
encoding parameters [1]. When multiplexing over the same
link three streams of low bit-rate variability (Figure 11), the
difference between the average and the maximum required
aggregate bandwidth is relative small, and keeps insignifi-
cant the comparative advantage of lexopt. However, when
multiplexing three streams of high bit-rate variability, the
above difference becomes larger (Figure 12). Correspond-
ingly, in the time period after 1000 seconds, lexopt keeps the
required bandwidth about 20% lower than minmax. This
is the result of better managing the buffer space available
across the different clients in order to avoid coincidence of
peak bandwidth requirements across the different streams.

The actual benefit of smoothing can be further quanti-
fied through the throughput achieved over a network link
when stream requests arrive dynamically over time and are
considered for playback. The achieved performance can
be affected by several parameters that include the buffer
space available for data prefetching at each client, the rate
variability of the requested streams, the load arriving into
the system, and the scheduling policy used for deciding when
a new client can be admitted. In particular, the system
load should be kept under control in order to avoid high
request rejection ratio, which makes the service impractical.
Possible approaches for the scheduling policy depend on
how often the admitted data transfer traffic is reorganized
to take advantage of knowledge for resource requirements
that becomes available with new client arrivals. However,
periodical rescheduling of the entire accepted transfer traffic
can become expensive, as it increases linearly with the total
number of active streams in the system. Furthermore,
the advantage from data prefetching through smoothing is
reduced as the network link capacity increases, and the
benefit from statistical multiplexing becomes larger.

An important issue that is not addressed by the present
study is adaptation of the aggregate transfer rate require-
ments according to network bandwidth conditions that vary
over time. Such a scenario would more closely resemble best-
effort assumptions currently made for the Internet traffic.
Instead, we assume that different streams are multiplexed
over a link of bandwidth capacity that remains fixed, as
would be the case with privately owned links.

The appeal of applying lexicographical smoothing to
multiplexed traffic, when transmitting data to clients with
limited bandwidth, is similar to the case of limited buffer.
A comparable advantage could be achieved when accessing
data into shared memory from multiple source devices,
assuming that the bottleneck resource is the bandwidth of



500 1000 1500

Sec 

0

500000

1000000

1500000

2000000
B

yt
es

Example with Three Streams of Low Variability

minmax optimal
lexopt smoothing

Figure 11: For video streams of low variability, the average
bandwidth (bytes/s) required over time using the minmax and
lexopt smoothing methods is very close to the maximum. The
methods were applied to three different streams of low variability
with buffer space per client of 2MB.

the shared link connecting the devices to the server. One
restriction for accepting new traffic, when accessing data
from multiple storage devices, arises from the fact that
typically the requested data is only stored on one source
device. Should this become an issue, replication of data
across multiple devices could be used for better balancing
the system load across the different devices, as storage
space becomes inexpensive relative to the storage device
bandwidth.

8. Conclusions and Future Work

In this paper, we address the problem of smoothing multi-
plexed network traffic for streaming data so as to achieve a
lexicographically optimal smoothing (lexopt smoothing) of
the aggregate bandwidth. We considered lexopt smoothing
for the complementary problems of data transmission to
multiple clients and data access from multiple storage
devices (or other downstream servers).

For the data transmission problem, we developed lexopt
smoothing algorithms for two client models: clients having
different buffer capacities but no individual bandwidth
constraints, or clients having different bandwidth constraints
but no buffer limitations. The general case in which clients
have different buffer capacities and bandwidth constraints is
open. For the data access problem, we developed a lexopt
smoothing algorithm for the general case of a shared buffer
with limited capacity and individual data rate constraints.

Lexopt smoothing has several desirable features for hi-
erarchical scheduling that results into increased resource
utilization and flexibility in handling unknown future traffic.
By provably minimizing the variance of the required ag-
gregate bandwidth, maximum resource requirements within
the network become more predictable, and useful resource
utilization increases. Fairness in sharing a network link

500 1000 1500

Sec 

0

500000

1000000

1500000

2000000

2500000

B
yt

es

Example with Three Streams of High Variability

minmax optimal
lexopt smoothing

Figure 12: For streams with high variability, the average
bandwidth (bytes/s) required over time is significantly lower with
the lexopt smoothing method than with minmax. The methods
were applied to three different streams of high variability with
buffer space per client of 2MB.

by multiple users can be improved, and new requests from
future clients are more likely to be successfully admitted
without the need for rescheduling previously accepted traffic.
Efficient resource management at the network edges can bet-
ter meet quality of service requirements without restricting
the scalability of the system.

Continuing work is directed not only at the scheduling
problem but also at other factors affecting total performance.
For example, caching is a key technique for filtering (and
thereby reducing) the amount of data required from the
upstream node(s), and thus caching can significantly reduce
even further the amount of control traffic sent upstream.
Scheduling flexibility can be traded for reduced amount of
control traffic needed to specify the data received by different
clients over time, by increasing the length (granularity) of
individually requested file segments.

9. Acknowledgments

We would like to thank the anonymous reviewers for sugges-
tions that improved the presentation of the paper.

References

[1] S. V. Anastasiadis, K. C. Sevcik, and M. Stumm.
Server-based smoothing of variable bit-rate streams. In
ACM Multimedia Conference, pages 147–158, Ottawa,
ON, Oct. 2001.

[2] W.-C. Feng and J. Rexford. A comparison of bandwidth
smoothing techniques for the transmission of prere-
corded compressed video. In IEEE INFOCOM, pages
58–66, Kobe, Japan, Apr. 1997.

[3] S. Gringeri, K. Shuaib, R. Egorov, A. Lewis,
B. Khasnabish, and B. Basch. Traffic shaping, band-
width allocation, and quality assessment for mpeg video



distribution over broadband networks. IEEE Network,
12(6):94–107, Nov/Dec 1998.

[4] D. T. Hoang, P. M. Long, and J. S. Vitter. Efficient
cost measures for motion compensation at low bit rates.
In IEEE Data Compression Conference, Snowbird, UT,
April 1996. IEEE Computer Society Press.

[5] D. T. Hoang and J. S. Vitter. Efficient Algorithms for
MPEG Video Compression. John Wiley & Sons, New
York, 2002.

[6] T. Ibaraki and N. Katoh. Resource Allocation Problems:
Algorithmic Approaches. Series in the Foundations of
Computing. MIT Press, 1988.

[7] T. V. Lakshman, A. Ortega, and A. R. Reibman. Vbr
video: Tradeoffs and potentials. Proceedings of the
IEEE, 86(5):952–973, May 1998.

[8] D. T. Lee and F. P. Preparata. Euclidean shortest path
in the presence of rectilinear barriers. Networks, 14:393–
410, 1984.

[9] Y. Mansour, B. Patt-Shamir, and O. Lapid. Optimal
smoothing schedules for real-time streams. In ACM
Principles of Distributed Computing, pages 21–29, Port-
land, OR, July 2000.

[10] J. McManus and K. Ross. A dynamic programming
methodology for managing prerecorded vbr sources in
packet-switched networks. Telecommunications Sys-
tems, 9:223–247, 1998.

[11] S. Paek and S.-F. Chang. Video server retrieval
scheduling for variable bit rate scalable video. In IEEE
Multimedia Computing and Systems, pages 108–112,
Hiroshima, Japan, June 1996.

[12] A. L. N. Reddy and R. Wijayaratne. Techniques
for improving the throughput of vbr streams. In
ACM/SPIE Multimedia Computing and Networking,
pages 216–227, San Jose, CA, Jan. 1999.

[13] A. R. Reibman and A. W. Berger. Traffic descrip-
tors for vbr video teleconferencing over atm networks.
IEEE/ACM Transactions on Networking, 3(3):329–339,
June 1995.

[14] J. Rexford, S. Sen, J. Dey, W. Feng, J. Kurose,
J. Stankovic, and D. Towsley. Online smoothing of live,
variable-bit-rate video. IEEE Trans. on Multimedia,
2(1):37–48, Mar. 2000.

[15] S. Sahu, Z.-L. Zhang, J. Kurose, and D. Towsley. On the
efficient retrieval of vbr video in a multimedia server.
In IEEE Multimedia Computing and Systems, pages 46–
53, Ottawa, Canada, June 1997.

[16] J. D. Salehi, Z.-L. Zhang, J. F. Kurose, and D. Towsley.
Supporting stored video: Reducing rate variability
and end-to-end resource requirements through optimal
smoothing. IEEE/ACM Transactions on Networking,
6(4):397–410, Aug. 1998.

[17] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair
queueing: Achieving approximately fair bandwidth al-
locations in high speed networks. In ACM SIGCOMM,
pages 118–130, Vancouver, BC, Sept. 1998.

[18] B. Yener, G. Su, and E. Gabber. Smart box ar-
chitecture: A hybrid solution for ip qos provisioning.
Computer Networks Journal, to appear.

[19] W. Zhao and S. K. Tripathi. Bandwidth-efficient con-
tinuous media streaming through optimal multiplexing.

In ACM SIGMETRICS, pages 13–22, Atlanta, GA,
June 1999.


