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We propose and study a new class of online problems, which we call online tracking. Suppose an
observer, say Alice, observes a multi-valued function f : Z+ → Zd over time in an online fashion,
i.e., she only sees f(t) for t ≤ tnow where tnow is the current time. She would like to keep a tracker,
say Bob, informed of the current value of f at all times. Under this setting, Alice could send new
values of f to Bob from time to time, so that the current value of f is always within a distance of
∆ to the last value received by Bob. We give competitive online algorithms whose communication
costs are compared with the optimal offline algorithm that knows the entire f in advance. We also
consider variations of the problem where Alice is allowed to send “predictions” to Bob, to further
reduce communication for well-behaved functions. These online tracking problems have a variety of
application ranging from sensor monitoring, location-based services, to publish/subscribe systems.

Categories and Subject Descriptors: F.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems

General Terms: Algorithms, theory

Additional Key Words and Phrases: Online tracking

1. INTRODUCTION

Let Alice be an observer who observes a function f(t) in an online fashion over time.
She would like to keep a tracker, Bob, informed of the current function value within
some predefined error. What is the best strategy that Alice could adopt so that
the total communication is minimized? This is the general problem that we study
in this paper. For concreteness, consider the simplest case where the function takes
integer values at each time step1 f : Z+ → Z, and we require an absolute error of at
most ∆. The natural solution to the problem is to first communicate f(0) to Bob;
then every time f(t) has changed by more than ∆ since the last communication,
Alice updates Bob with the current f(t). Interestingly, this natural algorithm for
this seemingly simple problem has an unbounded competitive ratio compared with
the optimal. Consider the case where f(t) starts at f(0) = 0 and then oscillates

1We use Z+ to denote the domain of all non-negative integers in this paper.
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between 0 and 2∆. Then this algorithm will communicate an infinite number of
times while the optimal solution only needs one message: f(0) = ∆.

The example above shows that even in its simplest instantiation, the online track-
ing problem will require some nontrivial solutions. Indeed, in Section 2 we give an
O(log ∆)-competitive algorithm for the above problem. The competitive ratio is
also tight. Formally, we define the general problem considered in this paper as
follows. Let f : Z+ → Zd be a function observed by Alice over time. At the current
time tnow, Alice only sees all function values for f(t), t ≤ tnow. Then she decides if
she wants to communicate to Bob, and if so, a pair (tnow, g(tnow)) to be sent. Note
that g(tnow) is not necessarily equal to f(tnow). The only constraint is that at any
tnow, if Alice does not communicate, then we must have ‖f(tnow)− g(tlast)‖ ≤ ∆,
where tlast is the last time Bob got informed, and ∆ > 0 is some predefined error
parameter. Unless stated otherwise, ‖·‖ denotes the `2 norm throughout the paper.
We are mostly interested in the total communication (also referred to as the cost)
incurred throughout time, i.e., the total number of messages sent by the algorithm,
and will analyze the performance of an algorithm in terms of its competitive ratio,
i.e., the worst-case ratio between the cost of the online algorithm and the cost of
the best offline algorithm that knows the entire f in advance. Note that the offline
problem is to approximate f with the minimum number of horizontal segments and
with error at most ∆, which can be easily computed by a greedy algorithm.

Motivations. Online tracking problems naturally arise in a variety of applications
whenever the observer and the tracker are separate entities and the communica-
tion between them is expensive. For example, wireless sensors [Yao and Gehrke
2003] are now widely deployed to collect many different kinds of measurements
in the physical world, e.g., temperature, humidity, and oxygen level. These small
and cheap devices can be easily deployed, but face strict power constraints. It is
often costly or even impossible to replace them, so it is essential to develop energy-
efficient algorithms for their prolonged functioning. It is well known that among
all the factors, wireless transmission of data is the biggest source of battery drain
[Pottie and Kaiser 2000]. Therefore, it is very important to minimize the amount
of communication back to the tracker, while guaranteeing that the tracker always
maintains an approximate measurement monitored by the sensor. This directly cor-
responds to the one-dimensional version of our problem mentioned at the beginning
of the paper.

Our study is also motivated by the increasing popularity of location-based services
[Schiller and Voisard 2004]. Nowadays, many mobile devices, such as cell phones and
PDAs, are equipped with GPS. It is common for the service provider to keep track
of the user’s (approximate) location, and provide many location-based services,
for instance finding the nearest business (ATMs or restaurants), receiving traffic
alerts, etc. This case corresponds to the two-dimensional version of our problem.
Here approximation is often necessary not just for reducing communication, but
also due to privacy concerns [Beresford and Stajano 2003]. For carriers, location-
based services provide added value by enabling dynamic resource tracking (e.g.,
tracking taxis and service people). Similar to sensors, power consumption is the
biggest concern for these mobile devices, and both the user the service provider
have incentives to reduce communication while being able to track the locations
ACM Journal Name, Vol. V, No. N, Month 20YY.
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dynamically.
Finally, our problem also finds applications in the so called publish/subscribe

systems [Diao et al. 2004; Chandramouli et al. 2007]. Traditionally, users poll data
from service providers for information; but this has been considered to be very
communication-inefficient. In a pub/sub system, users register their queries at
the server, and the server pushes updated results to the users according to their
registered queries as new data arrives. Unlike the two applications above, here we
have one observer (the server) and many trackers (the users). Although energy
is not a concern here, bad decisions by the online tracking algorithm still have
severe consequences, since the messages need to be forwarded to potentially a larger
number of users, consuming a lot of network bandwidth. Depending on the nature
of the query, the function being tracked could take values from a high-dimensional
space. For instance, a set of items from a universe U corresponds to a {0, 1}-vector
in |U | dimensions.

Related work. Although our problem is easily stated and finds many applications,
to the best of our knowledge it has not been studied before in the theory community.
Some related models include online algorithms, communication complexity, data
streams, and the distributed tracking model.

Our problem generally falls in the realm of online algorithms, and as with all
online algorithms, we analyze the performance of our algorithms in terms of com-
petitive ratios.

In communication complexity [Yao 1979], Alice has x and Bob has y, and the goal
is to compute some function f(x, y) by communicating the minimum number of bits
between them. There are two major differences between communication complexity
and online tracking: First, in online tracking, only Alice sees the input, Bob just
wants to keep track of it. Secondly, in communication complexity both inputs x
and y are given in advance, and the goal is to study the worst-case communication
between x and y; while in online tracking, the inputs arrive in an online fashion,
and we focus on the competitive ratio. It is easy to see that the worst-case (total)
communication bound for our problems is meaningless, since the function f could
change drastically at each time step.

In data streams [Alon et al. 1999], the inputs arrive online, and the goal is to
track some function over the inputs received so far. In this aspect it is similar to our
problem. However, the focus in streaming algorithms is to minimize the space used
by the algorithm, not communication. The memory contents could change rapidly,
so simply sending out the memory contents could lead to high communication costs.

In distributed tracking [Cormode et al. 2008; Keralapura et al. 2006; Cormode
et al. 2005; Cormode and Garofalakis 2005; Olston et al. 2001; Davis et al. 2006], the
inputs are distributed among multiple sites and arrive online. There is a coordinator
who wants to keep track of some function over the union of the inputs received by
all sites up until tnow. So in some sense our problem is the special version of
distributed tracking where there is only one site. However, most works in this
area are heuristic-based with two only exceptions to the best of our knowledge.
Cormode et al. [2008] consider monotone functions and study worst-case costs.
But when the function is not monotone, the worst-case bounds are trivial. In this
paper, we allow functions to change arbitrarily and use competitive analysis to
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avoid meaningless worst-case bounds. Davis et al. [2006] propose online algorithms
for distributed tracking functions at multiple sites where site i is allowed an error
of ∆i, and the total error

∑
i ∆i is fixed. However, in their model, both the online

and offline algorithms can only communicate when the error ∆i allocated to some
site i is violated, and the site can only send in the current value of the function,
i.e., exactly what the naive algorithm that we described at the beginning is doing.
As such, the problem is only meaningful for two or more sites where the online
algorithm needs to decide how to allocate the total error to the sites. When there
is only one site, there is nothing controlled by the algorithm. In our problem, we
allow both the online and offline algorithms to send in any function value and at
any time, as long as the error bound ∆ is satisfied.

Finally, it should be noted that similar problems have been studied in the database
community [Madden et al. 2005; Keralapura et al. 2006; Deshpande et al. 2004; Ol-
ston et al. 2001]. However, all the techniques proposed there are based on heuristics
with no theoretical guarantees.

Our results. In Section 2 we first give an O(log ∆)-competitive algorithm for
tracking an integer-valued function. We show that the algorithm is optimal by
proving a matching lower bound on the competitive ratio. Our lower bound argu-
ment also implies that any real-valued function cannot be tracked with a bounded
competitive ratio. This justifies our study being confined with integer-valued func-
tions. In Section 3 we extend our algorithms to d dimensions for arbitrary d. Here
we consider the more general (α, β)-competitive algorithms. An online algorithm
is (α, β)-competitive if its cost is α · OPT while allowing an error of β ·∆, where OPT
is the cost of the optimal offline algorithm allowing error ∆. We first give a simple
algorithm using the Tukey median of a set of points, and then propose improved
algorithms based on volume-cutting, a technique used in many convex optimization
algorithms. This results in algorithms with a competitive ratio of O(d2 log(d∆))
for β = 1 and O(d log(d/ε)) for β = 1 + ε, respectively. The algorithms also have
running times polynomial in d.

In Section 4 we further extend our model by considering tracking with predictions.
More precisely, Alice tries to predict the future trend of the function f based on
history, and then sends the “prediction” to Bob, for example a linearly increasing
trend. If the actual function values do not deviate from the prediction by more
than ∆, no communication is necessary. The previous tracking problem can be
seen as a special case of this more general framework, in which we always “predict”
f(t) to be g(tlast). In general, we could use a family F of prediction functions
(e.g., linear functions), which could greatly reduce the total communication when
f can be approximated well by a small number of functions in F (note that the
offline algorithm also uses F to approximate f). In this paper we only consider
the most natural case of linear functions, but we believe that our technique can
be extended to more general prediction functions (e.g. polynomial functions with
bounded degrees). Our results are summarized in Table I.

Finally, we comment that our study in this paper focuses only on the `2 metric;
the online tracking problem could in general be posed in any metric space, which
could potentially lead to other interesting techniques and results.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Table I. Summary of results for online tracking. T is the length of the tracking period.

β = 1 β = 1 + ε

problem α− competitive running time α− competitive running time

1-dim Θ(log ∆) O(1) � �
d-dim O(d2 log(d∆)) poly(d, log ∆) O(d log(d/ε)) poly(d, log(1/ε))

1-dim prediction O(log(∆T )) poly(∆, T ) � �

2. ONLINE TRACKING IN ONE DIMENSION

In this section, we consider the online tracking problem for functions in the form
of f : Z+ → Z. The algorithm for the one-dimensional case mainly serves an
illustration purpose, which lays down the general framework for the more advanced
algorithms in higher dimensions. For simplicity we assume for now that ∆ is an
integer; the assumption will be removed in later sections.

Algorithm 1: One round of 1D tracking
let S = [f(tnow)−∆, f(tnow) + ∆] ∩ Z;1

while S 6= ∅ do2

let g(tnow) be the median of S;3

send g(tnow) to Bob;4

wait until ‖f(tnow)− g(tlast)‖ > ∆;5

S ← S ∩ [f(tnow)−∆, f(tnow) + ∆];6

An O(log ∆)-competitive algorithm. Let OPT be the cost of the optimal offline
algorithm. The basic idea of the algorithm actually originates from the motivating
example at the beginning of the paper: When f oscillates within a range of 2∆,
then OPT is constant. Thus, our algorithm tries to guess what value the optimal
algorithm has sent using a binary search. Our algorithm proceeds in rounds, and
the procedure for each round is outlined in Algorithm 1.

Algorithm 1 is correct since at any tnow, if f(t) deviates more than ∆ from
g(tlast), we always update S so that all elements in S are within ∆ of f(tnow). It is
also easy to see that Algorithm 1 can be implemented in O(1) time per time step.
Below we show that its competitive ratio is O(log ∆).

We will proceed by showing that in each round, the offline optimal algorithm AOPT

must send at least one message, while Algorithm 1 sends O(log ∆) messages, which
will lead to the claimed competitive ratio. The latter simply follows from the fact
the cardinality of S reduces by at least half in each iteration in the while loop, so we
only argue for the former. For convenience, we define a round to include its starting
time (when S is initialized) and ending time (when S = ∅). Thus, a message sent
at a joint point will be counted twice, but that will not affect the competitive ratio
by more than a factor of 2. Suppose the last function value sent by AOPT in the
previous round is y. Note that if AOPT has not sent any message by tnow, then we
must have y ∈ S at that time, since S is a superset of

⋂
t[f(t) −∆, f(t) + ∆] ∩ Z,

where the intersection is taken over all t up to tnow in this round. In the end, S = ∅,
so AOPT must have sent a new function value other than y.

Theorem 1. There is an O(log ∆)-competitive online algorithm to track any
function f : Z+ → Z.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Lower bound on the competitive ratio. We now show that the O(log ∆)
competitive ratio is optimal. We will construct an adversary under which any
deterministic online algorithm ASOL has to send at least Ω(log ∆ · OPT) messages,
while the optimal offline algorithm AOPT only needs to send OPT messages.

The adversary (call her Carole) also divides the whole tracking period into rounds.
We will show that in each round, Carole could manipulate the value of f so that
ASOL has to communicate Ω(log ∆) times, whileAOPT just needs one message. During
each round, Carole maintains a set S of possible values so that for any y ∈ S, if
AOPT communicates y at the beginning of this round, it does not need any further
communication in this round. The round terminates when S contains less than 3
elements. More precisely, S is initialized to [y − ∆, y + ∆] ∩ Z where y is some
function value at a distance of at least 2∆ + 1 from any function value used in the
previous round; as time goes on, S is maintained as

⋂
t[f(t) − ∆, f(t) + ∆] ∩ Z,

where the intersection is taken over all time up to tnow. Carole uses the following
strategy to change the value of f . If ASOL announces some function value greater
than the median of S, decrease f until ASOL sends out the next message; otherwise
increase f until ASOL sends out the next message. Let ni be the number of elements
left in S after the i-th triggering of ASOL, and initially, n0 = 2∆ + 1. It is not
difficult to see that ni+1 ≥ d(ni − 3)/2e, so it takes Ω(log ∆) iterations for |S| to
be a constant. When S contains less than 3 elements, Carole terminates the round
and starts a new one. By the definition of S, AOPT could send an element in S at
the beginning of the round, which is a valid approximation for all function values
in this round.

Theorem 2. To track a function f : Z+ → Z, any online algorithm has to send
Ω(log ∆ · OPT) messages in the worst case, where OPT is the number of messages
needed by the optimal offline algorithm.

Remark. The argument above also implies that, if f takes values from the domain
of reals (or any dense set), the competitive ratio is unbounded, since S always
contains infinitely many elements.

3. ONLINE TRACKING IN D DIMENSIONS

In this section we extend our algorithm to higher dimensions, i.e., tracking functions
f : Z+ → Zd for arbitrary d. From now on we will consider the more general (α, β)-
competitive algorithms.

Our algorithm actually follows the same framework as in the one-dimensional
case. We still divide the whole tracking period into rounds, and show that AOPT

must communicate once in each round, while our algorithm communicates at most,
say, k times, and then the competitive ratio would be bounded by k. The algorithm
for each round is also similar to Algorithm 1. At the beginning of each round (say
at time t = tstart), we initialize a set S = S0 containing all the possible points that
might be sent by AOPT in its last communication. In each iteration in the while
loop, we first pick a “median” from S and send it to Bob. When f deviates from
g(tlast) by more than β∆, we cut S as S ← S ∩ Ball(f(tnow),∆) where Ball(p, r)
represents the closed ball centered at p with radius r in Rd. This way, S is always
a superset of S0 ∩

(⋂
tstart≤t≤tnow

Ball(f(t), ∆)
)
. When S becomes empty, we can

ACM Journal Name, Vol. V, No. N, Month 20YY.
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f(tstart)

o

q1

q2

q3

≤ ∆

≤ ∆

Figure 1

terminate the round, knowing that AOPT must have sent a new message. Thus, the
only remaining issues are how to construct S0 and how to choose the “median” so
that S will become empty after a small number of cuts.

Note that for β = 2, the problem is trivial since S0 ⊂ Ball(f(tstart),∆). The
algorithm simply needs to send g(tstart) = f(tstart), and then the first cut will use a
ball centered at a distance of more than 2∆ away from f(tstart). So by the triangle
inequality the round always terminates after just one cut, yielding an (O(1), 2)-
competitive algorithm. Thus in the remaining of the paper, we are only interested
in β = 1 or β = 1 + ε for any small ε > 0.

3.1 Algorithms by Tukey medians

In this section we consider the case β = 1. We start by fixing the set S0. Let
Cl (2 ≤ l ≤ d + 1) be the collection of centers of the smallest enclosing balls of
every l points in Ball(f(tstart), 2∆) ∩ Zd. At the beginning of the current round,
we initialize S0 to be S0 = C2 ∪ C3 . . . ∪ Cd+1. The following lemma justifies that
S0 is sufficient for our purpose.

Lemma 1. If S becomes empty at some time step, then the optimal offline algo-
rithm must have communicated once in the current round.

Proof. Suppose that the optimal offline algorithm AOPT does not send any mes-
sage in the current round when S becomes empty. Let s be the point sent by AOPT

in its last communication and q1, q2, . . . , qm be all the distinct points taken by the
function f in the current round. It is easy to see that if AOPT keeps silent in the
current round, we have ‖s − qi‖ ≤ ∆ for all 1 ≤ i ≤ m. If m = 1, S cannot be
empty. So we have m ≥ 2.

Let B be the smallest enclosing ball with center o containing all the qi (1 ≤
i ≤ m). It is not difficult to see that o ∈ S0, for the following reason (see also
Figure 1): Let X be the set of smallest enclosing balls of a set of integer points
in Zd each of which is within a distance of at most 2∆ from f(tstart). Then S0 is
actually the set of centers of balls in X. If o 6∈ S0, then at least one qj (1 ≤ i ≤ m)
should be at a distance more than 2∆ from f(tstart). Since ‖s− qj‖ ≤ ∆, we have
‖s − f(tstart)‖ > ∆, which means that AOPT must have communicated once in the
current round, a contradiction.

Since ‖s − qi‖ ≤ ∆ for all 1 ≤ i ≤ m, and B is the smallest enclosing ball
ACM Journal Name, Vol. V, No. N, Month 20YY.
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containing all qi (1 ≤ i ≤ m) with center o, we have ‖o− qi‖ ≤ ∆ for all 1 ≤ i ≤ m.
Thus o must still survive at the current time step, which means that S is not empty,
a contradiction.

The rest of our task is to choose a good median so that the cardinality of S
would decrease by some fraction after each triggering of communication. Before
proceeding, we need the following concepts.

Definition 1. (Location depth) Let S be a set of points in Rd. The location
depth of a point q ∈ Rd with respect to S is the minimum number of points of S
lying in a closed halfspace containing q.

The following observation is a direct consequence of Helly’s Theorem [Matousek
2002].

Observation 1. Given a set S in Rd, there always exists a point q ∈ Rd having
location depth at least |S|/(d+1) with respect to S. The point with maximum depth
is usually called the Tukey median.

The algorithm for the Rd case maintains rounds similarly as the one dimensional
case. We just pick the Tukey median to send in each triggering of communication.
Since whenever ‖f(tnow)− g(tlast)‖ > ∆, Ball(f(tnow), ∆) is strictly contained in
a halfspace bounded by a hyperplane passing through g(tlast), the cardinality of S
decreases by a factor of at least 1/(d+1). Thus, the algorithm sends log1+ 1

d
|S0| =

O(d log |S0|) messages in each round.
Remember that initially, S0 = C2 ∪ C3 ∪ . . . Cd+1, and Cj (2 ≤ j ≤ d + 1)

is the collection of centers of the smallest enclosing balls of every j points in
Ball(f(tstart), 2∆) ∩ Zd, whose cardinality is at most

(
(b4∆c+1)d

j

)
. Therefore S0

contains at most
d∑

l=0

(
(b4∆c+ 1)d

l + 1

)
= O

(
d

(
e(b4∆c+ 1)d

d + 1

)d+1
)

points. Therefore, we have

Theorem 3. There is an O(d3 log ∆)-competitive online algorithm that tracks
any function f : Z+ → Zd.

Running time. However, to find the Tukey median exactly requires S to be ex-
plicitly maintained, which has size exponential in d. Clarkson et al. [1993] proposed
fast algorithms to compute an approximate Tukey median (a point with location
depth Ω(n/d2)) via random sampling, but it seems difficult to sample from S when
S is only implicitly maintained. We get around this problem with a new approach
presented in the next subsection, which also improves the competitive ratio by
roughly a d factor.

3.2 Algorithms by volume-cutting

In this section, we first consider β = 1 + ε, and then show that we can set ε small
enough to obtain an algorithm for the β = 1 case. Before proceeding to the new
algorithm, note that an O(d2 log(d/ε), 1+ε)-competitive algorithm can be obtained
ACM Journal Name, Vol. V, No. N, Month 20YY.
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by slightly modifying the algorithm in the previous section. However, as discussed
earlier, this algorithm has running time exponential in d. In this section we propose
algorithms with polynomial running time (w.r.t. both d and ∆) and also improved
competitive ratios. These new algorithms use a volume-cutting technique, which
shares similar spirits as many convex optimization algorithms.

3.2.1 The case with β = 1 + ε

Definition 2. (Directional width) For a set P of points in Rd, and a unit
direction µ, the directional width of P in direction µ is ωµ(P ) = maxp∈P 〈µ, p〉 −
minp∈P 〈µ, p〉, where 〈µ, p〉 is the standard inner product.

The centroid of P is the intersection of hyperplanes that divide P into two parts of
equal moments. Let ωmax(P ), ωmin(P ) be the maximum and minimum directional
width of P , respectively. Our volume-cutting algorithm also proceeds in rounds,
and the procedure for each round is outlined in Algorithm 2.

Algorithm 2: One round of d-dimensional tracking via volume-cutting
let P = Ball(f(tnow), β∆);1

while (ωmax(P ) ≥ ε∆) do2

let g(tnow) be the centroid of P ;3

send g(tnow) to Bob;4

wait until ‖f(tnow)− g(tlast)‖ > β∆;5

P ← P ∩ Ball(f(tnow), β∆);6

There are two differences between Algorithm 1 and 2. First, we now do not
maintain the set S, instead we maintain P as the intersection of a collection of
balls. Note that P could be maintained efficiently since the number of intersecting
balls is polynomial in d and log ∆ as we will show later. Second, instead of sending
the median of P ∩ S, we send the centroid of P to Bob. The correctness of the
algorithm is obvious since any point in P is within a distance of β∆ to f(tnow). As
for the competitive ratio, it is easy to see that P always contains S. Thus when
P contains no point in S0, we can safely terminate the round, knowing that AOPT

must have sent a message. However, we cannot simply repeat the algorithm and
wait till P is empty, since it may never be. Instead we will stop the round when
the maximum width of P is small enough (we will show later how to conduct this
test efficiently), and then argue that when this happens, S must be empty.

We need the following result proved by Grunbaum [1960].

Lemma 2 [Grunbaum 1960]. For a convex set P in Rd, any halfspace that con-
tains the centroid of P also contains at least 1/e of the volume of P .

Since Ball(f(tnow), β∆) is contained in a halfspace not containing the centroid
of P , every time a communication is triggered in Algorithm 2, we have

vol(P ∩ Ball(f(tnow), β∆))
vol(P )

< 1− 1
e
,

that is, the volume of the convex set P containing S will be decreased by a constant
factor.
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Fig. 2. The relation between ωmin(P ) and ωmax(P )

The rest of our task is to bound the iterations in each round. At the first glance,
the number of iterations could be endless, since P might be cut into thinner and
thinner slices. Fortunately, we can show that such a situation will not happen, by
making use of the fact that we are cutting P using a series of balls with radii not
too large.

Lemma 3. If ωmax(P ) ≥ ε∆, then ωmin(P ) = Ω(ε2∆).

Before proving Lemma 3, we first show the following facts.

Lemma 4. Let H be any supporting hyperplane of P at p ∈ ∂P , that is, H
contains p and P is contained in one of the two halfspaces bounded by H. Then
there is a ball B with radius β∆ such that H is tangent to B at p and B contains
P .

Proof. It is easy to see that there is a unique ball B with center oB and radius
β∆ such that H is tangent to B at p and B is on the same side of H as P . We show
that P must be contained in B. Suppose not, there must be a point q ∈ P such that
q /∈ B. Let J be the two-dimensional plane spanned by oB , p and q, intersecting
H at line l; Figure 2(a) shows the situation on J . Suppose P is the intersection
of Bi, i = 1, . . . , m. Clearly, the intersection between J and any Bi is a disk Di

containing p and q. Simple planar geometry shows that ∂Di must intersect l at two
points, since the radius of Di is no more than β∆ and ‖oBq‖ > β∆. Let ui, vi be
the two intersection points between ∂Di and l, and p′ be the projection of p on line
l. It is also easy to see that one of ui, vi, say vi, is different than p and lies at the
same side of p as q′. Therefore, the intersection of all such disks Di (1 ≤ i ≤ m)
must contain a segment pvj where vj is the closest point to p among all the points
vi, i = 1, . . . , m, which means that P , the intersection of all the Bi, must lie on
both sides of H, a contradiction.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Lemma 5. Let M be the intersection of two balls of radius r in Rd. If ωmax(M) ≥
εr, then ωmin(M) = Ω(ε2r).

Proof. Let B1, B2 be two balls whose intersection is M and let o1, o2 be their
centers, respectively. Let S1, S2 be the boundary of B1 and B2. It is clear that the
intersection of S1 and S2 is a (d− 2)-dimensional sphere S. Let p be an arbitrary
point on S, and let J be the two dimensional plane passing through p, o1, o2 and
intersecting S at another point q. It is easy to see that ‖pq‖ is equal to the maximum
width of M , and ωmin(M) is equal to 2(r−

√
r2 − (‖pq‖/2)2); see Figure 2(b). Thus

if ‖pq‖ ≥ εr, then ωmin(M) = Ω(ε2r).

Proof. (Lemma 3) Let Q be a polytope inscribed in P such that the diameter
of every cap formed by the intersection of P and a halfspace bounded by the
hyperplane containing a face of ∂Q is no more than λ; see Figure 2(c). Let µ
be the direction in which the directional width of Q is minimized. Let Hp and Hq

be the two parallel supporting hyperplanes of Q orthogonal to µ. Let p, q be two
points on Q ∩Hp and Q ∩Hq respectively so that pq is in the direction of µ. Such
two points must exist since Q is a polytope. Let Hx and Hy be the two hyperplanes
parallel to Hp and Hq and support P at x and y, respectively. Suppose the line pq
intersects Hx and Hy at x′ and y′, respectively.

From Lemma 4 we know that there is a ball Bo′1 centered at o′1 with radius
β∆ containing P and tangent to Hx. Pick o1 on the line pq between p and q
such that ‖o1x

′‖ = ‖o′1x‖. By triangle inequality it is easy to see that the ball
Bo1 centered at o1 with radius (β∆ + λ) must contain Bo′1 and thereby contain
the convex set P . Similarly, there is another ball Bo2 entered at o2 (o2 ∈ pq) with
radius (β∆+λ) containing P if we consider y, y′ instead of x, x′. Let p′ = ∂Bo1 ∩pq
and q′ = ∂Bo2 ∩ pq. We have

‖pq‖ ≤ ωmin(P ) ≤ ‖p′q′‖.
Note that ‖p′q′‖ is the minimum width of M = Bo1 ∩ Bo2 . By lemma 5, we
know that ωmax(M) = O(‖p′q′‖/ε) provided that ωmax(M) ≥ ε∆. Finally, if we
choose λ sufficiently small, we have ωmin(P ) ≥ Ω(‖p′q′‖) ≥ Ω(ε · ωmax(M)) ≥
Ω(ε · ωmax(P )).

The lower bound on the minimum width implies a lower bound on the volume of
P . Formally, we have:

Lemma 6. Let K be a convex set in Rd. If ωµ(K) ≥ r for all µ ∈ Sd−1, then
vol(K) ≥ rd/d!.

Proof. Since all the directional width of K is larger than r, the diameter of
K must also be larger than r. Let p1, q1 ∈ K be the two points with the largest
distance in K, and let µ1 = −−→p1q1. We then pick a direction µ2 that is orthogonal to
µ1. Let p2, q2 ∈ K be two extreme points in µ2, connect p2, q2 to p1, q1, respectively,
forming a convex quadrilateral Q2 in R2(with basis µ1, µ2). We keep on doing this,
that is, we pick a third direction µ3 that is orthogonal to both µ1 and µ2, find two
extreme points p3, q3 in this direction, and then connect p3 and q3 to all pi and
qi (1 ≤ i ≤ 2), forming a convex polytope Q3 in R3 (with basis µ1, µ2 and µ3),
etc. After d steps, we obtain a convex polytope Qd in Rd whose volume must be
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no smaller than rd/d!. Therefore, the volume of K in Rd must also be no smaller
than rd/d! since Qd is contained in K.

By Lemma 3, we know that as long as ωmax(P ) ≥ ε∆, the width of P in all
directions is at least c · ε2∆ for some constant c, which means that the volume of
P is at least (c · ε2∆)d/d! by Lemma 6. Then by Lemma 2, as well as the fact that
at the beginning of the round, vol(P ) ≤ (4∆)d, we know that after at most

log
(4∆)d

(c · ε2∆)d/d!
= O

(
d log

d

ε

)
(1)

triggerings of communication in Algorithm 2, ωmax(P ) will be less than ε∆. At
this moment, consider the P ′ obtained by replacing all the balls in Algorithm 2 by
balls with radius ∆. By triangle inequality, we know that P ′ = ∅. Recall that AOPT

is only allowed an error of ∆. Therefore, AOPT must have already sent a message
since P ′ = ∅.
Running time. Generally, it is hard to compute the centroid of a convex body, see
[Rademacher 2007]. However, Bertsimas and Vempala [2004] showed that there is
a randomized algorithm that computes an approximate centroid of a convex body
given by a separation oracle. Formally, they proved the following.

Lemma 7 [Bertsimas and Vempala 2004]. Let K be a convex body in Rd

given by a separation oracle, and a point in a ball of radius ∆ that contains
K. If ωmin(K) ≥ r, then there is a randomized algorithm with running time
poly(d, log

(
∆
r

)
) that computes, with high probability, the approximate centroid z

of a convex set K such that any halfspaces that contains z also contains at least
1/3 of the volume of K.

In our case, since P is the intersection of O(d log d
ε ) balls, we can simply im-

plement the separation oracle by checking each of these balls one by one. More-
over, f(tstart) could be used as the starting point p required by Lemma 7. We
set r = c · ε2∆, thus computing approximate centroid could be done in time
poly(d, log

(
1
ε

)
). If the algorithm of Lemma 7 fails, then with high probability,

ωmax(P ) < ε∆. This fact together with the discussion after Lemma 6 provide us a
way to avoid monitoring the maximum width of P at the beginning of each iteration
in Algorithm 2, which is expensive. More precisely, we slightly modify Algorithm 2
as follows.

(1) Line 2 → while the number of iterations in the current round is no more than
(1) do

(2) Line 3 → compute the approximate centroid of P using the algorithm of
Lemma 7 and assign it to g(tnow); if the algorithm of Lemma 7 fails, terminate
the current round;

Theorem 4. There is an (O(d log(d/ε)), 1 + ε)-competitive online algorithm to
track any function f : Z+ → Zd. The algorithm runs in time poly(d, log 1

ε ) at every
time step.

Remark. Note that the algorithm proposed in this section also works for tracking
real-valued functions f : Z+ → Rd.
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3.2.2 The case with β = 1. Recall that in Section 3.1, we have shown that
considering S0 = C2 ∪ C3 . . . ∪ Cd+1 is enough. Since S0 is the collection of points
that are centers of the smallest enclosing balls of at most d + 1 points in Zd, the
following fact can be established.

Lemma 8. For any points s = (x1, . . . , xd) in S0, xi (1 ≤ i ≤ d) are fractions in
the form of y

z where y, z are integers and |z| ≤ d!(16∆2d)d.

Proof. For any s ∈ S0, let B be one of the minimum enclosing balls of some
points in Zd centered at s. Assume that there are k (2 ≤ k ≤ d + 1) integer points
q1, q2, . . . , qk lying on the boundary of B. If k = d+1, we can compute s by solving
a linear system of d equations ‖q1s‖ = ‖q2s‖, ‖q1s‖ = ‖q3s‖, . . . , ‖q1s‖ = ‖qd+1s‖,
or we can write them as AsT = b where A = (aij) ∈ Zd×d and b ∈ Zd×1. Each
coefficient aij (1 ≤ i, j ≤ d) is an integer in the range of [−8∆, 8∆] and b is a vector
of integers. Thus by Cramer’s rule,

xi =
det Ai

det A
,

where Ai is the matrix formed by replacing the i-th column of A by b. It is easy to
see that | detA| ≤ d!(8∆)d. If 2 ≤ k ≤ d, then s must be in the (k− 1)-dimensional
subspace determined by q1, q2, . . . , qk. Hence, we can write s = α1q1 + α2q2 + . . . +
αkqk, where

∑k
i=1 αi = 1. Together with ‖q1s‖ = ‖q2s‖, ‖q1s‖ = ‖q3s‖, . . . , ‖q1s‖ =

‖qks‖, we have a linear system of k equalities. By similar arguments as before, we
can show that each αi (1 ≤ i ≤ k) is a fraction of form yi

z (yi, z ∈ Z) and |z| is no
more than d!(16∆2d)d. Since s =

∑k
i=1 αipi, we know that each coordinate of s is

in the form of y
z , where y and z are integers and |z| ≤ d!(16∆2d)d.

By this observation, we know that the distance between any two points in S0

is at least 1
/(

d!(16∆2d)d
)2 . Therefore, by setting ε = 1

/
8∆

(
d!(16∆2d)d

)2 , we
know that once ωmax(P ) < ε∆, there is at most one point of S0 in P . The rest of
our job is to find such a point if it exists. Once the point is found, we just send
it to Bob, and the round will terminate as soon as f(tnow) gets ∆ away from this
point. However, directly computing such a point might be expensive. Instead we
use an indirect way to find the last surviving point.

We say a number x is good if x = y
z with y, z ∈ Z and |z| ≤ d!(16∆2d)d. A

point s is good if all of its coordinates are good. The basic idea is that if we can
successfully compute the centroid p of P , we can snap p to its nearest good point
s. If there is a point s′ ∈ S0 inside P , then we must have s′ = s. Thus if s /∈ P ,
we simply terminate the current round; otherwise s must be the last point of S0 in
P . The difficulty is that ωmin(P ) could be very small, so that Lemma 7 cannot be
applied directly. To avoid such a situation, we expand P slightly by increasing all
the balls’ radii from ∆ to (1+ ε)∆. Denote by P ′ the intersection of these enlarged
balls. The observation is that, by our choice of ε, if there is a point s′ of S0 in
P , then s′ is still the only point of S0 in P ′. Now we can apply the algorithm of
Lemma 7 on P ′ with r = c · ε2∆. If the algorithm fails, we know that P must be
empty. Otherwise we obtain a point p ∈ P ′. Finally, we find s by rounding each
coordinate of p to its nearest good number, and check if s ∈ P . The rounding could
be done in polynomial time according to a theorem by Khintchine (cf. [Korte and
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Vygen 2007, Chapter 4]).
By the choice of ε and Theorem 4, we obtain the following:

Theorem 5. There is an O(d2 log(d∆))-competitive online algorithm to track
any function f : Z+ → Zd. The algorithm runs in time poly(d, log ∆) at every time
step.

3.3 Online tracking a dynamic set

One of the main applications of online tracking in high dimensions is tracking a
dynamic set. Formally, we want to track the function f : Z+ → 2U , where U is
a finite universe consisting of d items. We can represent each set X ∈ 2U as a
{0,1}-vector in Rd, and define the difference between two sets X and Y to be the l2
distance between the corresponding vectors in Rd (note that the Hamming distance
between two sets is just the square of their l2 distance). Ideally, Alice should send
out subsets of U to approximate f(tnow), but applying our previous algorithms
would send out vectors with fractional coordinates. Unfortunately, if we insist that
Alice always sends a set, that is, a {0,1}-vector to Bob, the competitive ratio would
be exponentially large in ∆, even we allow a relatively larger β, as shown in the
next theorem.

Theorem 6. Suppose that there is an (α, β)-competitive algorithm for online
tracking f : Z+ → 2U and |U | > (β∆)2, if the algorithm can only send subsets of
U , then α = 2Ω(∆2) for any constant β < 19/18.

Proof. Without lose of generality, let H = {0, 1}d, where d is chosen to be
(β∆)2 + 1.

Similar to the proof of theorem 2, we just need to show that the adversary can
manipulate f(t) so that a round will have at least α iterations.

Let S0 be the set of possible vertices sent by AOPT in its last communication, that
is, all the vertices within distance ∆ from f(tstart). The cardinality of S0 is

|S0| =
∆2∑

k=1

(
d

k

)
= Ω(2∆2

).

The adversary Carole sets S = S0 at the beginning of each round and then manipu-
lates the value of the function f according to the online algorithm ASOL, as follows.
Whenever ASOL sends v ∈ H, Carole changes f to u = 1 − v, that is, flipping all
the coordinates of v. Since ‖v,u‖ > β∆, ASOL has to communicate again. Every
time Carole uses a value u for f , S is cut as S ← S ∩ Ball(u, ∆). So S loses at
most (let ε = β − 1 < 1/18)

|H − Ball(u, ∆)| =
d∑

k=∆2+1

(
d

k

)
≤

(
2∆2

3ε∆2

)
≤ (e/ε)3ε∆2

elements. Therefore, ASOL will communicate at least

Ω

(
2∆2

(e/ε)3ε∆2

)
= Ω(c∆2

) (c > 1 when ε < 1/18)

times before S becomes empty.
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Fig. 3. (a, b) Cutting in the parametric space. (c) Considering a small set of lines is enough.

Therefore, to avoid an exponentially large competitive ratio, we have to allow the
algorithm to send vectors with fractional coordinates. We can use the previously
developed algorithms to guarantee that the l2 distance between f(tnow) and the
fractional vector g(tlast) sent by our algorithm is no more than ∆. If in some
applications it is unnatural to report to the client a vector with fractional values
when the underlying function being tracked is a set, the tracker could convert the
vector to a set Y by probabilistically rounding every coordinates of g(tlast). It can
be easily shown that the expected distance between Y and f(tnow) is no more that
∆.

4. ONLINE TRACKING WITH PREDICTIONS

In this section, we further generalize our model by considering “predictions” . We
assume that Alice tries to predict the future trend of the function based on history,
and then sends the prediction to Bob. If the actual function values do not deviate
from the prediction by more than ∆, no communication is necessary. One can
imagine that when f is “well behaved”, using good predictions could greatly reduce
communications incurred. Indeed, the same approach has been taken in many
heuristics in practice [Keralapura et al. 2006; Cormode et al. 2005; Cormode and
Garofalakis 2005]. In this paper we only consider the case where the algorithms
(both the online and the offline) use linear functions as predictions, and for d =
1; the technique can be extended to more general prediction functions and high
dimensions.

In one dimension, the offline problem is to approximate a function by a small
number of straight line segments. O’Rourke [1981] gave a linear-time algorithm to
compute the optimal solution. His algorithm is “online” but in the sense that the
algorithm scans f only once, and the partial solution computed so far is optimal
for the portion of f that has been scanned. However, the partial solution could
keep changing at each time step as f is observed. While in our problem, we need to
make an immediate decision on what to communicate at each time step whenever
f deviates more than ∆ from the prediction previously sent.

Our algorithm with line predictions still follows the general framework outlined
in Section 2. At the beginning of each round (assuming tstart = 0), we just send
f(0) to Bob, and predict f to be f(0). Let t1 be the time of the first triggering.
We parameterize the lines by q0, q1, meaning that the line (q0, q1) passes through
(0, q0) and (t1, q1). We call the (q0, q1)-space the parametric space, thus any line
sent out by the algorithm is a point in the parametric space. Let P be the region in
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the parametric space consisting of all the points that are valid ∆-approximations
of f(0) and f(t1), which is a square (Figure 3(a)). We will pick a point g(t1) in P
and send it to Bob. Suppose at time t2, g(t1) fails to approximate f(t2). Let Q
be the region in the parametric space consisting of all the valid ∆-approximations
of f(0) and f(t2), which can be shown to be a parallelogram (Figure 3(b)). We
update P ← P ∩ Q, and then iterate the procedure. It is easy to see that if AOPT

does not need any further communication in the current round, its last message
must lie inside P .

The major task is to choose the initial set S = S0 at the beginning of the round.
After that, the algorithm is similar to that in Section 3.1, that is, at every triggering
we update S ← S∩P and send the Tukey median of S. The analysis also follows the
same line. Let M = {(t, y) | t ∈ [T ], y ∈ {Z+∆}∪{Z−∆}}, where {Z+∆} denotes
the set {x | x = y+∆, y ∈ Z}, and similarly {Z−∆}. Let L be the collection of lines
passing through two points in M . Let X be the collection of intersection points
between line t = 0 and lines in L, and Y be the collection of intersection points
between line t = t1 and lines in L. We choose S0 to be {(q0, q1) | q0 ∈ X, q1 ∈ Y }∩P
(P is the first square we get).

We argue that only considering the points (lines) in S0 is sufficient for our pur-
pose. In particular, we can show that if AOPT keeps silent in the current round,
there must be some surviving point (line) in S0. Consider the original function
space (Figure 3(c)). Let l be the line chosen by AOPT in its last communication.
Suppose that AOPT has not made any communication in the current round, l must
intersect with all the line segments ((t, f(t)−∆), (t, f(t)+∆)), for tstart ≤ t ≤ tnow.
We can always rotate and translate l so that it passes through two points in M ,
and it still intersects with all lines segments (line l′ in Figure 3(c)). Therefore, l′

must still survive at the current time.
Finally we bound the cardinality of S0.

Lemma 9. |S0| = O(∆2T 6), where T is the length of the tracking period.

Proof. If a line (q0, q1) passes two points (ti, f(ti)±∆), (tj , f(tj)±∆) (ti, tj ∈
Z+, 0 ≤ ti < tj ≤ T ) in M , then

q0 = (f(ti)±∆)− (f(ti)±∆)− (f(tj)±∆)
ti − tj

ti, (2)

q1 = (f(ti)±∆)− (f(ti)±∆)− (f(tj)±∆)
ti − tj

(ti − t1). (3)

The number of possible choices of q0 is O(∆T 3), and so is that for q1. Thus
cardinality of S0 is at most O(∆2T 6).

Therefore, S will become empty after at most O(log(∆T )) iterations.

Theorem 7. There is an O(log(∆T ))-competitive online algorithm to track any
function f : Z+ → Z with line predictions, where T is the length of the tracking
period.

The algorithm above assumes that T is given in advance in order to initialize S0.
If T is not known, we can use the following squaring trick to keep the competitive
ratio. We start with T being set to ∆. Whenever tnow reaches T and the current
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round has not finished yet, we restart the round with T ← ∆T 2. It can be easily
shown that the number of iterations in a round is still at most O(log(∆T )).

5. OPEN PROBLEMS

As mentioned in the related work, the problem studied in this paper is a special case
of the distributed tracking framework where there is only one site. It would be nice
to generalize our techniques to multiple sites. Secondly, in the d-dimensional case,
if we consider the number of bits (instead of number of messages) the algorithms
has sent, the competitive ratios of our current algorithms will increase by roughly
a factor of d. Thus we want to ask whether we can do better by a subset of the
coordinates instead of a whole vector in Rd. Finally, it is also interesting to consider
online tracking problems in other metric spaces.
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