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A natural problem
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Bob: tracker
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(t, g(t))



2-2

A natural problem

f(t)

t
• message format at time tnow:

(tnow, g(tnow)).

• communicate to guarantee
that at ∀tnow

‖f(tnow)− g(tlast)‖ ≤ ∆

tlast: the last time Bob got
informed.

Alice: observer

Bob: tracker

g(t)
(t, g(t))



2-3

A natural problem

f(t)

t
• message format at time tnow:

(tnow, g(tnow)).

• communicate to guarantee
that at ∀tnow

‖f(tnow)− g(tlast)‖ ≤ ∆

tlast: the last time Bob got
informed.

Alice: observer

Bob: tracker

Our Goal: minimize commu-
nication, in terms of com-
petitive ratios. For

g(t)
(t, g(t))



2-4

A natural problem

f(t)

t
• message format at time tnow:

(tnow, g(tnow)).

• communicate to guarantee
that at ∀tnow

‖f(tnow)− g(tlast)‖ ≤ ∆

tlast: the last time Bob got
informed.

Alice: observer

Bob: tracker

Our Goal: minimize commu-
nication, in terms of com-
petitive ratios. For

1. f : Z+ → Z

2. f : Z+ → Zd

3. with prediction

g(t)
(t, g(t))
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Motivation

Wireless sensors

Monitoring the tem-
perature → 1D case
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Motivation

Wireless sensors

Monitoring the tem-
perature → 1D case

Transmission of Data
is the biggest source
of battery drain!

Publish/subscribe
system

Bandwidth consumption
is the main concern!

Subscribers register (po-
tentially the same) queries
at the publisher; results (a
set of items) change over
time → high-D case

Location-based services

Keep track of the user’s
location → 2D case



4-1

Naive solution fails

Consider tracking the function f : Z+ → Z, and re-
quire an absolute error of at most ∆.

The natural solution is to

1. first communicate f(0) to Bob.

2. every time f(t) has changed by more than ∆
since the last communication, Alice updates
Bob with the current f(t).
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Naive solution fails

Consider tracking the function f : Z+ → Z, and re-
quire an absolute error of at most ∆.

The natural solution is to

1. first communicate f(0) to Bob.

2. every time f(t) has changed by more than ∆
since the last communication, Alice updates
Bob with the current f(t).

Unbounded competitive ratio!

SOL = ∞, OPT = 1!

2∆

∆

t

f(t)
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Our Results

problem comp. ratio running time

1-dim O(log ∆) O(1)
d-dim O(d2 log(d∆)) poly(d, log ∆)

1-dim + prediction O(log(∆T )) poly(∆, T )

Results for online tracking. T : length of the tracking period.
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Our Results

Prediction.

Allow to send prediction functions
(e.g. linear functions) instead of
only a single value every time.
OPT also uses the same family of
functions.

f(t)

g(t)

line prediction

problem comp. ratio running time

1-dim O(log ∆) O(1)
d-dim O(d2 log(d∆)) poly(d, log ∆)

1-dim + prediction O(log(∆T )) poly(∆, T )

Results for online tracking. T : length of the tracking period.
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Related research domains

Communication complexity

Alice (has x)
compute f(x, y)

⇐⇒ Bob (has y), x, y are given offline.

Our case.

1. Alice: observer, Bob: tracker.

2. Inputs arrive online, only seen by Alice.
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Related research domains

Communication complexity

Alice (has x)
compute f(x, y)

⇐⇒ Bob (has y), x, y are given offline.

Our case.

1. Alice: observer, Bob: tracker.

2. Inputs arrive online, only seen by Alice.

Data streams

Small space.

Our case: communication cost.
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One dimension

General idea to track f : Z+ → Z.

Divide the whole tracking period into rounds,
and show thatAOPT must communicate once in
each round, while our algorithm communicates
at most, say, k times

→ competitive ratio k.
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One dimension (Cont.)

The Algorithm to track f : Z+ → Z
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One dimension (Cont.)

The Algorithm to track f : Z+ → Z

S

S

f(t)

t
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One dimension (Cont.)

The Algorithm to track f : Z+ → Z

The Analysis

• If AOPT hasn’t sent a message in the cur-
rent round, then its last message must
be included in S.

• The cardinality of S decreases by half
whenever Algorithm 1 sends a message.

S

S

f(t)

t
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One dimension (Cont.)

The Algorithm to track f : Z+ → Z

⇒ O(log ∆)
-competitive
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The Analysis
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One dimension (Cont.)

The Algorithm to track f : Z+ → Z

⇒ O(log ∆)
-competitive

Also tight!

The Analysis

• If AOPT hasn’t sent a message in the cur-
rent round, then its last message must
be included in S.

• The cardinality of S decreases by half
whenever Algorithm 1 sends a message.

Real range
unbounded!

S

S

f(t)

t
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The general idea follows from 1D

High dimensions

Divide the whole tracking period into rounds, and
show that the competitive ratio in each round is k.
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The general idea follows from 1D

High dimensions

Divide the whole tracking period into rounds, and
show that the competitive ratio in each round is k.

The framework of one round

1. At time t = tstart, initialize a set S = S0. (Many
choices of S0)

2. In each iteration in the while loop, we first pick a
“median” from S as g(tnow) and send it to Bob.

3. When f deviates from g(tlast) by more than ∆, we
cut S as S ← S ∩ ball(f(tnow), ∆).

4. When S becomes empty, we can terminate the round.
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High dimensions (cont.)

Initialize S = S0

f(tstart)/g(tnow)
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High dimensions (cont.)

f(tnow) :
‖f(tnow) − g(tlast)‖ > ∆

S ← S ∩ ball(f(tnow), ∆)

g(tnow)
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High dimensions (cont.)

f(tnow)

S ← S ∩ ball(f(tnow), ∆)

g(tnow)
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High dimensions (cont.)

f(tnow)

S = ∅ !
Start next round
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High dimensions (cont.)

The key property of S.

If S becomes empty at some time step, then AOPT must
have communicated once in the current round.
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High dimensions (cont.)

The key property of S.

If S becomes empty at some time step, then AOPT must
have communicated once in the current round.

Two main issues left ...

1. How to choose the initial set S0 so that above
property is met?

2. How to pick the median so that we can have small
competitive ratios?
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Take one, Tukey medians

Set S0 = C2 ∪ C3 . . . ∪ Cd+1

Cl: be the collection of centers of the smallest enclosing
balls of every l points in Ball(f(tstart), 2∆) ∩ Zd.

Send the Tukey median of S at every triggering.

Choices for two issues
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Take one, Tukey medians

Definition of the Tukey medians

Any halfspace containing
Tukey median v also con-
tains at least 1

d+1
n points

where n is the cardinality of
the point set.

Set S0 = C2 ∪ C3 . . . ∪ Cd+1

Cl: be the collection of centers of the smallest enclosing
balls of every l points in Ball(f(tstart), 2∆) ∩ Zd.

Send the Tukey median of S at every triggering.

Choices for two issues

v
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Analysis of competitive ratio (ρ)

|S| deceases by a factor of at
least 1/(d + 1) at every trig-
gering of communication

⇒ ρ = log1+ 1
d
|S0|

= O(d3 log ∆)

Tukey medians (cont.)

S0 = O

(
d

(
e(b4∆c+1)d

d+1

)d+1
)
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Analysis of competitive ratio (ρ)

|S| deceases by a factor of at
least 1/(d + 1) at every trig-
gering of communication

⇒ ρ = log1+ 1
d
|S0|

= O(d3 log ∆)

Tukey medians (cont.)

S0 = O

(
d

(
e(b4∆c+1)d

d+1

)d+1
)

However, the running time is exponential in d :(

1. S0 is too large.

2. Computing Tukey medians in high-D (even approxi-
mately) is hard.



14-1

Volume cutting

⇒ O(d2 log d∆)-competitive;
running time polynomial in d and log ∆.
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Use some geometry to bound the number of
cuts performed until |S| ≤ 1.
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Volume cutting

⇒ O(d2 log d∆)-competitive;
running time polynomial in d and log ∆.

Send the (approximate) centroids of a convex
set containing S.

Use some geometry to bound the number of
cuts performed until |S| ≤ 1.

Techniques similar to those used in convex
programming to find the last point of S if
exists.
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With prediction

We consider the case that algorithms are allowed to send a
linear function to predict the future trend of f
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We consider the case that algorithms are allowed to send a
linear function to predict the future trend of f

Ideas.

1. Still follow the general framewok.

2. Cutting in the parametric space.

A line l passing
(0, q0), (t1, q1) → a
point (q0, q1) in 2D.
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With prediction

We consider the case that algorithms are allowed to send a
linear function to predict the future trend of f

Ideas.

1. Still follow the general framewok.

2. Cutting in the parametric space.

Competitive ratio: O(log(∆T )). T : length of the tracking period,

A line l passing
(0, q0), (t1, q1) → a
point (q0, q1) in 2D.
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Open problems and future directions

Generalize our techniques to multiple observers.

Lower bounds for high dimensional tracking.

Online tracking in other metric spaces.

What if the length of the messages is considered (in the high-
D) case?
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Open problems and future directions

Generalize our techniques to multiple observers.

Lower bounds for high dimensional tracking.

Online tracking in other metric spaces.

What if the length of the messages is considered (in the high-
D) case?

Need a stronger model.
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The End

T HANK YOU
Q and A


