
1-1

Finding Frequent Items in Probabilistic Data

June 12, 2008
SIGMOD 2008

Qin Zhang, Hong Kong University of Science & Technology

Feifei Li, Florida State University

Ke Yi, Hong Kong University of Science & Technology

2-1

Motivation

Identifying frequent items is important

network traffic monitoring

answering iceberg queries

association rule mining
......

2-2

Motivation

Identifying frequent items is important

network traffic monitoring

answering iceberg queries

association rule mining
......

Also, processing uncertain data

sensor reading

fuzzy data integration
......

2-3

Motivation

Identifying frequent items is important

network traffic monitoring

answering iceberg queries

association rule mining
......

This paper: find frequent items in uncertain data

Also, processing uncertain data

sensor reading

fuzzy data integration
......

(heavy hitters)

3-1

Previous work on heavy hitters in certain data

For a parameter φ, an item t is the φ-heavy hitter of a bag W
if mW

t > φ · |W |.

3-2

Previous work on heavy hitters in certain data

For a parameter φ, an item t is the φ-heavy hitter of a bag W
if mW

t > φ · |W |.
Approximate version heavy hitters

• return all the φ-heavy hitters

• not return those t with mW
t < (φ − ε) · |W |

• items in between: arbitrary

3-3

Previous work on heavy hitters in certain data

For a parameter φ, an item t is the φ-heavy hitter of a bag W
if mW

t > φ · |W |.
Approximate version heavy hitters

• return all the φ-heavy hitters

• not return those t with mW
t < (φ − ε) · |W |

• items in between: arbitrary

Demaine et. al. (ESA 2002)
Manku & Motwani (VLDB 2002)

Karp et. al. (TODS 2003)

Cormode & Muthukrishnan (VLDB 2002)

Cormode et. al. (SIGMOD 2004)
Manjhi et. al. (ICDE 2005)
Lee & Ting (PODS 2006)

Metwally et. al. (TODS 2006)

Misra and Gries (Sci. Comput. Programming 1982)

4-1

The Probabilistic Model

The x-tuple model (proposed in the TRIO system)

T1 {(a, p(a)), (b, p(b))}
T2 {(a, p′(a))}

x-tuple

Tm

Ti

T2 T1

T3

? heavy hitters

4-2

The Probabilistic Model

The x-tuple model (proposed in the TRIO system)

T1 {(a, p(a)), (b, p(b))}
T2 {(a, p′(a))}

x-tuple

Tm

Ti

T2 T1

T3

? heavy hitters

a occurs with Pr p(a),
b occurs with Pr p(b),
nothing occurs with Pr
1 − p(a) − p(b).

4-3

The Probabilistic Model

The x-tuple model (proposed in the TRIO system)

T1 {(a, p(a)), (b, p(b))}
T2 {(a, p′(a))}

D: the uncertain database, consists
of T1 and T2

W : a possible world of D

W Pr[W]
∅ (1 − p(a) − p(b))(1 − p′(a))
{a} p(a)(1 − p′(a))

+(1 − p(a) − p(b))p′(a)
{b} p(b)(1 − p′(a))
{aa} p(a)p′(a)
{ab} p(b)p′(a)

x-tuple

Tm

Ti

T2 T1

T3

? heavy hitters

4-4

The Probabilistic Model

The x-tuple model (proposed in the TRIO system)

T1 {(a, p(a)), (b, p(b))}
T2 {(a, p′(a))}

D: the uncertain database, consists
of T1 and T2

W : a possible world of D

W Pr[W]
∅ (1 − p(a) − p(b))(1 − p′(a))
{a} p(a)(1 − p′(a))

+(1 − p(a) − p(b))p′(a)
{b} p(b)(1 − p′(a))
{aa} p(a)p′(a)
{ab} p(b)p′(a)

x-tuple

Tm

Ti

T2 T1

T3

? heavy hitters

Let R denote a random possible world
|R|: the number of items in R.
mR

t : the frenquency of item t in R.

5-1

Ehh and Phh

An intuitive definition
t is a φ-expected heavy hitter (Ehh) of D if

E[mR
t] > φ · E[|R|]

5-2

Ehh and Phh

An intuitive definition
t is a φ-expected heavy hitter (Ehh) of D if

E[mR
t] > φ · E[|R|]

Problems with Ehh (finding 0.5-heavy hitters.)

D1 = { {(a, 0.9), (b, 0.1)}, {(c, 1)} }.
a is not a 0.5-expected heavy hitter.
But, a has a 90% chance of being a 0.5-heavy hitter!

with Pr. 0.9 R = {a, c}
with Pr. 0.1 R = {b, c}

5-3

Ehh and Phh

An intuitive definition
t is a φ-expected heavy hitter (Ehh) of D if

E[mR
t] > φ · E[|R|]

Problems with Ehh (finding 0.5-heavy hitters.)

D1 = { {(a, 0.9), (b, 0.1)}, {(c, 1)} }.
a is not a 0.5-expected heavy hitter.
But, a has a 90% chance of being a 0.5-heavy hitter!

with Pr. 0.9 R = {a, c}
with Pr. 0.1 R = {b, c}

D2 = {{(a, 0.5)}, {(b, 0.5)}}.
a is a 0.5-expected heavy hitter,
but only has a 50% chance of being a 0.5-heavy hitter.

5-4

Ehh and Phh

An intuitive definition
t is a φ-expected heavy hitter (Ehh) of D if

E[mR
t] > φ · E[|R|]

Follow ”probabilistic thresholding” framework
(Dalvi and Suciu VLDB 2004)

A more rigorous definition
t is a (φ, τ)-probabilistic heavy hitter (Phh) of D if

Pr[mR
t > φ|R|] > τ

5-5

Ehh and Phh

An intuitive definition
t is a φ-expected heavy hitter (Ehh) of D if

E[mR
t] > φ · E[|R|]

Follow ”probabilistic thresholding” framework
(Dalvi and Suciu VLDB 2004)

A more rigorous definition
t is a (φ, τ)-probabilistic heavy hitter (Phh) of D if

Pr[mR
t > φ|R|] > τ

6-1

Summary of main results

1. Give low degree polynomial-time algorithms for com-
puting the exact PHH for offline data.

2. Design both space and time-efficient algorithms to com-
pute the approximate Phh for streaming data, with the-
oretically guaranteed accuracy and space/time bounds.

3. Establish a tradeoff between the accuracy and the per-
tuple processing time of the proposed approximation
algorithms.

7-1

Algorithm for offline data

For a single item t, dynamic programming(DP).

The running time of DP O(m3).

Thus, if we do this for every item, the running time
would be O(nm3)

m: the number of x-tuples, n: the number of distinct items

Main idea: calculate Pr[item t appears i times and items
other than t appear j times in the first k x-tuples of D]
for all i, j, k.

7-2

Algorithm for offline data

For a single item t, dynamic programming(DP).

The running time of DP O(m3).

However, we can reduce the running time by almost
a factor of n using the pruning lemma (next page).

Thus, if we do this for every item, the running time
would be O(nm3)

m: the number of x-tuples, n: the number of distinct items

Main idea: calculate Pr[item t appears i times and items
other than t appear j times in the first k x-tuples of D]
for all i, j, k.

8-1

The following lemma gives an upper bound on
Pr[mR

t > φ|R|] depending on E[mR
t]/E[|R|].

The Prunning Lemma

Pr[mR
t > φ|R|] ≤ 2

φ

E[mR
t]

E[|R|]
+ e−

1
8
E[|R|]

(small)

8-2

The following lemma gives an upper bound on
Pr[mR

t > φ|R|] depending on E[mR
t]/E[|R|].

The Prunning Lemma

Pr[mR
t > φ|R|] ≤ 2

φ

E[mR
t]

E[|R|]
+ e−

1
8
E[|R|]

(small)

If φ = 0.1, τ = 0.6

E[mR
t]

E[|R|] < 0.02 → Pr[mR
t > φ|R|] < 0.6

since
∑

t E(mR
t) = E(|R|), checking 50 items is enough!

8-3

The following lemma gives an upper bound on
Pr[mR

t > φ|R|] depending on E[mR
t]/E[|R|].

The Prunning Lemma

Pr[mR
t > φ|R|] ≤ 2

φ

E[mR
t]

E[|R|]
+ e−

1
8
E[|R|]

(small)

Now running time is O(1
φτ m3).

The algorithm.

a
c

b
ed

f compute E[mR
t] +

prunning lemma

a
c

ed

g DP c
d

Phhs

9-1

Approximation algorithms for streaming data

An item t is an approximate Phh if
Pr[mR

t > φ|R|] > τ , and not an approximate Phh if
Pr[mR

t > (φ− ε)|R|] < (1− θ)τ .

Approximation is necessary since calculating the exact fre-
quency of heavy hitters require Ω(n) memory (Alon et. al.)

9-2

Approximation algorithms for streaming data

An item t is an approximate Phh if
Pr[mR

t > φ|R|] > τ , and not an approximate Phh if
Pr[mR

t > (φ− ε)|R|] < (1− θ)τ .

Approximation is necessary since calculating the exact fre-
quency of heavy hitters require Ω(n) memory (Alon et. al.)

finds all approximate (φ, τ)-Phh with proba-
bility at least 1− δ.

space O(1
εθ2τ log(1

δφτ))

processing time: O(1
θ2τ log(1

δφτ)+log(1/ε))

We propose algorithms with the following guarantees.

9-3

Approximation algorithms for streaming data

An item t is an approximate Phh if
Pr[mR

t > φ|R|] > τ , and not an approximate Phh if
Pr[mR

t > (φ− ε)|R|] < (1− θ)τ .

Approximation is necessary since calculating the exact fre-
quency of heavy hitters require Ω(n) memory (Alon et. al.)

finds all approximate (φ, τ)-Phh with proba-
bility at least 1− δ.

space O(1
εθ2τ log(1

δφτ))

processing time: O(1
θ2τ log(1

δφτ)+log(1/ε))

further improve to : O(log(1
δφτε))

We propose algorithms with the following guarantees.

10-1

The basic sampling algorithm

The idea follows from Alon et. al. (JCSS 99) Average-Median

G1

Gi

Gl (l = 2 ln(1/δ′))

10-2

The basic sampling algorithm

The idea follows from Alon et. al. (JCSS 99) Average-Median

G1

Gi

Gl (l = 2 ln(1/δ′))

Wi1

Wi2

Wik (k = 8
θ2τ)

10-3

The basic sampling algorithm

The idea follows from Alon et. al. (JCSS 99) Average-Median

G1

Gi

Gl (l = 2 ln(1/δ′))

Wi1

Wi2

Wik (k = 8
θ2τ)

compute HH in each Wij

using Space-Saving (Met-
wally et. al. TODS 06)

10-4

The basic sampling algorithm

The idea follows from Alon et. al. (JCSS 99) Average-Median

G1

Gi

Gl (l = 2 ln(1/δ′))

Wi1

Wi2

Wik (k = 8
θ2τ)

compute HH in each Wij

using Space-Saving (Met-
wally et. al. TODS 06)

10-5

The basic sampling algorithm

The idea follows from Alon et. al. (JCSS 99) Average-Median

G1

Gi

Gl (l = 2 ln(1/δ′))

Wi1

Wi2

Wik (k = 8
θ2τ)

compute HH in each Wij

using Space-Saving (Met-
wally et. al. TODS 06)

10-6

The basic sampling algorithm

The idea follows from Alon et. al. (JCSS 99) Average-Median

G1

Gi

Gl (l = 2 ln(1/δ′))

Wi1

Wi2

Wik (k = 8
θ2τ)

compute HH in each Wij

using Space-Saving (Met-
wally et. al. TODS 06)

10-7

The basic sampling algorithm

The idea follows from Alon et. al. (JCSS 99) Average-Median

G1

Gi

Gl (l = 2 ln(1/δ′))

Wi1

Wi2

Wik (k = 8
θ2τ)

compute HH in each Wij

using Space-Saving (Met-
wally et. al. TODS 06)

Y t
i = # possible worlds in which t is a heavy hitter /k

10-8

The basic sampling algorithm

The idea follows from Alon et. al. (JCSS 99) Average-Median

G1

Gi

Gl (l = 2 ln(1/δ′))

Wi1

Wi2

Wik (k = 8
θ2τ)

compute HH in each Wij

using Space-Saving (Met-
wally et. al. TODS 06)

Y t
i = # possible worlds in which t is a heavy hitter /k

Y t
1

Y t
i

Y t
l

10-9

The basic sampling algorithm

The idea follows from Alon et. al. (JCSS 99) Average-Median

G1

Gi

Gl (l = 2 ln(1/δ′))

Wi1

Wi2

Wik (k = 8
θ2τ)

compute HH in each Wij

using Space-Saving (Met-
wally et. al. TODS 06)

Y t
i = # possible worlds in which t is a heavy hitter /k

Y t
1

Y t
i

Y t
l

Finally, let Y t = Median{Y t
1 , Y t

2 , . . . Y t
l }.

11-1

The basic sampling algorithm

Y t > (1− θ/2)τ −→ t is a (φ, τ)-Phh.
Y t ≤ (1− θ/2)τ −→ t is not a Phh.

11-2

The basic sampling algorithm

Y t > (1− θ/2)τ −→ t is a (φ, τ)-Phh.
Y t ≤ (1− θ/2)τ −→ t is not a Phh.

Correct with probability at least 1 − δ′ for any particular
item t.

11-3

The basic sampling algorithm

Y t > (1− θ/2)τ −→ t is a (φ, τ)-Phh.
Y t ≤ (1− θ/2)τ −→ t is not a Phh.

Correct with probability at least 1 − δ′ for any particular
item t.

Setting δ′ = φτ
4 δ is enough since we only need to consider

at most 3
φτ candidates Phh, by the Prunning Lemma.

12-1

The improved sampling algorithm

Problem of the basic algorithm: the processing time
for each item is too large! Õ(1

θ2τ)

12-2

The improved sampling algorithm

Problem of the basic algorithm: the processing time
for each item is too large! Õ(1

θ2τ)

Solution: reduce the sampling rate!

Wi1

Wik

Wi2

With Pr. 1/k2

t

t

t

12-3

The improved sampling algorithm

Problem of the basic algorithm: the processing time
for each item is too large! Õ(1

θ2τ)

Solution: reduce the sampling rate!

Wi1

Wik

Wi2

With Pr. (k − 1)/k2

don’t send

12-4

The improved sampling algorithm

Problem of the basic algorithm: the processing time
for each item is too large! Õ(1

θ2τ)

Solution: reduce the sampling rate!

Wi1

Wik

Wi2

The rest

t

select a Wij

uniformly at
random

12-5

The improved sampling algorithm

Problem of the basic algorithm: the processing time
for each item is too large! Õ(1

θ2τ)

Solution: reduce the sampling rate!

Wi1

Wik

Wi2

The rest

t

select a Wij

uniformly at
random

pairwise in-
dependent

12-6

The improved sampling algorithm

Problem of the basic algorithm: the processing time
for each item is too large! Õ(1

θ2τ)

Solution: reduce the sampling rate!

Wi1

Wik

Wi2

The rest

t

select a Wij

uniformly at
random

Now processing time per x-tuple: O(log(1
δφτε)).

pairwise in-
dependent

13-1

Experiments - the data sets

Data sets.

movie from the MystiQ project; has a total of ap-
proximately 100, 000 x-tuples, most of which have
only one alternative, but some have a few.

It contains probabilistic movie records reflecting the
matching probability as a result of data integration
from multiple sources.

wcday46
zipfu1.60

14-1

Experiments - the power of prunning

Effectiveness of the pruning lemma, where for skewed data
sets, more than 90% of the items are pruned.

15-1

Experiments - basic, improved streaming algorithm
Varying m: φ = 0.01, τ = 0.8, δ = 0.05, θ = 0.05, ε = 0.001.

running time

16-1

Experiments - basic, improved streaming algorithm
Varying m: φ = 0.01, τ = 0.8, δ = 0.05, θ = 0.05, ε = 0.001.

memory usage

17-1

Conclusion

We have

• formalized the notion of probabilistic heavy hit-
ters following the commonly adopted possible
world query semantics in uncertain databases.

• presented efficient algorithms with theoretical
guarantees for both offline and streaming data,
under the widely adopted x-relation model.

Future work includes handling distributed data, and
more interestingly, supporting other uncertain data
models.

18-1

The End

T HANK YOU
Q and A

19-1

Experiments - basic, improved streaming algorithm
Varying m: φ = 0.01, τ = 0.8, δ = 0.05, θ = 0.05, ε = 0.001.

recall

20-1

Experiments - basic, improved streaming algorithm
Varying m: φ = 0.01, τ = 0.8, δ = 0.05, θ = 0.05, ε = 0.001.

precision

21-1

Experiments - generalized algorithm

Tradeoff in cost/accuracy, varying s, δ = 0.05, θ = 0.05,
φ = 0.01, τ = 0.8, ε = 0.001.

For s/k as small as 0.05, its accuracy is already very close
to perfect. 20-fold speedup from the basic scheme!

