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ABSTRACT

Ranking queries are essential tools to process large amounts
of probabilistic data that encode exponentially many pos-
sible deterministic instances. In many applications where
uncertainty and fuzzy information arise, data are collected
from multiple sources in distributed, networked locations,
e.g., distributed sensor fields with imprecise measurements,
multiple scientific institutes with inconsistency in their sci-
entific data. Due to the network delay and the economic
cost associated with communicating large amounts of data
over a network, a fundamental problem in these scenarios
is to retrieve the global top-k tuples from all distributed
sites with minimum communication cost. Using the well-
founded notion of the expected rank of each tuple across all
possible worlds as the basis of ranking, this work designs
both communication- and computation-efficient algorithms
for retrieving the top-k tuples with the smallest ranks from
distributed sites. Extensive experiments using both syn-
thetic and real data sets confirm the efficiency and superi-
ority of our algorithms over the straightforward approach of
forwarding all data to the server.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Database Management—
Systems. Subject: Query processing

General Terms

Algorithms

Keywords

Distributed query processing, probabilistic data, ranking
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1. INTRODUCTION
Data are increasingly stored and processed distributively

as a result of the wide deployment of computing infrastruc-
tures and the readily available network services [4,10,17,19,
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24,25,31]. More and more applications collect data from dis-
tributed sites and derive results based on the collective view
of the data from all sites. Examples include sensor networks,
data integration from multiple data sources, and informa-
tion retrieval from geographically separated data centers.
In the aforementioned application domains, it is often very
expensive to communicate the data set entirely from each
site to the centralized server for processing, due to the large
amounts of data available nowadays and the network delay
incurred, as well as the economic cost associated with such
communication [6]. Fortunately, query semantics in many
such applications rarely require reporting every piece of data
in the system. Instead, only a fraction of data that are the
most relevant to the user’s interest will appear in the query
results. Typically, a ranking mechanism is implemented and
only the top-k records are needed [6,14], e.g., displaying the
sensor ids with the k highest temperature readings [32, 35],
or retrieving the images with the k largest similarity scores
to a predefined feature [8].

This observation deems that expensive communication is
unnecessary and could be avoided by designing communica-
tion efficient algorithms. Indeed, a lot of efforts have been
devoted to this subject, from both the database and the
networking communities [4,6,10,14,17,24,25,31]. However,
none of these works deals with distributed queries on proba-
bilistic data, which has emerged as a principled data type in
many applications. Interestingly enough, many cases where
uncertainty arises are distributed in nature, e.g., distributed
sensor networks with imprecise measurements [13], multiple
data sources for information integration based on fuzzy sim-
ilarity scores [12, 27]. Probabilistic data encodes an expo-
nential number of possible instances, and ranking queries,
by focusing attention on the most representative records,
are arguably more important in such a context. Not surpris-
ingly, top-k and ranking queries on probabilistic data have
quickly attracted a lot of interests [11,16,22,23,27,33,34,37].
However, none of these works has addressed the problem in
a distributed setting, either. We see that uncertainty and
distributed query processing have been each studied quite
extensively but separately, despite the fact that the two of-
ten arise concurrently in many applications nowadays.

To address this important issue, our focus in this work is
to answer top-k queries in a communication-efficient manner
on probabilistic data from multiple, distributed sites. Un-
certainty opens the gate for many possible semantics with
respect to ranking queries, and several definitions have been
proposed in the literature [11, 16, 33, 37]. They extend the
semantics of ranking queries from certain data and study the



problem of ranking tuples when there is an uncertain score
attribute for each tuple. Under the possible world semantics,
every uncertain database can be seen as a succinct encoding
of a distribution over possible worlds. Each possible world is
a certain relational table on which we can evaluate any tra-
ditional query. Different ways of combining the results from
individual possible worlds lead to different query semantics.
Specifically for ranking queries, the result on a single pos-
sible world is the ranking of tuples in that world based on
their score values there. (We use the convention that tuples
with higher scores have smaller ranks.) The existing top-k
definitions [11,16,33,37] differ in the way how they combine
all these rankings into a unified final ranking.

In this paper, we adopt the expected ranks approach from
the most recent work [11] on this subject. Here, for each tu-
ple t, we consider its rank in each of the possible worlds.
These (exponentially many) ranks are viewed as an em-
pirical probability distribution of t’s ranking in a possible
world randomly instantiated from the underlying uncertain
database. And by the name, the expected rank of t is the ex-
pectation of this empirical distribution. To obtain a unified
ranking, we simply rank all the tuples using their expected
ranks, and accordingly, the top-k query returns the k tuples
with the smallest expected ranks.

We adopt this expected ranks approach for two impor-
tant reasons. First, a tuple’s rank in a certain database is
a fixed number, while in an uncertain database, this num-
ber becomes a random variable. Thus for ranking queries,
the distribution of this random variable naturally should
be of our central concern. Among all the statistics that
characterize a probability distribution, the expectation is
arguably the most important one. As an important first
step, we should focus on getting the expectation, before con-
sidering other statistics such as the variance, median, and
quantiles. Second, the expectation of a tuple’s rank could
serve as the basis for deriving the final ranking or the top-k
of all the probabilistic tuples. As shown in [11], such an
expected rank based definition possesses a number of essen-
tial properties (exact-k, containment, unique-ranking, value-
invariance, and stability), which other ranking definitions do
not satisfy.

The focus of uncertain query processing is (1) how to
“combine” the query results from all the possible worlds into
a meaningful result for the query; and (2) how to process
such a combination efficiently without explicitly materializ-
ing the exponentially many possible worlds. Additionally,
in a distributed environment, we also face the third chal-
lenge: (3) how to achieve (1) and (2) with the minimum
amount of communication. This work concentrates on re-
trieving the top-k tuples with the smallest expected ranks
from m distributed sites that collectively constitute the un-
certain database D. The challenge is to answer these queries
both computation- and communication-efficiently.

Our contributions. We study ranking queries for dis-
tributed probabilistic data. We design communication ef-
ficient algorithms for retrieving the top-k tuples with the
smallest ranks from distributed sites, with computation over-
head also as a major consideration as well. In summary, our
contributions are as follows:

• We formalize the problem of distributed ranking queries
in probabilistic data (Section 2), and argue that the
straightforward solution is communication-expensive.

• We first provide a basic approach using only a tuple’s
local rank (Section 3). Then, we introduce the sorted-
access framework based on expected scores (Section 4).
The Markov inequality is first applied, followed by
an improvement that formulates a linear programming
optimization problem at each site, which results in sig-
nificantly less communication.

• We next propose the notion of approximate distribu-
tions in probabilistic data used for ranking (Section 5)
to alleviate computation cost from distributed sites.
We present a sampling algorithm that optimally mini-
mizes the total error in the approximation at each site.
By transmitting them to the server at the beginning
of the algorithm, distributed sites are freed from any
further expensive computation. These approximate
distributions are used by the server to compute the
terminating condition conservatively, so that we can
still guarantee that the final top-k results returned by
the server are exact and correct. Furthermore, these
approximations can be incrementally updated by the
server after seeing a tuple from the corresponding dis-
tributed site, improving their approximation quality
as the algorithm progresses.

• We also extend our algorithms to deal with issues on
latency, continuous distributions, scoring function, and
multiple attributes (Section 6).

• We present a comprehensive experimental study that
confirms the effectiveness of our approach (Section 7).

Finally, we survey the related works (Section 8) before
concluding the paper.

2. PROBLEM FORMULATION
Many models for describing uncertain data have been pro-

posed in the literature. Sarma et al. [28] describe the main
features and compare their properties and descriptive abil-
ities. Each model is basically a way to succinctly encode a
probability distribution over a set of possible worlds, where
each possible world corresponds to a single deterministic
data instance. The most expressive approach is to explicitly
list each possible world and its associated probability; such
a method is referred to as being complete, as it can capture
an arbitrary distribution of the possible worlds. However,
complete models are very costly to describe and manipu-
late since there can be exponentially many combinations of
tuples each generating a distinct possible world [28].

Typically, we are able to make certain independence as-
sumptions, that unless correlations are explicitly described,
tuples are assumed to be independent. This maintains the
expressiveness of the models at a reasonable level, while
keeping computation tractable. We consider the following
model that has been used frequently within the database
community, e.g., [2,3,9,11,20,23,28] and many others. With-
out loss of generality, a probabilistic database D contains
simply one relation (table).

Uncertainty data model. The probabilistic database D
is a table of N tuples. Each tuple has one attribute whose
value is uncertain (together with other certain attributes).
This uncertain attribute has a discrete pdf describing its
value distribution. When instantiating this uncertain re-
lation to a certain instance, each tuple draws a value for



tuples score
t1 {(v1,1, p1,1), (v1,2, p1,2), . . . , (v1,b1 , p1,b1 )}
t2 {(v2,1, p2,1), . . . , v2,b2 , p2,b2)}
...

...
tN {(vN,1, pN,1), . . . , (vN,bN

, pN,bN
)}

Figure 1: The uncertainty data model.

tuples score
t1 {(120, 0.8), (62, 0.2)}
t2 {(103, 0.7), (70, 0.3)}
t3 {(98, 1)}

world W Pr[W ]
{t1 = 120, t2 = 103, t3 = 98} 0.8 × 0.7 × 1 = 0.56
{t1 = 120, t3 = 98, t2 = 70} 0.8 × 0.3 × 1 = 0.24
{t2 = 103, t3 = 98, t1 = 62} 0.2 × 0.7 × 1 = 0.14
{t3 = 98, t2 = 70, t1 = 62} 0.2 × 0.3 × 1 = 0.06

Figure 2: An example of possible worlds.

its uncertain attribute based on the associated pdf and the
choice is independent among tuples. This model has many
practical applications such as sensor readings [13,20], spatial
objects with fuzzy locations [9,23], etc. More important, it
is very easy to represent this model using the traditional,
relational database, as observed by Antova et al. [2]. For
ranking queries, the important case is when the uncertain
attribute represents the score for the tuple, and we would
like to rank the tuples based on this score attribute. Let
Xi be the random variable denoting the score of tuple ti.
We assume that Xi has a discrete pdf with bounded size
(bounded by bi). This is a realistic assumption adopted in
many practical applications, e.g., [5,7,12]. The general, con-
tinuous pdf case is discussed in Section 6 as well as in our
experimental study. In this model we are essentially rank-
ing the set of independent random variables X1, . . . , XN . In
the sequel, we will not distinguish between a tuple ti and its
corresponding random variable Xi. This model is illustrated
in Figure 1. For tuple ti, the score takes the value vi,j with
probability pi,j for 1 ≤ j ≤ bi, and for ∀i, bi ≤ b, where b is
an upper bound on the size of any pdf.

The possible world semantics. In the above uncertainty
model, an uncertain relation D is instantiated into a pos-
sible world by taking one value for each tuple’s uncertain
attribute independently according to its distribution. De-
note a possible world as W and the value for ti’s uncer-
tain attribute in W as wti

. The probability that W oc-

curs is Pr[W ] =
QN

j=1 pj,x, where x satisfies vj,x = wtj
.

It is worth mentioning that in this case we always have
∀W ∈ W, |W | = N , where W is the space of all the possi-
ble worlds. The example in Figure 2 illustrates the possible
worlds for an uncertain relation in this model.

The ranking definition. As we have argued in Section
1, many definitions for ranking queries in probabilistic data
exist. Among them, the expected rank approach is partic-
ularly important for the two reasons stated in Section 1.
Each tuple ti has a distribution of its ranks in all possible
worlds and this could be viewed as a random variable (de-
scribing its rank). The expected rank for ti is simply the
expectation of this random variable. The expected rank is
an important statistical value and it offers many nice and

essential properties as a basis for deriving the final ranking
among tuples [11]. Formally,

Definition 1 (Expected Rank) The rank of a tuple ti in
a possible world W is defined to be the number of tuples
whose score is higher than ti (so the top tuple has rank 0),
i.e.,

rankW (ti) = |{tj ∈ W |wtj
> wti

}|.

The expected rank r(ti) is then defined as:

r(ti) =
X

W∈W

Pr[W ] · rankW (ti) (1)

For the example in Figure 2, the expected rank for t1 is
r(t1) = 0.56×0+0.24×0+0.14×2+0.06×2 = 0.4. Similarly
r(t2) = 1.1, r(t3) = 1.5. So the final ranking is (t1, t2, t3).

2.1 Distributed Top­k in Uncertain Data
Given m distributed sites S = {s1, . . . , sm}, each hold-

ing an uncertain database Di with size ni, and a central-
ized server H , we denote the tuples in Di as {ti,1, . . . , ti,ni

}
and their corresponding score values as random variables
{Xi,1, . . . , Xi,ni

}. Extending the notation from Figure 1,
Xi,j ’s pdf is {(vi,j,1, pi,j,1), . . . , (vi,j,bij

, pi,j,bij
)}. We would

like to report at H the top-k tuples with the lowest r(ti,j)’s
as in Definition 1 among all tuples in the unified uncertain
database D = D1

S

D2 · · ·
S

Dm of size N =
Pm

i=1 ni. The
main objective is to minimize the total communication cost
in computing the top-k list, which is the same for many
problems on distributed data [4,6].

The straightforward solution. Obviously, one can al-
ways ask all sites to forward their databases to H and solve
the problem at H locally. If we have a centralized uncer-
tain database D = {t1, . . . , tN}, efficient algorithms exist
for computing the expected rank of each tuple ti ∈ D [11].
By Definition 1 and the linearity of expectation, we have
r(ti) =

P

i6=j Pr[Xj > Xi]. The brute-force algorithm re-

quires O(N) time to compute r(ti) for one tuple and O(N2)
time to compute the ranks of all tuples. In [11], they have
observed that r(ti) can be written as:

r(ti) =

bi
X

ℓ=1

pi,ℓ

`

q(vi,ℓ) − Pr[Xi > vi,ℓ]
´

, (2)

where q(v) =
P

j Pr[Xj > v]. Let U be the universe of

all possible values of Xi, i = 1, . . . , N . We have |U | ≤
|bN |. When b is a constant, we have |U | = O(N). Let
Λ(v) =

P

vi,j=v pi,j for ∀i, j, then q(v) =
P

v′∈U∧v′>v Λ(v′).

One can pre-compute q(v) for all v ∈ U with a linear pass
over the input after sorting U (summing up Λ(v′)’s for v′ >
v) which can be done in O(N log N). Following (2), exact
computation of the expected rank for a single tuple can now
be done in constant time given q(v) for all v ∈ U . The
overall cost of this approach to compute expected ranks for
all tuples is O(N log N) (retrieving the top-k has an inferior
cost O(N log k) by maintaining a priority queue of size k).
This algorithm is denoted as A-ERrank [11].

This approach, however, is communication-expensive. In
this case, the total communication cost is |D| =

Pm
i=1 |Di|.

This will be the baseline we compare against.



3. SORTED ACCESS ON LOCAL RANK
One common strategy in distributed query processing is

to first answer the query within each site individually, and
then combine the results together. For our problem, this
corresponds to first compute the local ranks of the tuples
at the sites they belong to. In this section we present an
algorithm following this strategy.

Consider an uncertain database Di in a local site si and
any ti,j ∈ Di. We define r(ti,j ,Di) as the local rank of ti,j

in Di:

r(tij ,Di) =
X

W∈W(Di)

Pr[W ] · rankW (tij), (3)

where W(Di) is the space of possible worlds of Di.
Following the algorithm A-ERrank, let the universe of val-

ues at the site si be Ui. We first compute qi(v) =
P

j Pr[Xij >

v] for all v ∈ Ui in O(ni log ni) time. Then we can efficiently
compute the local ranks of all tuples in Di using (2), i.e.,

r(tij ,Di) =

bij
X

ℓ=1

pi,j,ℓ

`

qi(vi,j,ℓ) − Pr[Xij > vi,j,ℓ]
´

. (4)

We also extend the local rank definition of ti,j to a Dy

where y 6= i. Since ti,j 6∈ Dy , we define its local rank in Dy

as its rank in {tij}
S

Dy . We can calculate r(tij ,Dy) as

r(tij ,Dy) =
X

Y ∈Dy

Pr[Y > Xij ]

=
X

Y ∈Dy

bij
X

ℓ=1

pi,j,ℓ Pr[Y > vi,j,ℓ]

=

bij
X

ℓ=1

pi,j,ℓ

0

@

X

Y ∈Dy

Pr[Y > vi,j,ℓ]

1

A

=

bij
X

ℓ=1

pi,j,ℓqy(vi,j,ℓ). (5)

Note that in the last step of the derivation above, we use
the fact that tij 6∈ Dy , hence, Xij does not contribute to Uy

and qy(v).
An important observation on the (global) expected rank

of any tuple tij is that its expected rank could be calculated
accumulatively from all the sites. More precisely, we have
the following.

Lemma 1 The (global) expected rank of tij is

r(tij) =
m

X

y=1

r(tij ,Dy),

where r(ti,j ,Dy) is computed using (4) if y = i, or (5) oth-
erwise.

Proof. First, since D = D1

S

D2 · · ·
S

Dm, we have U =
U1

S

U2 · · ·Um. Furthermore, q(v) =
Pm

i=1 qi(v) by defini-
tion. Then, we have

m
X

y=1

r(tij ,Dy) =

m
X

y=1,y 6=i

bij
X

ℓ=1

pi,j,ℓqy(vi,j,ℓ)

+

bij
X

ℓ=1

pi,j,ℓ

`

qi(vi,j,ℓ) − Pr[Xij > vi,j,ℓ]
´

=

bij
X

ℓ=1

pi,j,ℓ

`

m
X

y=1

qy(vi,j,ℓ) − Pr[Xij > vi,j,ℓ]
´

=

bij
X

ℓ=1

pi,j,ℓ

`

q(vi,j,ℓ) − Pr[Xij > vi,j,ℓ]
´

= r(tij). (By equation (2)).

An immediate corollary of Lemma 1 is that any tuple’s
local rank is a lower bound on its global rank. Formally,

Corollary 1 For any tuple tij, r(tij) ≥ r(tij ,Di).

Lemma 1 indicates that by forwarding only the tuple tij

itself from the site si to all other sites, we can obtain its
final global rank. This naturally leads to the following idea
for computing the global top-k at the central server H .
We sort the tuples at site si based on their local ranks
r(tij ,Di). Without loss of generality, we assume r(ti1,Di) ≤
r(ti2,Di) . . . ≤ r(tini

,Di) for any site si. The central server
H accesses tuples from the m sites in the increasing order
of their local ranks. More precisely, H maintains a priority
queue L of size m in which each site si has a representative
local rank value and the tuple id that corresponds to that
local rank value, i.e., a triple 〈i, j, r(ti,j ,Di)〉. The triples in
the priority queue are sorted by the local rank value in as-
cending order. L is initialized by retrieving the first tuple’s
id and local rank from each site.

In each step, H obtains the first element from L, say
〈i, j, r(ti,j ,Di)〉. Then, H asks for tuple tij from site si as
well as r(ti,j+1,Di), the local rank of the next tuple from
si. The triple 〈i, j + 1, r(ti,j+1,Di)〉 will be inserted into
the priority queue L. In order to compute the exact global
rank of ti,j that H has just retrieved, H broadcasts ti,j to
all sites except si and asks each site Dy to report back the
value r(tij ,Dy) (based on equation (5)). By Lemma 1, H
obtains the exact global rank of tuple tij . This completes a
round.

Let the set of tuples seen by H be DH . H dynamically
maintains a priority queue for tuples in DH based on their
global ranks. In the λ-th round, let the k-th smallest rank
from DH be r+

λ . Clearly, the local rank value of any unseen
tuples by H from all sites is lower bounded by the head
element from L. This in turn lower bounds the global rank
value of any unseen tuples in D − DH by Corollary 1. Let
r−λ be the local rank of the head element of L. It is safe
for H to terminate the search as soon as r+

λ ≤ r−λ at some
round λ and output the top-k from the current DH as the
final result. We denote this algorithm as A-LR.

4. SORTEDACCESSONEXPECTEDSCORE
Sorted access on local rank has limited pruning power

as it simply relies on the next tuple’s local rank from each
site to lower bound the global rank of any unseen tuple.
This is too pessimistic an estimate. This section introduces
the framework of sorted access on expected score, which
incurs much less communication cost than the basic local
rank approach.

4.1 The General Algorithm
The general algorithm in this framework is for H to access

tuples from all the sites in the descending order of their



expected scores. Specifically, each site sorts its tuples in the
decreasing order of the expected score, i.e., for all 1 ≤ i ≤ m
and 1 ≤ j1, j2 ≤ ni, if j1 < j2, then E[Xij1 ] ≥ E[Xij2 ]. H
maintains a priority queue L of triples 〈i, j, E[Xij ]〉, where
the entries are sorted in the descending order of the expected
scores. L is initialized by retrieving the first tuple’s expected
score from each of the m sites. In each round, H pops the
head element from L, say 〈i, j, E(Xij)〉, and requests the
tuple tij (and its local rank value r(tij ,Di)) from site si,
as well as the expected score of the next tuple at si, i.e.,
E[Xi,j+1]. Next, H inserts the triple 〈i, j + 1, E[Xi,j+1]〉
into L. Let τ be the expected score of the top element from
L after this operation. Clearly, τ is an upper bound on the
expected score for any unseen tuple.

Similarly to the algorithm A-LR, H broadcasts tij to all
sites (except si) to get its local ranks and derive the global
rank for tij . H also maintains the priority queue for all
tuples in DH (the seen tuples by H) based on their global
ranks and r+

λ is similarly defined as in A-LR for any round
λ. The key issue now is to derive a lower bound r−λ for the
global rank of any unseen tuple t from D −DH . H has the
knowledge that ∀t with a random variable X for its score
attribute, E(X) ≤ τ . We will show two methods in the
sequel to derive r−λ based on τ . Once r−λ is calculated, the
round λ completes. Then H either continues to the next
round or terminates if r+

λ ≤ r−λ .

4.2 Markov Inequality Based Approach
Given the expectation of a random variable X, the Markov

inequality could bound the probability that the value of X
is above a certain value. Since τ is an upper bound for the
expected score of any unseen tuple t with the score attribute
X, we have E(X) ≤ τ and for a site si:

r(t,Di) =

ni
X

j=1

Pr[Xj > X] = ni −

ni
X

j=1

Pr[X ≥ Xj ]

= ni −

ni
X

j=1

bij
X

ℓ=1

pi,j,ℓ Pr[X > vi,j,ℓ]

≥ ni −

ni
X

j=1

bij
X

ℓ=1

pi,j,ℓ
E[X]

vi,j,ℓ

. (Markov Ineq.)

≥ ni −

ni
X

j=1

bij
X

ℓ=1

pi,j,ℓ
τ

vi,j,ℓ

= r
−(t,Di). (6)

This leads to the next lemma that lower bounds the global
rank of any unseen tuple.

Lemma 2 Let τ be the expected score for the head element
from L at round λ. Then, for any unseen tuple t:

r(t) ≥

m
X

i=1

r
−(t,Di) = r

−
λ ,

for r−(t,Di) defined in equation (6).

Proof. By equation (6) and the Lemma 1.

By Lemma 2 and the general algorithm in Section 4.1, our
algorithm could terminate as soon as r+

λ ≤ r−λ at some round
λ. This is denoted as the algorithm A-Markov. Since both

q(v) = PrY ∈D [Y > v]

−∞ v1 v3 v4vℓv2

value

∑
v∈U

Pr(v) − Pr(v1)

∑
v∈U

Pr(v)

0.0

Figure 3: Transform values in an unseen tuple X.

ni and smi =
Pni

i=1

Pbij

ℓ=1

pi,j,ℓ

vi,j,ℓ
are invariants for different

rounds λ’s in equation (6), a notable improvement to A-
Markov is to have each site si transmit its ni and smi to
H at the beginning of the algorithm, once. Then, at each
round λ, r−(t,Di) could be computed locally at H . Note
that in order to compute the exact rank of seen tuples and
derive r+

λ as well as producing the final output, the server
still needs to broadcast each new incoming tuple to all sites
and collect its local ranks.

4.3 Optimization with Linear Programming
The Markov inequality in general gives a rather loose

bound. In this section we give a much more accurate lower
bound on r(t,Di) for any tuple t 6∈ DH . Again let X be
the uncertain score of t, and we have E[X] ≤ τ . Our gen-
eral idea is to let H send τ to all sites in each round and
ask each site to compute a lower bound locally on the rank
of any unseen tuples (from H ’s perspective), i.e., a lower
bound on r(t,Di) for all D′

is. All sites then send back these
lower bounds and H will utilize them to compute the global
lower bound on the rank of any unseen tuple, i.e., r−λ .

The computation for r(X,Di) is different depending on
whether X ∈ Di or X 6∈ Di. We first describe how to
lower bound r(X,Di) if X 6∈ Di. The problem essentially
is, subject to the constraint E[X] ≤ τ , how to construct the
pdf of X such that r(X,Di) is minimized. The minimum
possible r(X,Di) is obviously a lower bound on r(X,Di).
Let Ui be the universe of possible values taken by tuples in
Di. Suppose the pdf of X is Pr[X = vℓ] = pℓ, v1 < v2 <
· · · < vγ for some γ. Let qi(v) =

P

Y ∈Di
Pr[Y > v]; note

that we always have qi(−∞) =
P

v∈Ui
Λ(v) where Λ(v) =

P

Y ∈Di∧Y.vj=v Y.pj , and qi(vL) = 0 where vL is the largest

value in Ui. Since X 6∈ Di, by equation (5), the rank of X
in Di is

r(X,Di) =
X

Y ∈Di

Pr[Y > X] =

γ
X

ℓ=1

pℓqi(vℓ). (7)

Note that qi(v) is a non-increasing, staircase function with
changes at the values of Ui. (We also include −∞ in Ui.) We
claim that to minimize r(X,Di), we only need to consider
values in Ui to form the vℓ’s, the values used in the pdf of
X. Suppose the pdf uses some vℓ 6∈ Ui. Then we decrease
vℓ until it hits some value in Ui. During this process E[X]
decreases so the constraint E[X] ≤ τ is still satisfied. As
we decrease vℓ while not passing a value in Ui, qi(vℓ) does
not change (see the example in Figure 3). So (7) stays un-
changed during this transformation of the pdf. Note that



this transformation will always reduce the number of vℓ’s
that are not in Ui by one. Applying this transformation re-
peatedly will thus arrive at some pdf of X with all vℓ ∈ Ui

without changing r(X,Di).
Therefore we can assume without loss of generality that

the pdf of X has the form Pr[X = vℓ] = pℓ for each vℓ ∈ Ui,
where

0 ≤ pℓ ≤ 1, ℓ = 1, . . . , γ = |Ui|; (8)

p1 + · · · + pγ = 1. (9)

The constraint E[X] ≤ τ becomes

p1v1 + · · · + pγvγ ≤ τ. (10)

Therefore, the problem is to minimize (7) subject to the lin-
ear constraints (8)(9)(10), which can be solved using linear
programming.

Next consider the case X ∈ Dj for some j. Then r(X,Dj)
can be computed as in (4), i.e.,

r(X,Dj) =

γ
X

ℓ=1

pℓ(qj(vℓ) − Pr[X > vℓ])

=

γ
X

ℓ=1

pℓqj(vℓ) −

γ
X

ℓ=1

pℓ Pr[X > vℓ]

≥

γ
X

ℓ=1

pℓqj(vℓ) −

γ
X

ℓ=1

pℓ =

γ
X

ℓ=1

pℓqj(vℓ) − 1,

where qj(vℓ) =
P

Y ∈Dj
Pr[Y > vℓ]. Therefore, we can still

minimize as we do for any other Di, but simply subtract
one from the final lower bound on r(X) that we obtain af-
ter aggregating the minimum of (7) from all Di’s. These
observations are summarized in the next lemma.

Lemma 3 Let X be a random unseen tuple by H. For
∀i ∈ {1, . . . , m}, suppose r−(X,Di) is the optimal mini-
mum value from the linear program using (7) as the objective
function and (8), (9), (10) as the constraints for each site
si respectively. Then,

r(X) ≥
m

X

i=1

r
−(X,Di) − 1 = r

−(X).

Proof. By Lemma 1 and the optimal minimum local
rank returned by each linear programming formulation.

This naturally leads to an optimization to the sorted by
expected score framework. H maintains the current k’th
tuple’s rank among all the seen tuples at round λ as r+

λ and
r−(X) at round λ as r−λ . As soon as r+

λ ≤ r−λ , H stops the
search and outputs the current top-k from DH . This is the
A-LP algorithm.

5. APPROXIMATE q(v): REDUCING COM­

PUTATION AT DISTRIBUTED SITES
In many distributed applications (e.g., sensors), the dis-

tributed sites often have limited computation power or can-
not afford expensive computation due to energy concerns.
Algorithm A-LP finds the optimal lower bound for the lo-
cal rank at each site, but at the expense of solving a linear
program each round at all sites. This is prohibitive for some
applications. This section presents a method to approxi-
mate the q(v), which enables the site to shift almost all the

computation costs to the server H while still keeping the
communication cost low.

5.1 q∗(v): An Approximate q(v)

Given a database D and its value universe U , q(v) repre-
sents the aggregated cumulative distribution PrX∈D[X >
v], which is a staircase curve (see Figure 3). Let U =
{v0, v1, . . . , vγ} where v0 = −∞ and γ = |U |. Then, q(vi) =
P

j>i Λ(vj) where Λ(v) =
P

X∈D∧X.vi=v X.pi. q(v) is de-

cided by a set of points {(v0, q(v0)), (v1, q(v1)), . . . , (vγ , 0)},
but it is well defined for any value v even if it is not in U ,
i.e., for v 6∈ U , q(v) =

P

vj>v∧vj∈U Λ(vj).

In the A-LP approach, the computation of r−(X,Di) only
depends on qi(v). If each site si sends its qi(v) to H at the
beginning of the algorithm, then the server could compute
r−(X,Di) locally at each round without invoking the lin-
ear programming computation at each site in every round.
However, qi(v) is expensive to communicate if |Ui| is large.
In the worst case when tuples in Di all take distinct values,
|qi(v)| = |Di| and this approach degrades to the straightfor-
ward solution of forwarding the entire Di to H .

This motivates us to consider finding an approximate q∗(v)
for a given q(v), such that |q∗(v)| is small and adjustable,
and provides a good approximation to q(v). The approxi-
mation error ε is naturally defined to be the area enclosed
by the approximate and the original curves, i.e.,

ε =

Z

v∈[−∞,+∞]

|q(v) − q
∗(v)|dv. (11)

We use such a definition of error because the site does not
know beforehand how q∗(v) is going to be used by the server.
If we assume that each point on q(v) is equally likely to
be probed, then the error ε defined in (11) is exactly the
expected error we will encounter.

The approximation q∗(v) is naturally a staircase curve
as well. Thus, the problem is, given a tunable parameter
η ≤ |U |, how to obtain a q∗(v) represented by η points while
minimizing ε.

However, not all approximations meet the problem con-
straint. We need to carefully construct q∗(v) so that given
an upper bound value τ on the expected score, the solution
from the linear program w.r.t q∗(v) is still a lower bound
for r(X,D) for any unknown tuple X with E(X) ≤ τ . In
other words, let r∗(X,D) be the optimal value identified by
the linear program formulated with q∗(v), and r−(X,D) be
the optimal value from the linear program using q(v) di-
rectly. We must make sure that r∗(X,D) ≤ r−(X,D) so
that the lower bounding framework still works, and the re-
turned top-k results are still guaranteed to be exact and
correct. Intuitively, we need q∗(v) below q(v) in order to
have this guarantee. In what follows, we first present an
algorithm that finds the optimal q∗(v) below q(v) that min-
imizes the error ε, then we show that such a q∗(v) indeed
gives the desired guarantee.

There are still many possible choices to construct a q∗(v)
as there are infinite number of decreasing staircase curves
that are always below q(v) and are decided by η turning
points. The next question is, among the many possible
choices, which option is the best in minimizing the error
ε? The insight is summarized by the next Lemma.

Lemma 4 Given any η ≤ |U | and q(v), q∗(v), s.t., q∗(v) ≤
q(v) for ∀v ∈ [−∞, +∞] and |q∗(v)| = η, the approximation
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(c) Update q∗λ−1(v).

Figure 4: q∗(v): definition, optimal computation and update.

error ε is minimized iff q∗(v)’s right-upper corner points only
sample points from the set of right-upper corner points in the
staircase curve of q(v), i.e., q∗(v) is determined by a subset
of ∆q(v) = {α1 : (v1, q(v0)), . . . , αγ : (vγ , q(vγ−1)}.

Proof. We concentrate on the necessary condition; the
sufficient condition can be argued similarly. We prove this
by contradiction. Suppose this is not true, then we have a
q∗(v) with the smallest approximation error that contains a
right-upper corner point α′ 6∈ ∆q(v). Since q∗(v) is always
below q(v) for ∀v ∈ [−∞, +∞], moving α′ towards the αi ∈
∆q(v) that is the first to its right will only reduce the area
enclosed by q∗(v) and q(v). Please see Figure 4(a) for an
example where we move α′ to α3 and α′′ to α4. This conflicts
with the fact that q∗(v) minimizes the approximation error
ε and completes the proof.

A Corollary for constructing q∗(v) is that the two bound-
ary points from ∆q(v) should always be sampled, otherwise
the error ε could be unbounded.

Corollary 2 Both α1 : (v1, q(v0)) and αγ : (vγ , q(vγ−1))
from ∆q(v) should be included in q∗(v)’s right corner points
in order to have a finite error ε.

Lemma 4 is illustrated in Figure 4(a) where the ×’s are
the points (the lower-left corner points) in a q(v) and the △’s
are the right-upper corner points that should be used to de-
termine q∗(v) in order to minimize the approximation error
ε. The dashed line denotes a possible curve for q∗(v) with
η = 2. The two extreme points (v1, q(−∞)) and (v5, q(v4))
are automatically included, plus α3 and α4. Once we have
found the optimal set of α points from ∆q(v), the × points
in q∗(v) could be easily constructed. As a convention, we do
not include the two boundary △ points in the budget η.

With Lemma 4 and Corollary 2, we are ready to present
the algorithm that obtains an optimal q∗(v) given a budget
η. Note that q∗(v) always have the two boundary △ points
from q(v). The basic idea is to use dynamic programming.

Let ∆♯

q(v) = {α2, . . . , αγ−1}. Let A(i, j) be the approx-

imation error corresponding to the optimal q∗(v) with i

points selected from the first j points in ∆♯

q(v) for all 1 ≤

i ≤ j ≤ γ − 2 (since ∆♯

q(v) has γ − 2 number of points),

together with the two boundary ∆ points (α1 and αγ). The
optimal curve achieving A(i, j) is denoted as q∗(i, j). Next,
let δ

j+1
q∗(i,j) be the area reduced by adding the (j+1)-th point

from ∆♯

q(v), i.e., αj+2, to q∗(i, j). Now, we have:

A(i, j) = min



minx∈[i−1,j−1]{A(i − 1, x) − δ
j

q∗(i−1,x)
};

minx∈[i,j−1]{A(i, x)}.
(12)

Our goal is to find A(η, γ − 2) and the corresponding
q∗(η, γ − 2) will be q∗(v) with the minimum approximation
error to q(v) using only η right-upper corner points (plus α1

and αγ).
Given any q∗(i, j) and αj+2, δ

j+1
q∗(i,j) could be easily and ef-

ficiently computed using only subtraction and multiplication
since q∗(i, j) is a staircase curve. Suppose the last △ point,
except αγ , in q∗(i, j) is αx, recall that αj+2 is (vj+2, q(vj+1))
and αx is (vx, q(vx−1)), then:

δ
j+1
q∗(i,j) = (vj+2 − vx) × (q(vj+1) − q(vγ−1)). (13)

The base case is when i = j = 0. This simply corresponds
to having only the two boundary ∆ points in q∗(0, 0) and

A(0, 0) =
X

i∈[2,γ−1]

(vi − vi−1)(q(vi−1) − q(vγ−1)).

For example, in Figure 4(b), q∗(0, 0)’s right-upper corner
points are (v1, q(−∞)) and (v5, q(v4)), A(0, 0) corresponds
to the the gray area in Figure 4(b), and δ1

q∗(0,0) is the area
reduced by adding α2 to q∗(0, 0) (marked by the gray dotted
lines in Figure 4(b)). This gives us a dynamic programming
formulation for finding the right-upper corner points in op-
timal q∗(v) for any η.

This dynamic programming algorithm requires only sub-
traction, addition and multiplication, and only needs to be
carried out once per distributed site. Hence, even a site with
limited computation power is able to carry out this proce-
dure. Compared with the linear programming approach in
Section 4.3, each site has shifted the expensive linear pro-
gramming computation to the server.

It still remains to argue that such a q∗(v) computed as
above guarantees that r∗(X,D) ≤ r−(X,D), such that our
lower bounding framework is still correct. This is formalized
in the following theorem.

Theorem 1 If q∗(v) is constructed only using upper-right
corners from the set of points ∆q(v), then for any unknown

tuple X with E(X) ≤ τ , r∗(X,D) ≤ r−(X,D).

Proof. The unknowns in the linear program of Section
4.3 are the pℓ’s for ℓ = 1, . . . , γ, where γ = |U |. The vℓ’s in
the constraint from equation (10) only take values from U
(or equivalently, the x-coordinates of the turning points of
q(v)).



Suppose q∗(v) has η points. Then the LP constructed
from q∗(v) has η unknowns. In the following, we will trans-
form this LP into one also with γ unknowns, with the same
constraints as the LP constructed from q(v), while having a
smaller objective function.

Denote the set of x-coordinates of the turning points in
q∗(v) as U∗. For any value v̄ ∈ U−U∗, we have q∗(v̄) ≤ q(v̄).
Now, we add the value v̄ to U∗ and a corresponding un-
known to the LP. Note this transformation does not change
the staircase curve defined by q∗(v). We apply such trans-
formations for all values from U −U∗. Now we obtain a LP
that has the same set of unknowns and the same constraints
(8)(9)(10) as the LP generated from q(v). The objective
function (7) of this transformed LP has smaller or equal co-
efficients. Thus the optimal solution to this transformed LP
is no larger than that of the original LP constructed from
q(v).

Finally, we need to argue that this transformed LP is ac-
tually the same as the LP constructed from q∗(v), namely,
this transformation is merely conceptual and we do not need
to actually do so. Indeed, since all the new unknowns that
are added during the transformation are not at the turning
points of q∗(v), by the same reasoning of Section 4.3, we
know that in the optimal solution of this transformed LP,
these new unknowns will be zero anyway. Thus we do not
need to actually include these unknowns in the LP, and it
suffices to solve the simpler LP that is constructed just from
q∗(v).

Theorem 1 indicates that by using q∗i (v)’s, the server is
able to find a lower bound for the local rank of any unseen
tuple and check the terminating condition by solving the lin-
ear programming formulation locally. Note that the server
still forwards every seen tuple to all sites to get its exact
global rank based on the qi(v)’s stored at individual sites.
This, together with Theorem 1, guarantees that the final
top-k are exact answers. There is the overhead of communi-
cating q∗i (v)’s to H at the beginning of the algorithm. How-
ever, it is a one-time cost. Furthermore, in each subsequent
round the communication of passing τ from H to all sites
and sending lower bound values from all sites back to the
server in the A-LP algorithm is saved. This will compensate
the cost of sending q∗i (v)’s as evident from our experiments.

5.2 Updating the q∗i (v)’s at the Server
Initially, each site computes the approximate q∗i (v) with

a budget η for qi(v) and sends it to the server H . A nice
thing about these approximate q∗i (v)’s is that they can be
incrementally updated locally by H after seeing tuples from
the Di’s so that the approximation quality keeps improving
after each update. In our framework, the budget η is only
important for the initial transmission of q∗i (v). After that,
the server has no constraint to keep only η number of points
in q∗i (v). As the algorithm progresses and the sites send in
their tuples, the server can also use these tuples to improve
the quality of q∗i (v) “for free”. Intuitively, when H receives
a tuple from some site si, H ’s knowledge about qi(v) for the
database Di should be expanded, hence a better approxima-
tion for qi(v) should be possible.

The general problem is the following. Assume the server
H has an initial q∗(v) with a budget η for a database D
that H does not possess. When a tuple X ∈ D is forwarded
to H , we would like to update q∗(v) with X such that the

approximation error ε between q∗(v) and q(v) could be re-
duced.

Recall that q∗(v) is represented by the set of right-upper
corners obtained at the end of the dynamic programming.
Suppose H gets a new tuple X = {(vx1

, px1
), . . . , (vxz , pxz)}

for some z. Below we show how to update q∗(v) for one pair
(vℓ, pℓ) ∈ X; the same procedure is applied to all the pairs
one by one.

We call the upper-right corner points in the initial q∗(v)
the initial points. Note that the two boundary points from
q(v) are always initial points. An obvious observation is
that all the initial points should not be affected by any up-
date since they are accurate points from the original q(v).
Consider an update (vℓ, pℓ), and the first initial point to its
left, denoted ∆L. Another observation is that this update
will not affect the curve q∗(v) outside the interval [∆L.v, vℓ],
where ∆L.v is the value of ∆L. This is because the update
(vℓ, pℓ) will only raise the curve on the left side of vℓ, while
the initial point ∆L already incorporates all the information
on the right side of ∆L on the original curve q(v).

We are now ready to describe how to update q∗(v) with
(vℓ, pℓ). By the definition of q(v), the part of the curve of
q∗(v) to the left of vℓ should be raised by an amount of pℓ, if
such a contribution has not been accounted for. As observed
from above, this will raise q∗(v) from vℓ all the way to the
left until we hit ∆L.

An example of this procedure is shown in Figure 4(c) with
two updates. Suppose the initial points in q∗(v) are α1, α4

and α5. We first update with (v2, p2). This will raise the
portion (∆L.v = v1, v2) by p2. This corresponds to adding a
new upper-right corner point α2 to q∗(v). Next, we update
q∗(v) with (vℓ, pℓ). As reasoned above, this will raise the
portion (∆L.v = v1, vℓ) by pℓ. To record such a raise, we
need to add a new upper-right corner α to q∗(v), and then
raise all the △ points between ∆L.v and vℓ by pℓ. In this
example we will raise α2 by pℓ.

6. REDUCING LATENCY AND OTHER IS­

SUES

Reducing latency. All of our algorithms presented so far
process one tuple from some site sj in a single round. The
latency of obtaining the final result could be high if there
are many rounds. However, there is an easy way to reduce
latency. Instead of looking up one tuple at a time, our al-
gorithms could process β tuples before running the lower
bounding calculation, for some parameter β. Such a change
could be easily adopted by all algorithms. The overall la-
tency will be reduced by a factor of β. However, we may
miss the optimal termination point, but by at most β tu-
ples. In Section 7 we will further investigate the effects of β
empirically.

Continuous distributions. When the input data in the
uncertainty model is specified by a continuous distribution
(e.g., Gaussian or Poisson), it is often hard to compute the
probability that such a random variable exceeds another
(e.g., there is no closed formula for Gaussian distributions).
However, by discretizing the distributions to an appropriate
level of granularity (i.e., represented by a histogram), we
can reduce to an instance of the discrete pdf problem. The
error in this approach is directly related to the granularity
of the discretization.



Scoring function and other attributes. Our analysis
has assumed that the score is an attribute. In general, the
score can be specified at query time by a user defined func-
tion that could even involve multiple uncertain attributes.
Our algorithms also work under this setting, as long as the
scores can be computed, by treating the output of the scor-
ing function as an uncertain attribute. Finally, users might
be interested in retrieving attributes other than the rank-
ing attribute(s) by the order of the scoring function. We
could modify our algorithms to work with trimmed tuples
that only contain the necessary attribute(s) for the ranking
purpose. When the algorithm has terminated, we retrieve
the top-k tuples from distributed sites with user-interested
attributes based on the ids of the top-k truncated tuples at
server H .

7. EXPERIMENTS
We implemented all the algorithms proposed in this paper:

A-LR, A-Markov, A-LP, A-BF (the straightforward solution
that sends all Di’s to H and process D locally using the A-
ERank from [11]), A-ALP (the algorithm using approximate
qi(v)’s). For A-LP and A-ALP, we used the GNU linear
programming kit library (GLPK) [15] to solve LPs.

Data sets. We used three real data sets and one synthetic
data set. The first real data set is the movie data set from
the MystiQ project [5], which contains probabilistic records
as a result of information integration of the movie data from
IMDB and Amazon. The movie data set contains roughly
56, 000 tuples. Each tuple is uniquely identified by the movie
id. We rank tuples by the ASIN attribute, which varies
significantly in different movie records, and may have up to
10 different choices, each associated with a probability.

The second real data set is the lab readings of 54 sensors
from the Intel Research, Berkeley lab [13]. This data set
contains four sets of sensor readings corresponding to the
temperature, light intensity, humidity, and voltage of lab
spaces over a period of eight days. These data sets exhibit
similar results in all of our experiments, so we only report
the results on the temperature data set. To reflect the fuzzy
measurement in sensor readings, we put near-by g sensors
(e.g., in the same room) into a group where g is a number
between 1 and 10. We treat these g readings as a uniformly
distributed discrete pdf of the temperature. The temper-
ature data set has around 67, 000 such records. We rank
tuples by their temperature attribute.

The third real data set is the chlorine data from the
EPANET project that monitors and models the hydraulic
and water quality behavior in water distribution piping sys-
tems [26]. This data set records the amounts of chlorine de-
tected at different locations in the piping system collected
over several days. The measurements were inherently fuzzy
and usually several monitoring devices were installed at the
same location. Hence, we process this data set in a similar
way as the temperature data set. The chlorine data set has
approximately 140, 000 records and each record has up to 10
choices on the value of the chlorine amount. We rank tuples
by their chlorine amount attribute.

Finally, we also generated the synthetic Gaussian data set
where each record’s score attribute draws its values from a
Gaussian distribution. For each record, the standard devi-
ation σ is randomly selected from [1, 1000] and the mean
µ is randomly selected from [5σ, 100000]. Each record has

g choices for its score values where g is randomly selected
from 1 to 10. This data set can be also seen as a way to
discretize continuous pdf’s.

Setup. In each experiment, given the number of sites m,
each record from the uncertain database D is assigned to
a site si chosen uniformly at random. Once the Di’s are
formed, we apply all algorithms on the same set of Di’s.

We measure the total communication cost in terms of
bytes, as follows. For each choice of the score attribute,
both the value and the probability are four bytes. The tu-
ple id is also four bytes. We do not send attributes other
than the score attribute and the tuple id. The expected
score value is considered to be four bytes as well. We dis-
tinguish communication costs under either the broadcast or
the unicast scenario. In the broadcast case, whenever the
server sends a tuple or an expected score value to all sites, it
is counted as one tuple or one value regardless of the number
of sites. In the unicast case, such communication is counted
as m tuples or m values being transmitted. In either case,
all site-to-server communication is unicast.

We truncated all data sets to N = 56, 000 tuples, the size
of the movie data set. The default number of sites is m = 10
and the default budget η in the A-ALP algorithm is set to
be 1% of |qi(v)|. The default value of k is 100.

Results with different k. We first study the performance
of all the algorithms for different k values from 10 to 200.
Figure 5 shows the communication costs of the algorithms
for the four data sets under both the broadcast and unicast
settings. Clearly, A-LP and A-ALP save the communication
cost by at least one to two orders of magnitude compared
with A-BF in all cases. A-LR does provide communication
savings over the brute-force approach, but as k increases,
it quickly approaches A-BF. This indicates that the simple
solution of using the local rank alone to characterize the
global rank of a tuple is not good enough. A-Markov is con-
sistently much worse than the A-LP and A-ALP algorithms
in the access by expected score framework. In some cases, it
actually retrieves almost all tuples from all sites. So we omit
A-Markov from this and all remaining experiments. All algo-
rithms have increasing communication costs as k gets larger
(except A-BF of course). The costs of A-LP and A-ALP
gradually increase as k gets larger. A useful consequence of
this is that A-LP and A-ALP are able to return the top tu-
ples very quickly to the user, and then return the remaining
tuples progressively. We would like to emphasize that these
results were from relatively small databases (N = 56, 000).
In practice, N could be much larger and the savings from
A-LP, A-ALP comparing to A-BF could be from several to
tens of orders of magnitude .

Another interesting observation is that A-ALP achieves
similar communication cost as A-LP, while with very little
computation overhead on the distributed sites. Recall that
other than the initial computation of the q∗i (v)’s, the dis-
tributed sites have little computation cost during the sub-
sequent rounds in A-ALP. A reason is that A-ALP does
not require the server to send the expected score value τ
to all sites and collect the lower bounds on the local ranks
based on τ . This results in some communication savings
that compensate the needs of communicating q∗i (v)’s at the
beginning. We also show the number of rounds required in
Figure 6. Note that for all values of k, A-LP and A-ALP
need only slightly more than k rounds.
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Unicast Broadcast

(a) Synthetic Gaussian.
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Unicast Broadcast

(b) Movie.
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Unicast Broadcast

(c) Temperature.
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Unicast Broadcast

(d) Chlorine.

Figure 5: Communication cost: N = 56, 000, m = 10, η = 1% × |qi(v)|, vary k.
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(b) Movie.
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(c) Temperature.
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(d) Chlorine.

Figure 6: Number of rounds: N = 56, 000, m = 10, η = 1% × |qi(v)|, vary k.
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Figure 7: Effect of N , Chlorine data set: m = 10,
η = 1%, k = 100.
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Figure 8: Effect of m, Movie data set: N = 56, 000,
η = 1%, k = 100.

Finally, it is not surprising that our algorithms perform
better in the broadcast case. In the rest, we only show the
unicast scenario as the other case can only be better.

Results with different N . We next study the effects of
N , the total number of records in the database D, using
the chlorine data set as it is the largest real data set. Not
surprisingly, Figure 7 shows that the communication cost of
the A-BF approach linearly increases with N (note that it is
shown in log scale). On the other hand, both the communi-
cation cost and the number of rounds for A-LP and A-ALP
increase at a much slower rate. For example, when k = 100,
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Figure 9: Effect of b, Synthetic Gaussian data set:
N = 56, 000, m = 10, η = 1%, k = 100.

both algorithms only access less than 300 tuples (or rounds)
even for the largest N = 140, 000. This means that A-LP
and A-ALP have excellent scalability w.r.t the size of the
distributed database while others do not. The gap between
A-LP, A-ALP comparing to A-BF quickly increases as N
becomes larger.

Results with different m. Our next goal is to investigate
the effects of m, the number of sites. Figure 8 shows the
experimental results on the movie data set where we varied
m from 5 to 30 but kept N , the total database size (the
union of all sites) fixed. Since we use unicast, as expected,
the communication cost for our algorithms increase as m
gets larger. Nevertheless, even with 30 sites, A-LP and A-
ALP are still an order of magnitude better than the basic
A-BF solution (Figure 8(a)). We would like to emphasize
that this is the result from the smallest database with only
56, 000 tuples and N is kept as a constant. In practice,
when m increases, N will increase as well and A-LP, A-ALP
will perform much better than A-BF. Finally, the number
of sites does not have an obvious impact on the number of
rounds required for A-LP and A-ALP (Figure 8(b)), which
primarily depends on N and k.

Results with different b. We next study the effects of b,
the upper bound on the size of each individual pdf. Recall
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Figure 10: Effect of ρ (skewness of the pdf), Chlorine
data set: N = 56, 000, m = 10, η = 1%, k = 100.
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Figure 11: Effect of η on approximate qi(v)’s: N =
56, 000, m = 10, k = 100.

that for continuous pdf’s, we discretize them into a discrete
pdf’s with up to b choices. The larger b is, the better we can
approximate the original continuous pdf’s. For this purpose,
we use the synthetic Gaussian data set in which we can
control b. The results are shown in Figure 9. As we can see
from Figure 9(a), the communication costs of all algorithms
increase roughly linearly with b. The relative gap among the
algorithms basically stay the same. Figure 9(b) indicates
that the number of rounds λ is almost not affected by b.
This is because the dominant factor that determines λ is
the expected score value. Changing the number of choices
in a pdf does not shift its expected score value too much.
Note that with b = 20, a continuous pdf and its discrete
version is already very close in most cases.

Results with different skewness of the pdf’s. We also
study the effects of the skewness of the pdf’s. Recall that by
default for the temperature and chlorine data sets the prob-
abilities for a pdf are set uniformly at random to reflect the
scenario that the reading is randomly selected in a group of
sensors. In practice, we may have a higher priority to collect
the reading from one specified senor in a group, resulting in
a skewed distribution. For this purpose, for a group of sen-
sors, we always give a probability of ρ to one of them, while
dividing the remaining probability equally among the rest
of the sensors. Obviously, the larger ρ is, the higher the
skewness. Figure 10 studies how this affects the algorithms
using the chlorine data set. Obviously, this has no effect on
the A-BF algorithm. Interestingly, Figure 10(a) and 10(b)
indicate that both the communication cost and the number
of rounds required for A-LR, A-LP and A-ALP algorithms
actually reduce on more skewed distributions.

Results with different η. We then study the impact of
the budget η of the approximate q∗i (v) for the A-ALP al-
gorithm. Intuitively, smaller η’s reduce the communication
cost of transmitting these approximate q∗i (v)’s, but also re-
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Figure 12: Effect of β, Chlorine data set: N = 56, 000,
m = 10, k = 100, η = 1%|qi(v)|.

duce their quality of approximation leading to larger number
of rounds. So there is expected to be some sweet spot for the
choice of η. It turns out that a fairly small η already reaches
the sweet spot. Figure 11 shows the results on all four data
sets. As seen in Figure 11(a), the communication cost drops
sharply when η increases from 0% to 1% on all data sets.
Note that η = 0% means that q∗i (v) contains only the two
boundary points from qi(v). This indicates that by just
adding a small number of points into q∗i (v), it does a very
good job at representing qi(v) and hence gives a pretty tight
lower bound r∗(X,Di) on the estimated local rank of any
unseen tuple X using the upper bound τ for the expected
score of X. This is also evident from Figure 11(b) where the
number of rounds drops significantly when η changes from
0% to 1%. As η gets larger, the overhead of communicat-
ing q∗i (v) starts to offset the communication savings. These
results confirm that our algorithm does an excellent job in
finding the optimal representation of qi(v)’s given a limited
budget. In practice, a tiny budget as small as 1%, seems al-
ready good enough. A small η also reduces the computation
cost for both the server and the distributed sites. Thus the
algorithm A-ALP is both computation- and communication-
efficient. It requires minimal computational resources from
the distributed sites, since only addition, subtraction and
multiplication operations are needed to compute the q∗i (v)’s.
Subsequently, solving LPs is only done at the server.

Results with different β. In all the experiments above, in
each round our algorithms process only one tuple and then
immediately check if it is safe to terminate. This causes a
long latency if there are network delays. However, as argued
in Section 6, we can easily reduce the latency by processing
β tuples per round before checking the termination condi-
tion. This will reduce the number of rounds by a factor
of β while only incurring an additive communication over-
head of at most β tuples. In the last set of experiments,
we empirically study the effects of β. The results are shown
in Figure 12. First, as expected, the number of rounds is
greatly reduced as β gets larger. For β = 100, both A-LP
and A-ALP just need 2 rounds to complete, i.e., 2 round
trips of communication. On the other hand, in this par-
ticular case, since the β value is still quite small when the
number of rounds have been reduced to just 2, the increase
in the total communication cost is almost negligible. This
can be explained by the fact that although having a larger β
makes the algorithms send ≤ β more tuples, we also save the
communication cost of checking the termination condition
repeatedly. This results in a net effect of quite flat curves
that we see from Figure 12, meaning that the algorithms are
both communication-efficient and fast.



In general, there is obviously a trade-off between the num-
ber of rounds and the total communication cost. In the ex-
treme case, when β equals the total size of the distributed
data sets (N) from all sites, this approach degrades to the
A-BF approach. For any case with β > 1, the number of
tuples retrieved by the server will be larger than the case
with β = 1, resulting in a communication overhead. How-
ever, larger β values also imply that the server only has
to communicate a single tuple to all sites to get the lower
bounds back from every site after seeing β tuples, except in
the case of A-ALP where the lower bounds are computed lo-
cally by the server. In the latter case larger β values reduce
the computation overhead at the server, i.e., the server only
needs to do the LPs once for every β tuples. For other algo-
rithms, for small values of β, the savings of only retrieving
the lower bounds once after seeing every β tuples cancels
off the overhead of retrieving more tuples over the “opti-
mal” terminating point with β = 1, as they cannot miss
the “optimal” point by more than β tuples. We run this
experiment with small β values (up to 200) as this already
reduces the total rounds to just 1 or 2 for all data sets. If
we keep increasing β, there will be a cut-off value where
the delayed termination (have to look at many more tuples
beyond the “optimal” point) will eventually result in more
communication overhead than the savings.

Computation cost of solving the linear programs.
Our main focus in this paper is to save the communication
cost. However, in practice, the computation overhead should
not be ignored. Our main algorithms, namely the A-LP and
A-ALP, require solving the linear programs (LPs). It is in-
teresting to examine the associated computation overhead.
In our experiments, we found that such overheads are quite
small. All of our experiments were executed on a linux ma-
chine with an Intel Xeon CPU 5130@2GHz and 4GB mem-
ory. On this machine, solving the LP in each round takes
only a few seconds at most, and our best algorithm takes
only two or tree rounds (the optimization with a β value
that is larger than 1). The GLPK library is extremely ef-
ficient. Note that we cannot assume the distributed sites
in real world applications are powerful, and this is precisely
the reason why we wanted to migrate the computation cost
to the server with the A-ALP algorithm.

8. RELATED WORK
There has been a large amount of efforts devoted to mod-

eling and processing uncertain data, so we survey only the
works most relevant to ours. TRIO [1, 28], MayBMS [2, 3]
and MystiQ [12] are promising systems that are currently
being developed. Many query processing and indexing tech-
niques have been studied for uncertain databases and the
most relevant works to this paper are top-k queries [11, 16,
27, 33, 37]—their definitions and semantics have been dis-
cussed in detail by the latest work [11] and the expected
rank approach was shown to have important properties that
others do not guarantee. Techniques used include the Monte
Carlo approach of sampling possible worlds [27], AI-style
branch-and-bound search of the probability state space [33],
dynamic programming approaches [37], and applying tail
(Chernoff) bounds to determine when to prune [16]. There
is ongoing work to understand top-k queries in a variety of
contexts. For example, the work of Lian and Chen [22] deals
with ranking objects based on spatial uncertainty, and rank-

ing based on linear functions. Recently, Soliman et al. [34]
have extended their study on top-k queries [33] to Group-
By aggregate queries. The Markov inequality was also ap-
plied in [11], however, in a different setting. They used the
Markov inequality in a centralized approach and any un-
seen tuples cannot be accessed. In our case, the server does
not access any unseen tuple. However, each distributed site
could scan any tuple from that site and apply the Markov
inequality over entire tuples in one site.

To the best of our knowledge, this is the first work on
query processing on distributed probabilistic data. Dis-
tributed top-k queries have been extensively studied in cer-
tain data, including both the initial computation of the top-
k [6, 14, 25, 32, 36] and the incremental monitoring/update
version [4, 24]. Our work falls into the first category. Some
works consider minimizing the scan depth at each site to
be the top priority, i.e., the number of tuples a site has to
access, such as the seminal work by Fagin et al. [14]. Ar-
guably, the more important metric for distributed systems
is to minimize the communication cost [4,6,25] which is our
objective.

To capture more complex correlations among tuples, more
advanced rules and processing techniques are needed in the
uncertainty data model. Recent works based on graphi-
cal probabilistic models and Bayesian networks have shown
promising results in both offline [29] and streaming data [20].
Converting prior probability into posterior probability also
offers positive results [21]. In these situations, the gen-
eral approaches are using Monte-Carlo simulations [18, 27]
to obtain acceptable approximations or inference rules from
graphical model and Bayesian networks, e.g., [21,30].

9. CONCLUSION
This is the first work that studies ranking queries for

distributed probabilistic data. We show that significant
communication cost could be saved by exploring the in-
terplay between the probabilities and the scores. We also
demonstrate how to alleviate the computation burden at
distributed sites so that communication and computation
efficiency are achieved simultaneously. Many ranking se-
mantics are still possible in the context of probabilistic data,
extending our framework to those cases is an important fu-
ture work. Finally, when updates are present at distributed
sites, how to incrementally track (or monitor) the top-k re-
sults is also an intriguing open problem.
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