
Persistent Data Sketching

Zhewei Wei
∗

School of Information, Renmin
University of China

Key Laboratory of Data
Engineering and Knowledge

Engineering, MOE
zhewei@ruc.edu.cn

Ge Luo
†

The Hong Kong University of
Science and Technology
luoge@cse.ust.hk

Ke Yi
The Hong Kong University of

Science and Technology
yike@cse.ust.hk

Xiaoyong Du
‡

School of Information, Renmin
University of China

and Key Laboratory of Data
Engineering and Knowledge

Engineering, MOE
duyong@ruc.edu.cn

Ji-Rong Wen
School of Information, Renmin

University of China
and Key Laboratory of Data
Engineering and Knowledge

Engineering, MOE
jrwen@ruc.edu.cn

ABSTRACT
A persistent data structure, also known as a multiversion data struc-
ture in the database literature, is a data structure that preserves all
its previous versions as it is updated over time. Every update (in-
serting, deleting, or changing a data record) to the data structure
creates a new version, while all the versions are kept in the data
structure so that any previous version can still be queried.

Persistent data structures aim at recording all versions accurately,
which results in a space requirement that is at least linear to the
number of updates. In many of today’s big data applications, in
particular for high-speed streaming data, the volume and velocity
of the data are so high that we cannot afford to store everything.
Therefore, streaming algorithms have received a lot of attention in
the research community, which use only sublinear space by sacri-
ficing slightly on accuracy.

All streaming algorithms work by maintaining a small data struc-
ture in memory, which is usually called a sketch, summary, or syn-
opsis. The sketch is updated upon the arrival of every element in the
stream, thus is ephemeral, meaning that it can only answer queries

∗This work was partially supported by the National Key Ba-
sic Research Program (973 Program) of China under grant No.
2014CB340403 and the Fundamental Research Funds for the Cen-
tral Universities, the Research Funds of Renmin University of
China.
†Ge Luo and Ke Yi are supported by HKRGC under grants
GRF-621413 and GRF-16211614, and by a Microsoft grant
MRA14EG05.
‡Partially supported by 973 Program of China (Project No.
2012CB316205)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2749443.

about the current status of the stream. In this paper, we aim at
designing persistent sketches, thereby giving streaming algorithms
the ability to answer queries about the stream at any prior time.

1. INTRODUCTION
History is a lens on the future. As our ability to collect, store, and

process data increases at an unprecedented rate, so is our desire to
ask questions about our data at any prior time instance, instead of
only on its current status. The study on managing historical data has
a long history itself. After some earlier not-so-successful attempts,
a breakthrough was made in 1989 in a landmark paper by Driscoll,
Sarnak, Sleator, and Tarjan [15], in which general techniques for
building persistent data structures were introduced. These tech-
niques allow us to store all versions of a data structure, one after
each update (insertion or deletion of a data record), into a single
data structure whose size is linear in the total amount of differences
between every two consecutive versions, so that each version can
still be efficiently queried. After more years of theoretical and ex-
perimental work, persistent data structures have become a mature
technique that is now being incorporated into commercial multiver-
sion database systems such as Microsoft Immortal DB [18]. Search
engines, such as Google, also have adopted similar ideas, but tai-
lored to their specific needs and environment, to support queries
about the web at any prior time instance or interval.

Most past research on persistent data structures has focused on
supporting historical queries accurately. This means that we have
to store all the updates, and a persistent data structure essentially
attains this inherent limit. However, due to the high volume and
high velocity of data in the “big data” era, even this linear space
cost, which used to be good enough, is now often considered pro-
hibitive. The area of streaming algorithms is exactly devoted to
solving this problem. A streaming algorithm works by storing a
small data structure, often called a sketch, summary, or synopsis, in
memory, and updates it with every element in the stream. Since the
sketch size is only sublinear in the amount of data it has processed,
exact query results are not possible, but the error can be bounded
by some small ε, which can be decided by the user in advance.
The sketch size is then inversely related to ε, yielding a tradeoff
between space and accuracy.

However, all the sketches used by streaming algorithms are ephem-
eral, i.e., every update creates a new version while past versions
are forgot. In this paper, we aim at making the sketches persistent,
thus giving streaming algorithms the ability to answer queries at
any prior time in history, still with a small ε error. More gener-
ally, we present sketching techniques that support historical win-
dow queries, which are asked on all elements in the stream that
arrived in a given time interval (s, t]. It is clear that a traditional
historical query supported by persistent data structures is a special
case where s = 0. Our techniques are fairly general, and applica-
ble to any sketch that consists of a set of counters. In particular, we
show how to make the Count-Min Sketch [11] and the AMS/Count
Sketch [2, 9] persistent, which are two of the most widely used
sketches. They support some of the most fundamental queries in
data analytics, such as point query, heavy hitters, and join size es-
timation. We show how the persistent versions of the Count-Min
Sketch and the AMS/Count Sketch can be used to support these
queries within any given time window (s, t], with provably error
guarantees. Meanwhile, the size of the persistent sketch remains
sublinear, which is an essential property of streaming algorithms.

We envision many applications where persistent sketches could
be useful. First, in any application that currently deploys persis-
tent data structures, replacing them with persistent sketches will
result in significant space savings, as long as a small error can be
tolerated. At the same time, as the sketch is much smaller in size
than a full data structure, it is possible to keep the sketch com-
pletely in main memory. This will greatly improve update and
query efficiency, leading to better system scalability. Secondly, in
scientific research where one experiment may run for days or even
months while generating high-speed streams of numerical readings,
it will be very useful to use persistent sketches to keep track of the
progress over time. Since numerical readings in scientific experi-
ments usually already have errors due to equipment inaccuracy and
rounding, it is often acceptable to have some small and bounded
error in the sketches in return for reduced space/time costs. Third,
even for nonnumerical data streams such as network traffic (e.g.,
streams of IP packets), streaming algorithms have been widely de-
ployed to monitor some statistical properties of the stream (e.g., the
most frequent IP addresses). Using persistent sketches in these al-
gorithms will enable statistical tracking of the entire history, rather
than just the current status. Eventually, this line of work may lead
to multiversion data stream systems, just like how persistent data
structures have made multiversion database systems possible.

1.1 Related Work
This work lies in the intersection between persistent data struc-

tures and streaming algorithms, but these two areas have so far
evolved separately with little interaction. Below we briefly review
each area and point out where the gap is.

Persistent data structures.
Early approaches for managing historical data include: (1) store

all the updates in a “changelog”, and “replay” the history when
a historical query is issued; and (2) create and keep a version of
the data structure after every update. These approaches will result
in either a long query time or a huge storage cost. In a landmark
paper by Driscoll, Sarnak, Sleator, and Tarjan [15], the concept of
persistent data structures was formally introduced, together with a
suite of techniques for making an ordinary (i.e., ephemeral) data
structure persistent. The persistence (or multiversion) model used
in the database community is actually called partial persistence in
[15], in which queries can be asked on any previous version, but
updates can only be applied to the current version. There are two

other types of persistence, namely full persistence and confluent
persistence, which allow more complicated history models. They
are more relevant to version control in software development, so
we will not discuss them further in this paper.

Driscoll et al. [15] have introduced general techniques for turn-
ing any pointer-based ephemeral data structure into a persistent one
with optimal overhead. Since then, there has been considerable de-
velopment of persistent data structures, both in theory and prac-
tice. In particular, their techniques have been extended to the Mul-
tiversion B-tree [5, 7, 31], Time-Split B-tree [19], which has en-
abled the application of persistence techniques in database systems,
and eventually led to the development of multiversion database
systems and techniques such as Microsoft Immortal DB [18, 20],
SNAP [29], Ganymed [25], Skippy [28] and LIVE[27].

However, the existing persistence techniques are not readily ap-
plicable to the persistent sketch problem. First, they only work on a
pointer-based data structure (i.e., lists, binary trees, graphs), but the
majority of sketches are not pointer-based. More seriously, these
techniques aim at preserving every change to the data structure,
thus directly applying them to a sketch would result in a persis-
tent sketch whose size is at least linear in the stream length, which
completely violates the first requirement of streaming algorithms.
On the other hand, since a sketch is already an approximate data
structure, it does not make sense to preserve all the versions accu-
rately. Therefore, the key question in making a sketch persistent
is to decide when and how to preserve the changes as long as the
error guarantee is maintained, which has never been an issue for
persistent data structures.

Streaming algorithms.
Streaming algorithms have been an area of active research in

the past 20 years, with both rich theories and many practical data
stream systems developed. Several streaming models have been
considered in the literature [22]: In the cash register model, each
record in the stream inserts an element, and queries are asked on the
set of all the elements in the stream so far. In the turnstile model,
the stream consists of both insertions and deletions, where a dele-
tion removes an element previously inserted. These models only
look at the current status of the stream.

Another streaming model that has a bit of “historical” flavor is
the sliding window model [3, 6, 13], where we are only interested
in the last k elements in the stream (a count-based window), or all
elements that have arrived in the past (say) 24 hours (a time-based
window). However, as more elements arrive in the stream and the
window slides forward, past windows are lost. Note that this is
actually a special case of historical window query where t = now
and s = t− w for some fixed window length w.

Finally, the closest work to ours is that of Tao et al. [30], who
designed a quantile summary for historical data. However, it is
still far from a real persistent sketch because it does not work on
streaming data. All the updates must be given in advance. Once
the summary is built, it supports historical queries but no more new
changes can be made. Moreover, their quantile summary is pointer-
based so it is easy to use the techniques from [15], but the majority
of the sketches in the streaming literature are not.

1.2 Preliminaries
We adopt the standard streaming model [4, 22] (a.k.a. the cash

register model), defined as follows. Let S = (e1, e2, . . . , em) be
a data stream, where the ej’s are elements from the universe [n] =
{1, . . . n}. The frequency vector of S is f = (f1, f2, . . . , fn),
where frequency fi =

∑
j:ej=i 1 is the number of times that ele-

ment i appears. We use a discrete time model and assume that et
arrives at time t, for t = 1, . . . ,m. If nothing arrives at time t,
then et = null. In the more complex situation where the tuples in
the stream have multiple attributes, we can view each attribute as a
stream, and build sketches on each attribute stream. Since we use
the standard streaming model, our sketches can be plugged into any
architecture that adopts the standard streaming model. Please see
the survey paper [4] for more discussion. For a distributed stream-
ing system such as S4 [23] and D-Streams [32], our technique can
be deployed to each single node.

Another commonly used streaming model is the turnstile model,
which generalizes the standard streaming model by allowing dele-
tions. In this model, the data stream S = ((e1, c1), (e2, c2), . . . ,
(em, cm)), where ej’s are the elements and ci’s denote the fre-
quency change of element ej , which can be 1, 0, or −1. The fre-
quency of item i is fi =

∑
j:ej=i cj . Note that by restricting ci

to be 1 or 0, the turnstile model becomes the standard streaming
model. The turnstile model allows deletions and may result in neg-
ative frequency, so we will focus on the standard streaming model
in this paper. We only point out that all our persistent sketches
work for the turnstile model as well, and present the corresponding
space and query time bounds. These bounds may be of theoretical
interest, as the Count-Min Sketch and AMS Sketch work for the
turnstile model as well.

The Count-Min Sketch and the AMS Sketch are two widely used
sketches, and we briefly describe them here. Let hj : [n] →
[w], j = 1, . . . , d be a set of d pairwise-independent hash func-
tions. The Count-Min Sketch maintains a d × w array of coun-
ters. Let C[j][k] be the counter in the j-th row and k-th col-
umn. To process a new element i, the Count-Min Sketch performs
C[j][hj(i)] ← C[j][hj(i)] + 1 for j = 1, . . . , d. The Count-Min
Sketch supports two fundamental queries: point query and heavy
hitters. A point query asks for how many times an item i appears
in the stream, and is estimated as medianj∈[d]{C[j][hj(i)]} by
the sketch. Point queries are a building block for more complex
queries, such as wavelet [16], range query [11]. Heavy hitters, also
known as frequent items, are the items with frequencies above a
given threshold. This problem has been extensively studied in the
database literature [12, 21], but existing data structures are not per-
sistent.

The (fast) AMS Sketch is similar to the Count-Min Sketch. It
maintains a d×w array of counters and uses d hash functions hj :
[n] → [w] to map the elements in the universe to a counter in
each row. The only difference is that, upon an update i, the AMS
Sketch does C[j][hj(i)]← C[j][hj(i)] + ξj(i), where ξj : [n]→
{−1,+1} is an 4-wise independent hash function, for j ∈ [d]. A
important class of query supported by the AMS Sketch is the join
size query, which asks for the join size of two streams. The join
size query is useful for estimating query result sizes and measuring
the skewness of the data [1, 26]. Meanwhile, join size query is
the building block of more complex queries, such as binary joins,
wavelets, and lp differencing [14].

1.3 Problem Formulation
We now formally define the problem we are trying to address in

this paper. Given a time interval (s, t] = {s + 1, s + 2, . . . , t},
define fs,t to be the frequency vector of all the elements having
arrived within (s, t], i.e., fs,t = (f1(s, t), f2(s, t), . . . , fn(s, t)),
where fi(s, t) =

∑
j:ej=i,s<j≤t 1 is the number of appearance of

element i in time window (s, t], for i = 1, . . . , n. For historical
queries, we have s = 0, and we simplify the notation as f0,t = ft.
With a slight abuse of notation, we also use the frequency vectors

f , ft and fs,t to denote that part of the stream that defines these
frequency vectors, respectively.

In this paper, we focus on four types of queries: 1) Historical
window point query: Given an index i and a time range (s, t],
return fi(s, t). 2) Historical window heavy hitters query: Given
an threshold φ, and a time range (s, t], return elements with fre-
quency fi(s, t) ≥ φ‖fs,t‖1. Here ‖fs,t‖1 =

∑n
i=1 |fi(s, t)| is

the L1 norm of fs,t. 3) Historical window join size: For two
streams f and g, given a time range (s, t], return I(fs,t,gs,t) =∑n
i=1 fi(s, t)gi(s, t). 4) Historical window self-join size: Given a

time range (s, t], return ‖fs,t‖22 =
∑n
i=1 fi(s, t)

2.

1.4 Our Results
We observe that most known sketches in the turnstile model are

linear sketches of the following form. One or more hash functions
are used to map the elements in the universe [n] to an array of coun-
ters, and the value of each counter is a linear combination of the fre-
quencies of the elements mapped to that counter. Upon the arrival
of each update in the stream for a particular element, all counters
that the element is mapped to are then updated accordingly. We
present two general persistence techniques that, practically speak-
ing, can be applied to any linear sketch of this form. However, in
order to provide provable error guarantees, each technique is more
suitable for a particular class of sketches. Specifically, we obtain
the following results.

PLA-based persistent sketch.
We first present a persistence technique that uses piecewise-linear

functions to approximate each counter of the sketch over time. This
technique introduces an error that depends on the L1-norm of the
frequency vector, so it is more suitable for sketches that also pro-
vide such an error guarantee. In particular, we apply this technique
to the Count-Min Sketch [11], and show that a persistent Count-
Min Sketch can be used to answer historical window point queries
and heavy hitters queries with error ε‖fs,t‖1 + ∆, with an arbi-
trarily high constant probability. The error consists of a relative
term ε‖fs,t‖1, which inherits from the Count-Min Sketch itself, as
well as an additive term ∆, which is due to persistence. Note that,
however, an additive term is unavoidable because the window can
be arbitrarily small and it may contain each single element in the
stream. If we did not have an additive error term, the persistent
sketch would have to store all the data accurately. On the other
hand, if we only consider historical queries (i.e., s = 0), then we
can avoid this term (see later).

The size of a persistent Count-Min Sketch depends on the data
distribution. It can be large on adversarial inputs, but our exper-
imental results show that on many real-world and non-adversarial
synthetic data sets, its size is actually very small. We back up this
empirical observation with a theoretical justification: Under a rea-
sonable random streaming model (random turnstile model and ran-
dom stream model defined in Section 3), the persistent Count-Min
Sketch has size O(1

ε
+ m

∆2) in expectation, which is a factor of ∆
smaller than a baseline solution.

The persistent Count-Min Sketch cannot handle join size queries
(or rather, cannot provide a meaningful error bound), which are
addressed by our second persistence technique.

Sampling based persistent sketch.
Next, we present a sampling based persistence technique that

works well with sketches with error guarantees in terms of the L2-

norm. We show how this can be applied to the AMS Sketch [2]1 to
answer historical window self-join size queries with error ε‖fs,t‖22+
∆2

ε
, and join size queries between two streams f and g with error

E = ε

√(
‖fs,t‖22 + (

∆f

ε
)2

)(
‖gs,t‖22 + (

∆g

ε
)2

)
.

Similarly, these errors all have an additive term, for the same
reason as argued above. For join size queries between two streams
f and g, we allow them to use different additive error parameters
∆f and ∆g. The size of a persistent AMS Sketch is O(1

ε2
+ m

∆
) in

expectation regardless of the input, in both the turnstile model and
the standard streaming model.

Historical queries.
Finally, we show how these persistent sketches can be special-

ized to solve historical queries for which s is fixed at 0. In this
case, we can avoid the additive error term, and provide an error
bound identical to that of the ephemeral sketch at time t. More
precisely, the persistent Count-Min Sketch answers historical point
queries and heavy hitters queries with error ε‖ft‖1, and the persis-
tent AMS Sketch answers historical self-join size queries with error
ε‖ft‖22 and join size queries with error ε‖ft‖2‖gt‖2.

Under this setting, the size of the persistent Count-Min Sketch
is O(1

ε2
) under the random stream model and O

(∑m
t=1

1
ε2‖ft‖21

)
under the random turnstile model. The size of the persistent AMS
Sketch becomes O(1

ε2
+
√
m
ε

) in the standard streaming model,

and O
(

1
ε2

+
∑m
t=1

1
ε‖ft‖2

)
in the turnstile model, regardless of

the input.

Finally, another appealing feature of our persistent sketches is
that they are very easy to implement, with minimal modifications
to the original, ephemeral sketches. However, the analyses, includ-
ing both error analysis and space complexity, are nontrivial and
quite involved for a general audience. Thus, we only present the
results and some high-level ideas of the proofs in the main text,
while deferring all details to the appendix.

1.5 An Illustrating Example
Consider the following example: a website receives an enormous

number of visits every day, and one is interested in the most fre-
quently requested URLs, and more importantly, how the frequen-
cies of these URLs change over time. One could build a persistent
data structure that supports top-k queries for any arbitrary past time
window. However, as the update speed is very fast and data size is
huge, such a persistent data structure must reside on disk or dis-
tributed system, which is costly. In this case, we can build a persis-
tent sketch which supports historical window heavy hitters queries
and hence top-k queries [9]. Since the size of a persistent sketch
is sub-linear, it can fit in main memory. This will greatly improve
update and query efficiency, leading to better system scalability.

We used the 1998 World Cup web site access log2, which con-
sists of all requests made to the 1998 World Cup web site between
April 30 and July 26, 1998. Each request is a tuple that consists
of 8 attributes: 1) timestamp: time of the request; 2) clientID, an
anonymized integer of the IP address of the request ; 3) objectID,
an anonymized integer of the requested URL; 4) size: number of
bytes in the response; 5) method: method contained in the client’s
1The version we are using is the improved version known as the
“fast AMS Sketch”, which is similar to the Count Sketch [9].
2http://ita.ee.lbl.gov/traces/WorldCup/WorldCup.html

URL actual count estimation
/ 1138896 1138970
/images/space.gif 1117634 1120050
/images/dot.gif 880322 880765
/images/hm_nbg.jpg 818126 818586
/images/home_intro.anim.gif 799697 800323

Table 1: Top-5 most frequently requested URLs and their esti-
mated frequencies at the end of the stream .

10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10
x 10

4

day

fr
e
q
u
e
n
c
y

"/"−T

"/"−A

"/images/space.gif"−T

"/images/space.gif"−A

"/images/dot.gif"−T

"/images/dot.gif"−A

"/images/hm_nbg.jpg"−T

"/images/hm_nbg.jpg"−A

"/images/home_intro.anim.gif"−T

"/images/home_intro.anim.gif"−A

Figure 1: A illustration of the frequency change of top-5 most
requested URLs over the days. Here legends with“T” denote
the true frequencies, and legends with“A” denote the approxi-
mated frequencies.

request; 6) status: response status code; 7) type: type of file re-
quested 8) server: indicates which server handled the request.

Suppose we are interested in the most frequently requested URLs,
and how their frequencies change over time. Then we can view the
objectID attribute as a stream of elements, each arriving at the re-
spective timestamp. If we build an ephemeral Count-Min Sketch
on this objectID stream, we could only get the top-k URLs at the
end of the stream (Table 1). However, if we had built a persistent
Count-Min Sketch, we would be able to query the sketch and see
how the frequencies of these URLs change over time (Figure 1).
Note that all this information is extracted from the persistent sketch
only, without accessing the raw data stream, which may have been
dumped to slow secondary storage or even discarded.

2. A BASELINE SOLUTION
A baseline solution can be designed using properties of linear

sketches. Recall that each counter in a linear sketch is a linear func-
tion of the frequency vector f . Let Ct be the set of counters at time
t. If we record Ct for every t, then given a historical window (s, t],
we can compute Cs,t = Ct − Cs. By linearity, this is exactly the
set of counters for fs,t, i.e., the partial stream within that window,
which can be used to answer various queries on fs,t.

The above approach would result in a persistent sketch with lin-
ear space. To achieve sub-linear space, we keep track of each
counter in the sketch over time, but record a value only when it has
deviated from the last recorded value by more than ∆. To answer
a historical window query with time range (s, t], for each counter
we find the recorded value with timestamp closest to s (resp. t) to
form Ĉs (resp. Ĉt) as an approximation of Cs (resp. Ct), and uses
Ĉs,t = Ĉt − Ĉs as an approximation of Cs,t to answer queries on
fs,t. Note that each counter in Ĉs,t might deviate from that in Cs,t
by up to 2∆; but by scaling ∆ down by a factor of 2, this is not an
issue.

However, the baseline solution suffers from two drawbacks: (1)
The space complexity is still high. Given an additive error parame-
ter ∆, the space usage is proportional to m

∆
, where m is the length

of the stream. (2) This approach can only handle queries that de-
pend on one (or a small number of) counters in the sketch, which is
the case for point and heavy hitters queries. For join size and self-
join queries, the answer depends non-linearly on all the counters
in the sketch. Thus the total error would be amplified significantly.
We present our two persistence techniques in the next two sections,
which will exactly address these drawbacks.

3. PLA-BASED PERSISTENT SKETCH
In this section, we present our first persistence technique, which

is based on the idea of using piecewise-linear approximations (PLA)
to keep track of the counters over time. For concreteness, we show
how it is applied to the Count-Min Sketch, resulting in a persistent
Count-Min Sketch that answers historical window point and heavy
hitter queries with error depending on the L1-norm.

3.1 Piecewise Linear Approximation
We first briefly review the PLA technique. Here, the aim is to

approximate a function v(·) with a piecewise-linear function f(·)
with bounded error having a small number of segments. Note that
the segments in f may not be connected. In our setting, v(·) will
be the value of a counter over time, and we want |f(t)−v(t)| ≤ ∆
for all t for some error parameter ∆.

There is a greedy algorithm that can construct such an f having
the minimum number of segments [24]. The algorithm is very sim-
ple and we describe it here for completeness. We view each counter
value at time t as a point (t, v(t)) in the plane. Let P be the set of
points we have processed so far. The algorithm maintains the in-
variant that all points in P can be approximated with a single line
within error ∆. Let p be the next point. We check if P ∪ {p} can
still be approximated with a single line. If yes, we add p to P and
continue onto the next point; otherwise, we output a line segment
that approximates P , set P ← {p}, and continue. The optimality
of the algorithm is trivial; O’Rourke [24] in addition showed how
this algorithm can be implemented in O(1) space and amortized
O(1) time per point.

3.2 Persistent Count-Min Sketch
Our basic idea is to keep track of each counter in the Count-Min

Sketch using a PLA. Recall that the Count-Min Sketch maintains
a d × w array of counters. Let C[j][k] be the counter in the j-th
row and k-th column. Let hj : [n] → [w], j = 1, . . . , d be a set
of d pairwise-independent hash functions. To make the Count-Min
Sketch persistent, we run an instance of the above PLA algorithm
for each counter C[j][k], which generates a piecewise-linear func-
tion that approximates this counter over time with additive error
∆. We store this function together with C[j][k], and denote it as
PLA[j][k]. Below, we provide detailed procedures for updating and
querying this persistent Count-Min Sketch.

Update. Consider an update i arriving at time t, meaning that
the frequency fi is updated as fi ← fi + 1. For j = 1, . . . , d, we
first update the counter in the ephemeral sketch as

C[j][hj(i)]← C[j][hj(i)] + 1.

Then, we feed the point (t, C[j][hj(i)]) to the PLA algorithm run-
ning for C[j][hj(i)]. If this algorithm outputs a segment, we ap-
pend it to PLA[j][hj(i)].

Historical window point query. Recall that in a historical win-
dow point query, we are given an element i and a time interval
(s, t], and the goal is to estimate fi(s, t), the frequency of element

i in time range (s, t]. For each j = 1, . . . , d, we retrieve an ap-
proximation ofC[j][hj(i)] at time s, denoted as Ĉs[j][hj(i)], from
PLA[j][hj(i)]. This is done by a binary search on PLA[j][hj(i)].
Similarly we retrieve Ĉt[j][hj(i)]. Finally we return

f̂i(s, t) = medianj∈[d]{Ĉt[j][hj(i)]− Ĉs[j][hj(i)]}

as the estimator for fi(s, t).
Note that here we do not take the minimum as in the original

Count-Min Sketch, since Ĉt[j][hj(i)]−Ĉs[j][hj(i)] may be either
an overestimate or an underestimate of fi(s, t).

Historical window heavy hitters queries. Recall that in a his-
torical window heavy hitters query, we are given a time range (s, t]
and a parameter φ, and the goal is to return all the elements i with
frequency fi(s, t) ≥ φ‖f‖1. To be able to efficiently identify the
heavy hitters, we use the dyadic range sum technique in [12] to de-
compose the universe [n]. More precisely, a dyadic range at level `
is an interval of the form [j2` + 1, (j+ 1)2`), for ` = 0, . . . , logn
and j = 0, . . . , n

2` − 1. For a particular level `, we divide the uni-
verse into n

2` dyadic ranges, each of size 2`, and use a persistent
Count-Min Sketch to track total frequency of elements in every
dyadic range. Thus we maintain logn + 1 persistent Count-Min
Sketches in total. When an update (i, c) arrives, in each level, we
find the dyadic interval that contains i, and update the correspond-
ing counters.

In order to find all heavy hitters, we ask point queries on the
logn + 1 levels recursively. More precisely, suppose at level ` we
have identified at most 1

φ
heavy dyadic ranges (a dyadic range is

heavy if the estimated total frequency of all elements in that range
is more than φ‖fs,t‖1). These ranges are split into 2

φ
dyadic ranges

in level ` + 1. Then at level ` + 1, we ask point queries on these
2
φ

heavy dyadic ranges to identify again at most 1
φ

heavy dyadic
ranges. We repeat this process until we find all heavy hitters at
level 0, which are returned as the estimated heavy hitters.

3.3 Analysis
In this section, we give the error guarantees of the persistent

Count-Min Sketch, as well as the analysis of its space and time
complexity. We set the parameters as w = O(1/ε), d = O(log 1

δ
)

where δ is the failure probability, and PLA error O(∆).
Error guarantees. For historical window point queries, the per-

sistent Count-Min Sketch can provide the following error bound:

THEOREM 3.1. Given a time interval (s, t] and an element i,
the persistent Count-Min Sketch provides an estimate f̂i(s, t) for
fi(s, t) such that

Pr
[∣∣∣f̂i(s, t)− fi(s, t)∣∣∣ ≤ ε‖fs,t‖1 + ∆

]
≥ 1− δ.

Theorem 3.1 follows from the linearity of the Count-Min Sketch,
its own ε-guarantee, and the fact that the PLA introduces an addi-
tional additive ∆ error. The detailed proof can be found in the
appendix.

Similarly, we have the following error guarantee for historical
window heavy hitters queries:

THEOREM 3.2. Given a time interval (s, t], for any element i
with fi(s, t) ≥ (φ+ε)‖fs,t‖1+∆, the persistent Count-Min Sketch
returns it with probability as least 1 − δ; for any element i with
fi(s, t) < φ‖fs,t‖1, the persistent Count-Min Sketch returns it with
probability at most δ.

Space complexity. For space complexity analysis, we only focus
on point queries; if heavy hitters queries are to be supported, the

space usage simply grows by a logn factor due to the dyadic range
sum technique.

In the worst case, every ∆ updates might trigger the PLA algo-
rithm to generate a segment, resulting in a total space of O((m

∆
+

1
ε
) log 1

δ
) (the 1

ε
part is for the ephemeral sketch). This is as bad as

the baseline solution. However, our empirical results in Section 6
show that the persistent Count-Min Sketch achieves much better
space usage in practice. To provide some theoretical justification
behind this phenomenon, we analyze its space complexity under
the following random stream model, and prove a much better space
bound under this model.

DEFINITION 3.1 (RANDOM STREAM MODEL). Let P be an
unknown but fixed distribution over the set of all possible elements
[n] = {1, 2, . . . , n}. Each update in the stream is drawn indepen-
dently and uniformly at random from [n] according to P .

This model is also known as the random order model [17]. As
argued in [17], there is often a lot of randomness in real-world data
streams. Although they may not be as fully random as required in
the model above, the model is actually a better approximation of
reality than assuming worst-case, adversarial inputs. Note that we
do not have any assumption on P (such as uniform or Gaussian); it
can be any any distribution (unknown to the algorithm) so that the
our results will apply to a variety of scenarios.

Note that the random stream model can also be generalized to
random turnstile model, in which each update is drawn indepen-
dently and uniformly at random from U = {(i, c) | i ∈ [n], c ∈
{−1, 0,+1}} following some unknown but fixed distribution P .
To generalize our technique, we will prove the following space
bound for the persistent Count-Min Sketch under the random turn-
stile model:

THEOREM 3.3. In the random turnstile model, the persistent
Count-Min Sketch uses O((m

∆2 + 1
ε
) log 1

δ
) space in expectation.

Note that Theorem 3.3 directly implies the same space for the
random stream model. This bound is roughly a ∆-factor improve-
ment from the baseline solution, which can be significant, since
∆ is an additive error, and is usually set to be on the same order
as ε‖fs,t‖1. The key insight in the proof of this bound is that the
value of each counter over time can be viewed as a random walk
that vibrates around a line, which is being constructed by the PLA
algorithm. A single line segment of the PLA fails to approximate
the counter only when the random walk “escapes” from a region
of width 2∆ centered at the line. Then using some random walk
theory, we are able to show that it takes a quadratic number of steps
to escape from this region. The rigorous proof, however, is quite
involved and is provided in the appendix.

Query time. The analysis on query time is straightforward. For
point queries, since we retrieve O(d) estimates from the PLA, and
each involves a binary search, the total query cost is O(d logm) =
O(log 1

δ
logm). By the standard technique of fractional cascad-

ing [10], this can be improved to O(log 1
δ

+ logm).
For heavy hitters queries, observe that we make O(1

φ
) point

queries toO(logn) persistent Count-Min Sketches. Thus the query
cost isO(1

φ
logm logn log logn

φδ
), which can again be improved to

O(logm+ 1
φ

logn log logn
φδ

) by fractional cascading. We omit the
details as the focus of the paper is on the error-space tradeoff.

4. SAMPLING BASED PERSISTENT SKETCH
In this section, we present our second persistence technique based

on random sampling. When applied with the AMS Sketch, this

yields a persistent sketch answers historical window point queries
and join size queries with provable error bounds.

4.1 Persistent AMS Sketch
In order to apply the sampling technique, we need each counter

to be monotonically increasing (for reasons that will become clear
later). Thus, we decompose each counter C[j][k] into two compo-
nents C[j][k][1] and C[j][k][0], such that both components mono-
tonically increase. Specifically, to process an update i, if ξj(i) = 1,
we increment C[j][hj(j)][1] by 1; if ξj(i) = −1, we increment
C[j][hj(j)][0] by 1. It is clear that the correct value as in the orig-
inal AMS Sketch, C[j][k], is equal to C[j][k][1]− C[j][k][0].

To make the AMS Sketch persistent, for each counter C[j][k][b],
we associate it with L[j][k][b], a list that we call a history list. This
list stores the values of the counter sampled over time, together
with a timestamp indicating when each value is sampled.

Update. Consider an update i arriving at time t, meaning that
frequency fi is updated as fi ← fi + 1. For each j = 1, . . . , d,
we first update C[j][hj(i)][b] as described above where b = 1 or 0
depending on ξj(i). Then we update the history list L[j][hj(i)][b]
as follows. With probability p = 1/∆, we sample the new value
of the counter and append the pair (C[j][hj(i)][b], t) at the end of
L[j][hj(i)][b].

Historical window point query. The primary functionality of
the AMS Sketch is to support join size estimation. Nevertheless, it
also supports point queries as noted in [9], with an error depend-
ing on the L2-norm of the frequency vector. As point queries are
simpler to describe, below we first show how our persistent AMS
Sketch supports historical window point queries, and then move on
to join size estimation.

Consider a historical window point query for element i in a time
range (s, t], which asks for an estimate of fi(s, t). For each j =
1, . . . , d and each b = 0, 1, we do a binary search in L[j][hj(i)][b]
to find the predecessor of t, i.e., the record with the largest times-
tamp before t (including t). Let C̄t[j][hj(i)][b] be the counter value
of the predecessor of t in L[j][hj(i)][b]. Intuitively, C̄t[j][hj(i)][b]
is a good approximation of the counter value at time t, but we may
have missed some increments since C̄t[j][hj(i)][b] was sampled.
We thus compensate our estimate as

Ĉt[j][hj(i)][b] =

 C̄t[j][hj(i)][b] + ∆− 1,
if t has a predecessor in L[j][hj(i)][b];

0, otherwise.
(1)

Then we compute

D̂t[j][hj(i)] = ξj(i) ·
(
Ĉt[j][hj(i)][1]− Ĉt[j][hj(i)][0]

)
,

which is an estimate of fi at time t. We compute D̂s[j][hj(i)],
an estimate of fi at time s in the same manner. We then compute
D̂s,t[j][hj(i)] = D̂t[j][hj(i)] − D̂s[j][hj(i)] as an estimate of
fi(s, t). Finally, across all rows j, we return the median as the final
estimate f̂i(s, t) = mediani∈[d]D̂

s,t[j][hj(i)].
Historical window join size estimation. To support join size

estimation between two streams f and g, the two persistent AMS
Sketches on the two streams, denoted as Cf and Cg, need to use
the same set of hash functions hj and ξj , j = 1, . . . , d. As they
are just pairwise and 4-wise independent hash functions, each can
be described in O(1) space, and can be shared between the two
streams with O(1) communication.

Recall that for a given a time interval (s, t], the join size between
the two streams is I(fs,t,gs,t) =

∑
i fi(s, t)gi(s, t). For each

j = 1, . . . , d, we first compute D̂s,t
f [j][k] and D̂s,t

g [j][k] in as we
did for point queries above, the only difference being that for point

queries, we only care about a single k = hj(i), but now we need
to compute D̂s,t

f [j][k] and D̂s,t
g [j][k] for all k ∈ [w].

After we have computed D̂s,t
f [j][k] and D̂s,t

g [j][k] for all j and
k from the two persistent sketches, we can estimate the join size
between fs,t and gs,t as in the original AMS Sketch, i.e.,

Î(fs,t,gs,t) = medianj∈[d]

{
w∑
k=1

D̂s,t
f [j][k] · D̂s,t

g [j][k]

}
.

Historical window self-join size estimation. A self join query
on stream f can be processed as a join between f and itself. One
technical issue, however, is that our analysis on join size estimation
requires the history lists from two streams to be independent. This
is not true if we use one set of history lists for the same stream.
We can solve this issue by storing two independent history lists
for each counter. This modification will increase the size of the
persistent sketch by a factor of 2.

4.2 Analysis
In this section, we first explain on an intuitive level why the sam-

pling based persistence technique can provide provable error guar-
antees for join size estimation, while the baseline method and the
PLA based technique cannot. Then we formalize our results and
give rigorous proofs (in the appendix). To ensure the error guar-
antee, we set the parameters as w = O(1/ε), and d = O(log 1

δ
)

where δ is the failure probability.
The fundamental difference between a point query and join size

estimation is that the former depends only one the value of one
counter per row, while the latter is a holistic query that depends on
all counters. With the baseline method and the PLA based tech-
nique, the bias of estimating a counter is as large as Ω(∆). As the
algorithm is deterministic, there is no way to correct the bias. For
self-join size estimation, we need to compute the sum of squares of
all counters, so the bias from each counter will be significantly am-
plified (by a factor of the L1 norm in the worst case). On the other
hand, we show that the sampling technique can provide unbiased
estimators for the counters, which is the key behind a much better
error bound in the final estimate for join and self-join queries.

Error guarantees. For historical window point queries, the per-
sistent AMS Sketch can provide the following error bound:

THEOREM 4.1. Given a time interval (s, t] and an index i, the
persistent AMS Sketch provides an estimate f̂i(s, t) for fi(s, t)
such that

Pr
[∣∣∣f̂i(s, t)− fi(s, t)∣∣∣ ≤ ε‖fs,t‖2 + ∆

]
≥ 1− δ.

The ‖fs,t‖2 term inherits from the original AMS Sketch (or rather,
the Count Sketch analysis [9]), while the ∆ term is the error intro-
duced by the sampling based persistence technique.

For join size queries involving two streams f and g, we allow
them to use different error parameters ∆f and ∆g for the persis-
tence part, but for the ephemeral sketch, the parameters (i.e., w and
d) have to be the same, together with the same set of hash functions.
With this setup, we have the following error bound for historical
window join size queries:

THEOREM 4.2. Given a historical window join size query with
a time interval (s, t], the persistent AMS Sketches provides an esti-
mate Î(fs,t,gs,t) for I(fs,t,gs,t) such that

Pr
[∣∣∣Î(fs,t,gs,t)− I(fs,t,gs,t)

∣∣∣ ≤ E] ≥ 1− δ,

where E = ε

√(
‖fs,t‖22 + (∆f

ε
)2
)(
‖gs,t‖22 + (

∆g

ε
)2
)
.

Self-join size estimation is a special case, and the above theorem
holds by setting ‖fs,t‖2 = ‖gs,t‖2 and ∆f = ∆g.

Space and query time. The space complexity analysis is straight-
forward for the persistent AMS Sketch. The ephemeral sketch has
O(1

ε2
log 1

δ
) counters. Each update goes toO(log 1

δ
) counters, and

in expectation, a fraction of 1/∆ of the updates are sampled. So the
total space used isO((m

∆
+ 1
ε2

) log 1
δ
). This is the same as the base-

line method, but remember that the baseline method cannot handle
join size queries.

For point queries, since we retrieve O(d) estimates from O(d)
history lists, and each involves a binary search, the total query cost
is O(d logm) = O(log 1

δ
logm). By fractional cascading, this

can be improved to O(log 1
δ

+ logm).
For join size queries, we retrieve O(wd) estimates from O(wd)

history lists, and each involves a binary search. The total query
cost isO(wd logm) = O(1

ε2
log 1

δ
logm) which again can be im-

proved to O(1
ε2

log 1
δ

+ logm) using fractional cascading.

5. SKETCHES FOR HISTORICAL QUERIES
Our persistent sketches for general historical windows all have

an additive error term that does not exist for the respective ephem-
eral sketch. But we argued earlier that this is necessary because
we allow arbitrary historical windows. Nevertheless, if the start-
ing time of the window is fixed at s = 0, the persistent sketches
described above can be easily modified so as to eliminate the ad-
ditive error, therefore yielding the same error guarantee as in the
ephemeral sketch.

5.1 Persistent Count-Min Sketch for Histori-
cal Queries

Recall that a historical query is a historical window query with
time interval (0, t]. We now show how to modify the persistent
Count-Min Sketch to answer historical point queries and heavy hit-
ter queries with additive error ε‖ft‖1. The idea is to adaptively
change the PLA error ∆ in a way such that it is always within
a constant factor of ε‖ft‖, so that the error bound translates to
ε‖ft‖1 + ∆ = O(ε‖ft‖1).

More precisely, we divide the stream into epochs, such that ‖ft‖1
fluctuates within a constant factor (say, 2) in an epoch. Note that
‖ft‖1 is simply the total number of insertions minus the total num-
ber of deletions so far, so we can track it easily using a single
counter. Whenever ‖ft‖1 doubles or halves, we declare end for
the current epoch and starts a new one. Let [ti, ti+1) be the time
period for the i-th epoch. In the i-th epoch, we set ∆ = ε‖fti‖1
as the PLA error and construct a persistent Count-Min Sketch until
time ti+1.

To answer a historical query with time instance t, we simply find
the epoch that contains t, and handle the query with the persistent
sketch in that epoch.

Error guarantees. As before, we set w = O(1/ε) and d =
O(log 1

δ
). For historical point and heavy hitters queries, the modi-

fied persistent Count-Min Sketch provides the following error bounds:

THEOREM 5.1. Given a time instance t and an element i, the
modified persistent Count-Min Sketch provides f̂i(t) as an estimate
for fi(t) such that

Pr
[∣∣∣f̂i(t)− fi(t)∣∣∣ ≤ ε‖ft‖1] ≥ 1− δ.

THEOREM 5.2. Given a time instance t, for any element i with
fi(t) ≥ (φ + ε)‖ft‖1, the modified persistent Count-Min a sketch
returns it with probability as least 1 − δ; for any element i with
fi(t) < φ‖ft‖1, the persistent Count-Min Sketch returns it with
probability at most δ.

Theorem 5.1 and Theorem 5.2 follow directly by setting s = 0 and
∆ = Θ(ε‖ft‖1) in Theorem 3.1 and Theorem 3.2, respectively.

Space complexity. For space complexity analysis, we only focus
on point queries; the bound for heavy hitters queries grows by a
logn factor. We are able to prove the following result under the
random stream model:

THEOREM 5.3. In the random stream model, the modified per-
sistent Count-Min Sketch uses O(1

ε2
log 1

δ
) space in expectation.

In fact, we will prove that in the random turnstile model, the
modified persistent sketch usesO((

∑m
t=1

1
ε2‖ft‖21

+ 1
ε
) log 1

δ
) space

in expectation. In the standard streaming model, ‖ft‖1 = t, so the
size of the sketch becomes O(1

ε2
log 1

δ
). A more rigorous proof is

given in the appendix.
Query time. Comparing to the query time analysis in Section 3,

the only additional cost is to search for the epoch that contains the
time instance t, which takes logm time. Therefore the query time
remains the same as before (asymptotically).

5.2 Persistent AMS Sketch for Historical Queries
Next, we show how to modify the persistent AMS Sketch to sup-

port historical queries with error only related to the L2 norm.
The basic idea is the same as in the Count-Min Sketch, that is,

we will adaptively change ∆ so that it is always within a constant
factor of ε‖ft‖2. However, unlike the L1-norm, the L2-norm can-
not be tracked with a single counter. We will use an additional
AMS Sketch of width w = O(1) and depth d = O(log m

δ
), which

can approximate ‖ft‖2 within a constant factor with probability at
least 1− δ, for all time instances. This way we always have a con-
stant approximation of ‖ft‖2. Then we can divide the stream into
epochs, such that the L2 norm of the frequency vector fluctuates
within a constant factor in each epoch. Let [ti, ti+1) denote the i-
th epoch. Within the i-th epoch, we set ∆ = ε‖fi‖2 and construct
the sampling-based persistent AMS Sketch until time ti+1.

To answer a historical query with time t, we first find the epoch
that contains t. Let [ti−1, ti) be that epoch. Then we simply invoke
the same algorithm as in Section 4. One small technical issue is that
in Section 4, if we cannot find any predecessor for time t in a history
list, we simply set the estimate as 0 (as in Equation (1)). Here we
have multiple epochs, and a counter in an epoch may not start from
0, thus we need to record the starting value of each counter in each
epoch. When we cannot find a predecessor in a counter’s history
list, we set the estimate to its starting value in this epoch.

Error guarantees. We set w = O(1/ε2) and d = O(log 1
δ
).

For historical point and join size queries, the modified persistent
AMS Sketch can provide the following error bounds:

THEOREM 5.4. Given a time instance t and an element i, the
modified persistent AMS Sketch provides an estimate f̂i(t) for fi(t)
such that

Pr
[∣∣∣f̂i(t)− fi(t)∣∣∣ ≤ ε‖ft‖2] ≥ 1− δ.

THEOREM 5.5. Given a time instance t, the modified persistent
AMS Sketches provide an estimate Î(ft,gt) for I(ft,gt) such that

Pr
[∣∣∣Î(ft,gt)− I(ft,gt)

∣∣∣ ≤ ε‖ft‖2‖gt‖2] ≥ 1− δ.

These two theorems follow by setting s = 0 and ∆f = Θ(ε‖ft‖2),
∆g = Θ(ε‖gt‖2) in Theorem 4.1 and Theorem 4.2, respectively.

Space complexity We have the following result on the space
complexity of the modified persistent AMS Sketch.

THEOREM 5.6. In the standard streaming model, the modified
persistent AMS Sketch uses expected space O((

√
m
ε

+ 1
ε2

) log 1
δ
).

We will prove the space usage is O((
∑m
t=1

1
ε‖ft‖2

+ 1
ε2

) log 1
δ
)

in the turnstile model. In the standard streaming model, we have
‖ft‖2 =

√
t, so the size of the sketch becomesO((

√
m
ε

+ 1
ε2

) log 1
δ
).

As with the modified Count-Min Sketch, there is no change in the
query time for the modified persistent AMS Sketch.

6. EXPERIMENTS

6.1 Experimental setup
We conducted an experimental study on synthetic and real-world

data sets to evaluate the goodness of the proposed persistent sketches.
They are evaluated primarily on two measures: the space used by
the sketch, and the accuracy of the query results.

Data sets. For synthetic data, we generated a data set called
Zipf_3, which consists of 1 million items randomly drawn from
a universe [224] with Zipf distribution of coefficient 3. This is a
highly skewed data set. For real-world data, we used the 1998
World Cup web site access log. We selected 7,000,000 requests
from Day 46, and insert each request as an update according to the
timestamp attribute. We are interested in two attributes: 1) objec-
tID, an anonymized integer of the requested URL, and 2) clien-
tID, an anonymized integer of the IP address of the requests. Each
timestamp, clientID, and objectID can fit into a 32-bit integer. We
denote the set of (timestamp, clientID) tuples as ClientID, and the
set of the (timestamp, objectID) tuples as ObjectID. We note that
ClientID is a very uniform data set, with maximum frequency be-
ing 14645, while ObjectID is more skewed, with most frequencies
concentrating on around 500 items. The two data sets exhibit dif-
ferent characteristics in terms of join size and heavy hitters.

Competitors and parameters. In the following, we refer to the
two persistent sketches by their persistence technique, i.e., we use
the name PLA for the persistent Count-Min Sketch , and Sample
for the persistent AMS Sketch. We compare PLA and Sample to
the two baseline solutions: PWC_CountMin and PWC_AMS. Re-
call that in these two sketched, we record the value of a counter
when it has deviated from the last recorded value by more than ∆,
so it is essentially using a piecewise-constant function to approxi-
mate each counter, hence the names.

We set the width and depth of all ephemeral sketches to be w =
20000 and d = 7, regardless of the type of the sketches. Note that
this corresponds to ε = 0.000005 for the persistent Count-Min
Sketch, and ε = 0.01 for the persistent AMS Sketch. The hash
functions used by the sketches are pairwise and 4-wise indepen-
dent functions constructed with the polynomial universal hashing
method by Carter and Wegman [8]. All experiments are conducted
on a machine with 16G RAM and a 3.00GHz processor.

6.2 Space usage
We measure the extra space needed to make an ephemeral sketch

persistent, that is, the space used by the sketch excluding the size
of the ephemeral sketch. As each sketch uses different approaches
to store information, we will measure the actual space in terms of
the number of machine words used. For Sample, PWC_CountMin
and PWC_AMS, we need an integer to store the recorded value,
and another integer to store the timestamp, so the space usage is
the number of recorded values multiplied by 2. On the other hand,
each segment in PLA needs 3 parameters: the slope a, the offset b
and the starting timestamp t. Therefore the space usage for PLA is
the number of segments multiplied by 3.

The tradeoffs between the space usage and the error parameter
∆ are shown in Figure 3. Note that we use log scale on both axes.
Our first observation from the results is that the space used by PLA
is indeed smaller than the worst-case space bound O(dm/∆). In

Zipf_3 where each update is drawn from a Zipf distribution inde-
pendently, the space usage of PLA is up to 500 times smaller than
the worst-case bound. This concurs with the inverse quadratic rela-
tion between space and ∆ in Theorem 3.3. We also notice that the
space usage for Sample is always O(dm/∆) in all three data sets.
This is because on average we exactly sample one out of every ∆
tuples, regardless of the data distribution.

Finally, we observe that while PWC_CountMin and PWC_AMS
use almost the same space as the theoretical bound on Zipf_3 and
ObjectID, they do exhibit an accelerated space drop in ClientID
after ∆ ≥ 300, and almost match the space usage of PLA. This
phenomenon can be explained as follow. By the construction of
PWC_CountMin and PWC_AMS, they do not record any value (or
generate a PLA segment) for counters less than ∆. So on a “long
tail” data distribution, the additional space usage for most counters
will be 0 once ∆ exceeds some threshold. Note that this does not
make PWC_CountMin and PWC_AMS superior to Sample since
(1) the space drop will hurt the quality of the approximation, which
we shall see later; and (2) the space drop makes it very hard to get
desired space by controlling ∆, unless we know the data distribu-
tion beforehand. On the other hand, in Sample, we can precisely
control the space usage by adjusting the error parameter ∆.

6.3 Query accuracy
To evaluate the qualities of the approximation provided by the

persistent sketches, we fix a historical window (s, t] with s = 0.2∗
m and t = 0.6 ∗ m, and measure the actual errors for various
historical window queries with time interval (s, t].

Point Query. We measure the absolute error between the es-
timators and the actual frequencies. More precisely, if fi is the
actual frequency and f̂i is the estimator, then the absolute error of
the approximation is equal to

∣∣∣f̂i − fi∣∣∣. We used the top 1000 most

frequent elements in the time interval (s, t] from each data sets, and
queried about them with each sketch over (s, t]. We then took the
average absolute error of the 1000 point queries. We constructed
the persistent sketches for various values of ∆, and measured the
average error for each ∆. Note that we do not evaluate point queries
for Sample, since answering queries only involve 1 counter per row
is not the strong point for Sample, as we suggested in Section 4.

Figure 4 shows how the average measured errors varies accord-
ing to the error parameter ∆, and Figure 5 shows the tradeoffs
between the measured error and the actual space usage, for each
sketch on the 3 data sets. From Figure 5a and Figure 5c we observe
that PLA provides a better accuracy-space tradeoffs on Zipf_3 and
ObjectID. This is as expected, since PLA uses smaller space on
these two data sets, and provides the same error guarantee as the
baseline solution. Moreover, Figure 4a and Figure 4c suggest that
on these two data sets, even for a fixed ∆, the measured error of
PLA is smaller than that of PWC_CountMin and PWC_AMS. We
conjecture that this is due to the fact that these two data sets ex-
hibit more randomness than ClientID, which may reduce bias for a
linear approximation.

From Figure 5b, we do not see a major difference between PLA
and PWC_CountMin or PWC_AMS, with PLA and PWC_AMS
performing slightly better. The main reason is that the sketch sizes
of PWC_CountMin and PWC_AMS are also much smaller than
O(dm/∆) on ClientID, which offsets the space advantage of PLA.
Meanwhile, Figure 4b suggests there is no significant difference
PLA and PWC_CountMin or PWC_AMS in terms of actual error,
as all the curves rise rapidly to 500. This is due to the fact that
ClientID is a very uniform data set, so the frequencies are hard to
approximate for any method.

Heavy Hitters. Recall that a historical window heavy hitters
query with time interval (s, t] should return elements with frequency
≥ φ‖fs,t‖. We set φ = 0.0002, and issue a historical window
heavy hitters query with (s, t] on PLA and PWC_CountMin. The
quality of heavy hitters query is evaluated by precision and re-
call, where precision is the fraction of heavy hitters returned by
the sketch that are actual heavy hitters, and recall is the fraction of
actual heavy hitters that are returned by the sketch.

Figure 6 shows how the space usage varies according to the er-
ror parameter ∆. These tradeoffs concur with Figure 3 as they are
simply scaled by a factor logn according to the construction in
Section 3. Figure 7 shows how the measured error varies according
to the error parameter ∆, and Figure 8 shows the tradeoffs between
the measured error and space usage. Note that we use log scale
on the x-axes for both figures. We first observe that both PLA and
PWC_CountMin achieve better precision than recall, which reveal
that they tend to return a subset of real heavy hitters. Figure 7 shows
that for a fixed ∆, PWC_CountMin provides a slightly better pre-
cision, while PLA provides a significantly better recall. For data
sets Zipf_3 and ObjectID, Figure 8a and 8c show that the recall
of PWC_CountMin quickly becomes unusable as the sketch size
drops to 104, while PLA retains both a high recall and a high preci-
sion for smaller sketch size. Finally, Figure 8b suggests that there is
no clear winner between PLA and PWC_CountMin on ClientID,
which concurs with our observation in the point query experiments.

Self-Join Size Estimation. The quality of join size approxima-
tions has been evaluated by issuing a historical window self-join
size query with the same time interval (s, t] as above. We mea-
sured the relative error between the estimators and the actual self-
join size. More precisely, let Is,t(f , f) denote the actual self-join
size, and Îs,t(f , f) denote the estimator, then the relative error is

equal to |Îs,t(f ,f)−Is,t(f ,f)|
Is,t(f ,f)

.We constructed the persistent sketches
for various values of ∆, and issued self-join size queries with (s, t]
and computed the relative error. We repeated the process 10 times
and took the average relative error.

Figure 9 shows how the measured error varies according to the
error parameter ∆, and Figure 10 shows the tradeoffs between the
measured error and the space usage, for self-join size queries on the
3 data sets. Note that we use log scale on the y-axes for Figure 9
and log scale on both axes for Figure 10. As expected, Sample
gives better accuracy in general. However, the performance gap
varies on different data sets. Figure 9c shows that on ObjectID,
both Sample and PWC_AMS perform well for large sketch size
(≥ 50000). However, once the sketch size drops down to 1000
to 5000, the errors of Sample are 5 to 10 times smaller than that
of PWC_CountMin or PWC_AMS on average. This translates to
a gap of around 5 to 10 on the error-space tradeoff in Figure 10.
For data set ClientID, Figure 10b shows that Sample provides sig-
nificantly better error-space tradeoffs. For reasonable error range
(0.0001 to 0.1), the space usage of Sample is 10 to 100 times
smaller than that of PWC_AMS or PWC_CountMin. Figure 9b
also suggests that the errors of PWC_CountMin and PWC_AMS
grow rapidly to close to 1, for ∆ ≤ 1000. This makes it difficult
to choose ∆ in practice. On the other hand, Sample provides a
much less skewed tradeoffs between error and ∆, which enable us
to achieve desired error-space tradeoff by manipulating ∆.

Figure 9a and Figure 10a indicate that on the synthetic data set
Zipf_3, the advantage of Sample over the baseline solutions be-
comes less clear. The accuracy of Sample is 2-5 times better than
that of PWC_AMS or PWC_CountMin on average for a fixed
sketch size. This can be explained theoretically by observing that
each update from the synthetic data set is independently generated,

10
2

10
3

10
4

1

1.5

2

2.5

3

3.5

4

Error parameter ∆ (log scale)

T
im

e
 (

s
)

o
v
e
r

1
 m

ill
io

n
 p

o
in

ts

Sample

PWC_AMS

PLA

PWC_CountMin

Ephemeral

Figure 2: The processing time over 1 million updates

and thus the estimators provided by the baseline sketches can be
viewed as a random sample without compensation.

6.4 Update time
Finally, Figure 2 shows the processing time over 1 million up-

dates. We see that Sample is the fastest, followed up by PWC_
CountMin and PWC_AMS. PLA has the highest update cost,
which scales roughly with log ∆. However, all running times are
within a small constant factor of the running time for ephemeral
sketch, meaning that we do not pay a large time overhead in mak-
ing the sketches persistent.

7. CONCLUSION
In this paper, we present sketching techniques that support his-

torical window queries and historical queries, which give the Count-
Min Sketch and the AMS Sketch the ability to do statistical track-
ing of the entire history, rather than just the current status. We have
shown that our persistent sketches are theoretically sound by prov-
ing various space and error bounds. We also have evaluated the
persistent sketches on synthetic and real-world data, showing that
they provide satisfying performance in practice.

8. REFERENCES
[1] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking join

and self-join sizes in limited storage. In Proc. ACM Symposium on
Principles of Database Systems, pages 10–20, 1999.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. Journal of Computer and
System Sciences, 58(1):137–147, 1999.

[3] A. Arasu and G. S. Manku. Approximate counts and quantiles over
sliding windows. In Proc. ACM Symposium on Principles of
Database Systems, pages 286–296, 2004.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Proc. ACM Symposium on
Principles of Database Systems, 2002.

[5] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An
asymptotically optimal multiversion B-tree. The VLDB Journal,
5(4):264–275, 1996.

[6] V. Braverman, R. Ostrovsky, and C. Zaniolo. Optimal sampling from
sliding windows. In Proc. ACM Symposium on Principles of
Database Systems, pages 147–156, 2009.

[7] G. S. Brodal, S. Sioutas, K. Tsakalidis, and K. Tsichlas. Fully
persistent B-trees. In Proc. ACM-SIAM Symposium on Discrete
Algorithms, 2012.

[8] J. L. Carter and M. N. Wegman. Universal classes of hash functions.
In Proc. ACM Symposium on Theory of Computing, pages 106–112,
1977.

[9] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items
in data streams. In Proc. International Colloquium on Automata,
Languages, and Programming, pages 693–703. Springer, 2002.

[10] B. Chazelle and L. Guibas. Fractional cascading: I. A data
structuring technique. Algorithmica, 1(1), 1986.

[11] G. Cormode and S. Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal of
Algorithms, 55(1):58–75, 2005.

[12] G. Cormode and S. Muthukrishnan. What’s hot and what’s not:
tracking most frequent items dynamically. ACM Transactions on
Database Systems, 30(1):249–278, 2005.

[13] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream
statistics over sliding windows. SIAM Journal on Computing,
31(6):1794–1813, 2002.

[14] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Processing
complex aggregate queries over data streams. In Proc. ACM
SIGMOD International Conference on Management of Data, pages
61–72, 2002.

[15] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. Tarjan. Making data
structures persistent. Journal of Computer and System Sciences,
38:86–124, 1989.

[16] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing
wavelets on streams: One-pass summaries for approximate aggregate
queries. In Proc. International Conference on Very Large Data
Bases, volume 1, pages 79–88, 2001.

[17] S. Guha and A. McGregor. Stream order and order statistics:
Quantile estimation in random-order streams. SIAM Journal on
Computing, 38(5), 2009.

[18] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov, R. Wang, and
Y. Zhu. Immortal DB: transaction time support for SQL server. In
Proc. ACM SIGMOD International Conference on Management of
Data, pages 939–941, 2005.

[19] D. Lomet and B. Salzberg. Access methods for multiversion data. In
Proc. ACM SIGMOD International Conference on Management of
Data, pages 315–324, 1989.

[20] D. B. Lomet and F. Li. Improving transaction-time dbms
performance and functionality. In Proc. IEEE International
Conference on Data Engineering, pages 581–591, 2009.

[21] A. Metwally, D. Agrawal, and A. E. Abbadi. An integrated efficient
solution for computing frequent and top-k elements in data streams.
ACM Transactions on Database Systems, 31(3):1095–1133, 2006.

[22] S. Muthukrishnan. Data streams: algorithms and applications.
Foundations and trends in theoretical computer science. Now
Publishers, 2005.

[23] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed
stream computing platform. In Pro. IEEE International Conference
on Data Mining Workshops, pages 170–177, 2010.

[24] J. O’Rourke. An on-line algorithm for fitting straight lines between
data ranges. Communications of the ACM, 24(9):574–578, 1981.

[25] C. Plattner, A. Wapf, and G. Alonso. Searching in time. In Proc.
ACM SIGMOD International Conference on Management of Data,
pages 754–756, 2006.

[26] F. Rusu and A. Dobra. Statistical analysis of sketch estimators. In
Proc. ACM SIGMOD International Conference on Management of
Data, pages 187–198, 2007.

[27] A. D. Sarma, M. Theobald, and J. Widom. Live: a lineage-supported
versioned dbms. In Scientific and Statistical Database Management,
pages 416–433. Springer, 2010.

[28] R. Shaull, L. Shrira, and H. Xu. Skippy: a new snapshot indexing
method for time travel in the storage manager. In Proc. ACM
SIGMOD International Conference on Management of Data, pages
637–648, 2008.

[29] L. Shrira and H. Xu. Snap: Efficient snapshots for back-in-time
execution. In Proc. IEEE International Conference on Data
Engineering, pages 434–445, 2005.

[30] Y. Tao, K. Yi, C. Sheng, J. Pei, and F. Li. Logging every footstep:
Quantile summaries for the entire history. In Proc. ACM SIGMOD
International Conference on Management of Data, pages 639–650,
2010.

[31] P. J. Varman and R. M. Verma. An efficient multiversion access
structure. IEEE Transactions on Knowledge and Data Engineering,
9(3):391–409, 1997.

[32] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant streaming computation at scale.
In Proc.ACM Symposium on Operating Systems Principles, pages
423–438, 2013.

0 2000 4000 6000 8000 10000
10

1

10
2

10
3

10
4

10
5

10
6

Error parameter ∆

S
k
e

tc
h

 s
iz

e
(l
o

g
 s

c
a
le

)

Sample

PWC_AMS

PLA

PWC_CountMin

Sample_Theory

(a) Zipf_3

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Error parameter ∆

S
k
e
tc

h
 s

iz
e
(l
o
g
 s

c
a
le

)

Sample

PWC_AMS

PLA

PWC_CountMin

Sample_Theory

(b) ClientID

0 2000 4000 6000 8000 10000
10

3

10
4

10
5

10
6

10
7

Error parameter ∆

S
k
e

tc
h

 s
iz

e
(l
o

g
 s

c
a
le

)

Sample

PWC_AMS

PLA

PWC_CountMin

Sample_Theory

(c) ObjectID

Figure 3: Tradeoffs between sketch size and error parameter ∆.

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

400

450

Error parameter ∆

A
b

s
o

lu
te

 e
rr

o
r

PWC_AMS

PLA

PWC_CountMin

(a) Zipf_3

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

Error parameter ∆

A
b

s
o

lu
te

 e
rr

o
r

PWC_AMS

PLA

PWC_CountMin

(b) ClientID

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Error parameter ∆

A
b

s
o

lu
te

 e
rr

o
r

PWC_AMS

PLA

PWC_CountMin

(c) ObjectID

Figure 4: Tradeoffs between actual error and ∆ for point queries.

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

Sketch size (log scale)

A
b

s
o
lu

a
te

 e
rr

o
r

(l
o

g
 s

c
a

le
)

PWC_AMS

PLA

PWC_CountMin

(a) Zipf_3

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

Sketch size (log scale)

A
b

s
o
lu

a
te

 e
rr

o
r

(l
o

g
 s

c
a

le
)

PWC_AMS

PLA

PWC_CountMin

(b) ClientID

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

Sketch size (log scale)

A
b

s
o
lu

a
te

 e
rr

o
r

(l
o

g
 s

c
a

le
)

PWC_AMS

PLA

PWC_CountMin

(c) ObjectID

Figure 5: Tradeoffs between actual error and actual sketch size for point queries.

0 200 400 600 800 1000
10

2

10
3

10
4

10
5

10
6

10
7

Error parameter ∆

S
k
e

tc
h

 s
iz

e
 (

lo
g

 s
c
a
le

)

PLA

PWC_CountMin

(a) Zipf_3

0 200 400 600 800 1000
10

5

10
6

10
7

10
8

Error parameter ∆

S
k
e

tc
h

 s
iz

e
 (

lo
g

 s
c
a
le

)

PLA

PWC_CountMin

(b) ClientID

0 200 400 600 800 1000
10

3

10
4

10
5

10
6

10
7

10
8

Error parameter ∆

S
k
e

tc
h

 s
iz

e
 (

lo
g

 s
c
a
le

)

PLA

PWC_CountMin

(c) ObjectID

Figure 6: Tradeoffs between sketch size and ∆ for heavy hitters queries.

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Error parameter ∆

C
o

rr
e

c
t

ra
te

PLA−precision

PLA−recall

PWC_CountMin−precision

PWC_CountMin−recall

(a) Zipf_3

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

Error parameter ∆

C
o

rr
e

c
t

ra
te

PLA−precision

PLA−recall

PWC_CountMin−precision

PWC_CountMin−recall

(b) ClientID

0 200 400 600 800 1000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Error parameter ∆

C
o

rr
e

c
t

ra
te

PLA−precision

PLA−recall

PWC_CountMin−precision

PWC_CountMin−recall

(c) ObjectID

Figure 7: Tradeoffs between the precision and ∆ for heavy hitters queries.

10
3

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

Sketch size (log scale)

C
o

rr
e
c
t
ra

te

PLA−precision

PLA−recall

PWC_CountMin−precision

PWC_CountMin−recall

(a) Zipf_3

10
6

10
7

0

0.2

0.4

0.6

0.8

1

Sketch size (log scale)

C
o

rr
e
c
t
ra

te

PLA−precision

PLA−recall

PWC_CountMin−precision

PWC_CountMin−recall

(b) ClientID

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

Sketch size (log scale)

C
o

rr
e
c
t
ra

te

PLA−precision

PLA−recall

PWC_CountMin−precision

PWC_CountMin−recall

(c) ObjectID

Figure 8: Tradeoffs between precision and actual sketch size for heavy hitters queries.

0 2000 4000 6000 8000 10000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Error parameter ∆

R
e
la

ti
v
e
 e

rr
o
r

(l
o

g
 s

c
a

le
)

Sample

PWC_AMS

PWC_CountMin

Sample_Theory

(a) Zipf_3

0 2000 4000 6000 8000 10000
10

−4

10
−3

10
−2

10
−1

10
0

Error parameter ∆

R
e
la

ti
v
e
 e

rr
o
r

(l
o

g
 s

c
a

le
)

Sample

PWC_AMS

PWC_CountMin

Sample_Theory

(b) ClientID

0 2000 4000 6000 8000 10000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Error parameter ∆

R
e
la

ti
v
e
 e

rr
o
r

(l
o

g
 s

c
a

le
)

Sample

PWC_AMS

PWC_CountMin

Sample_Theory

(c) ObjectID

Figure 9: Tradeoffs between actual error and ∆ for self-join size queries.

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sketch size (log scale)

R
e

la
ti
v
e

 e
rr

o
r

(l
o
g

 s
c
a
le

)

Sample

PWC_AMS

PWC_CountMin

(a) Zipf_3

10
3

10
4

10
5

10
6

10
7

10
−4

10
−3

10
−2

10
−1

10
0

Sketch size (log scale)

R
e

la
ti
v
e

 e
rr

o
r

(l
o
g

 s
c
a
le

)

Sample

PWC_AMS

PWC_CountMin

(b) ClientID

10
2

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Sketch size (log scale)

R
e

la
ti
v
e

 e
rr

o
r

(l
o
g

 s
c
a
le

)

Sample

PWC_AMS

PWC_CountMin

(c) ObjectID

Figure 10: Tradeoffs between actual error and actual space for self-join size queries.

APPENDIX
A. DETAILED PROOFS

A.1 Proof of Theorem 3.1
PROOF. Consider a single row C. For the ease of presentation,

we ignore the row index j and use C[k] to denote the k-th counter.
Let h denote the hash function. We define Cl[k] to be the value
of counter C[k] at time l, and correspondingly Ds,t[k] = Ct[k]−
Cs[k] for k ∈ [w]. Since Count-Min Sketch is a linear sketch,
Ds,t = {Ds,t[k] | k ∈ [w]} is a Count-Min Sketch on stream fs,t.
We call Ds,t the ephemeral Count-Min Sketch on stream fs,t. By
the property of the Count-Min Sketch, Ds,t provides Ds,t[h(i)] as
an estimate for fi(s, t) such that

Pr
[∣∣Ds,t[h(i)]− fi(s, t)

∣∣ ≤ ε‖fs,t‖1] ≥ 1/2.

Let D̂s,t[h(i)] denote the estimator provided by the PLA generator
for Ds,t[h(i)], it follows that ‖D̂s,t[h(i)] − Ds,t[h(i)]‖ ≤ 2∆.
Shrinking ∆ by a factor of 2 follows that

Pr
[∣∣∣D̂s,t[h(i)]− fi(s, t)

∣∣∣ ≤ ε‖fs,t‖1 + ∆
]
≥ 1/2.

Standard Chernoff bound shows that by taking the median ofO(log 1
δ
)

independent estimates, we can boost the successful probability to
1− δ, and the Theorem follows.

A.2 Proof of Theorem 3.2
PROOF. We note that we need to perform 2 logn

Φ
point queries to

identify all heavy hitters at level 0. It is sufficient to prove all these
point queries succeed with probability 1−δ. Since we set the depth
of each sketch to be d = Θ(log logn

Φδ
), a single query succeeds with

probability 1 − Φδ
2 logn

. By union bound, all logn
Φδ

queries succeed
with probability 1− δ, and the theorem follows.

A.3 Proof of Theorem 3.3
Consider a single row in a persistent Count-Min Sketch. If we

can prove that the expected total number of segments used by the
piece-wise linear functions in this row is O(m

∆2), the Theorem will
follow. Consider a fixed counter, since each update is drawn in-
dependently from a probability distribution, we can assume that at
each time instance, with probability p1, p2 and 1 − p1 − p2, each
update increases by 1, decreases by 1, and remains unchanged, re-
spectively. Since at each time instance at most one of the counter
will be updated, so the summation of p1 and p2 over all counters in
this row is less or equal to 1. Thus it is sufficient to prove the ex-
pected number of segments used for this counter is O((p1+p2)m

∆2).
We use v(t) to denote the value of the counter at time t. Let

S denote the number of segments used by the PLA generator to
cover all m data points, and Hi denote the number of data points
covered by the i-th segment. Notice that S and Hi’s are all random
variables. Our goal is to prove E[S] ≤ 2(p1−p2)m

∆2 .

Random Walk and Escaping Time.
Consider the following random walk process: starting from the

origin, at each timestamp a player moves 1 step forward with prob-
ability p1, and move 1 step backward with probability p2, and stays
at current position with probability 1 − p1 − p2. It is easy to see
that the player will vibrate along the line y = (p1 − p2)x. Let τ
denote the escaping time, that is, the first time the player escapes
from the line y = (p1 − p2)x by deviation ∆. It is easy to see that
τ is the time before linear function y = (p1 − p2)x fails to serve

as a valid linear approximation, and thus is a lower bound on the
number of points covered by a segment. To prove Theorem 3.3, we
need the following lemma on the expectation and variance of τ .

LEMMA A.1. For ∆ > 10, the escaping time τ satisfies E[τ] =
∆2/α and Var[τ2] ≤ 5∆4/6α2.

Here α is defined as follow. Let X1, . . . , Xm be m independently
and identically distributed random variables. Each Xi takes value
1− (p1−p2) with probability p1,−1− (p1−p2) with probability
p2, and value −(p1 − p2) with probability 1− p1 − p2. Let Sl =∑k
i=1 Xi, then Sk is the deviation from the line y = (p1 − p2)x

at time k. The random walk stops at time τ where Sτ = ∆ or
−∆. We notice that E[Xi] = 0. Let α = E[X2

i], β = E[X3
i],

γ = E[X4
i] denote the second, third and fourth moments of Xi.

Martingales and Optional Stopping Theorem.
To prove Lemma A.1, we will make use of the fact that the es-

caping time τ is a type of stopping time on certain martingales.
Formally, we define four martingale sequences.

LEMMA A.2. For k ∈ [m], the following four sequences are
martingales: Z1 = {Sk}, Z2 = {S2

k−αk}, Z3 = {S3
k−3αkSk−

βk}, Z4 = {S4
k − 6αkS2

k − 4βkSk + 3α2k2 + (3α2 − γ)k}.

PROOF. We call Z1, Z2, Z3 and Z4 the first, second, third and
fourth martingale sequence of S, respectively. To prove they are
indeed martingales, we verify using the definition of martingale.
More precisely, we will prove E[Zj [k] | Zj [k − 1]] = Zj [k − 1]
for any k and j ∈ [4].

For the first martingale list, we have E[Z1[k] | Z1[k − 1]] =
E[Sk | Sk−1] = Z1[k − 1]. For the second martingale list, we
verify E[Z2[k] | Z2[k − 1]] = Z2[k − 1] by

E[S2
k − αk | Sk−1] = S2

k−1 + α− αk = S2
k−1 − α(k − 1).

For the third martingale list, we verify E[Z3[k] | Z3[k − 1]] =
Z3[k − 1] as follow

E[S3
k − 3αkSk − βk | Sk−1] = S3

k−1+3αSk−1+β−3αkSk−1−βk
= S3

k−1−3α(k−1)Sk−1−β(k−1).

Finally, we verify E[Z4[k] | Z4[k − 1]] = Z2[k − 1] as follow:

E[S4
k − 6αkS2

k − 4βkSk + 3α2k2 + (3α2 − γ)k | Sk−1]

= S4
k−1 − 6α(k − 1)S2

k−1 − 4β(k − 1)Sk−1 + 3α2(k − 1)2

+ (3α2 − γ)(k − 1).

Thus the lemma follows.

We also need the well-known optional stopping theorem:

LEMMA A.3 (OPTIONAL STOPPING THEOREM). LetZ[k] be
a martingale and T be a stopping time with respect to a filter
(Fk). Then E[Z[T]] = E[Z[0]] provided: 1. E[T] < ∞; 2.
E[|Z[k]− Z[k − 1]| | Fk)] ≤ c for some c.

It is easy to see that all four martingale sequences in Lemma A.2
have bounded stopping time expectations. We also note that the
difference |Zi[k]− Zi[k − 1]| is bounded by O(∆4) for i ∈ [4],
so the optional stopping theorem applies to all four martingales.

PROOF OF LEMMA A.1. For the expectation of τ , we first no-
tice that Sτ takes value from {∆,−∆}. Suppose Pr[Sτ = ∆] =
p∗, and Pr[Sτ = −∆] = 1 − p∗. Applying optional stopping
theorem to the first martingale list Z1 = {Sk}, we have E[Sτ] =

E[S0] = 0, which implies p∗ = 1/2. Applying the optional stop-
ping theorem to the second martingale listZ2 = {S2

k−αk} follows
that E[S2

τ − ατ] = E[S2
0 − 0] = 0. This implies

E[ατ] = E[S2
τ] = p∗∆2 + (1− p∗)∆2 = ∆2,

and thus we have E[τ] = ∆2/α. This gives the expectation of τ .
To bound the variance of τ , we first compute E[τSτ] as an imme-

diate step. Apply optional stopping theorem to the third martingale
listZ3 = {S3

k−3αkSk−βk}, and we have E[S3
τ−3αkSτ−βk] =

E[S3
0 − 0− 0] = 0. It follows that

E[3ατSτ] = E[S3
τ − βτ] = E[S3

τ] + βE[τ] =
β∆2

α
,

and thus E[τSτ] = β∆2/3α2. Finally, we consider the fourth
matingale sequence Z4 = {S4

k − 6αkS2
k − 4βkSk + 3α2k2 +

(3α2 − γ)k}. By optional stopping theorem, we have

E[S4
τ − 6ατS2

τ − 4βτSτ + 3α2τ2 + (3α2 − γ)τ] = 0. (2)

Plugging S4
τ = ∆4, S2

τ = ∆2, E[τ] = ∆2/α and E[τSτ] =
β∆2/3α2 in(2), it follows that

E[3α2τ2] = −∆4 + 6α
∆4

α
+

4β2∆2

3α2
− (3α2 − γ)∆2

α

= 5∆4 +

(
4β2

3α2
− (3α2 − γ)

α

)
∆2.

Notice that since Xi takes value in [−2, 2], we have E[X4
i] ≤

2
∣∣E[X3

i]
∣∣ ≤ 4E[X2

i], therefore γ ≤ 2 |β| ≤ 4α, so

E[3α2τ2] ≤ 5∆4 + (
16

3
+ 4)∆2 ≤ 5∆4 +

1

6
∆4 =

11

3
∆2,

Here we use ∆2 ≥ 56. This implies E[τ2] ≤ 11∆4/6α2, and thus

Var[τ] = E[τ2]− E[τ]2 =
11∆4

6α2
− ∆4

α2
=

5∆4

6α2
.

This completes the proof of Lemma A.1.

Bernoulli Trials and Negative Binomial distribution.
Withe the help of Lemma A.1, we are able to prove Theorem 3.3.

PROOF OF THEOREM 3.3. By Lemma A.1, we can bound the
probability of τ being too small using Chebyshev’s inequality:

Pr

[
τ ≤ ∆2

12α

]
= Pr

[
τ − ∆2

α
≤ −11∆2

12α

]
≤ 120/121.

It follows Pr[τ ≥ ∆2/12α] ≥ 1/121. Combining with α =
E[X2

i] ≤ p1 + p2, we have

Pr[τ ≥ ∆2

12(p1 + p2)
] ≥ 1

121
, (3)

for any 1 ≤ i ≤ S.
We notice that the Hi’s, the number of points covered by each

segment, are identically and independently distributed (i.i.d.). Equa-
tion (3) implies that each Hi covers at least ∆2

12(p1+p2)
points with

some constant probability c = 1/121. We work with the worst
case where Hi covers exactly ∆2

12(p1+p2)
points with probability d,

and 0 points with probability 1 − c. Note that this modification
will not reduce the expected number of segments E[S]. We con-
sider a sequence of independent Bernoulli trials, in which the i-th
trial succeeds if Hi covers exactly ∆2

12(p1+p2)
points , and fails if

Hi covers 0 points. Observe that if we have 12(p1+p2)m

∆2 success-
ful trials, all m points will be covered. Therefore, S is the number

of trials until we see 12(p1+p2)m

∆2 successful trials. This immediate
implies that the number of fail trials, denoted S− 12(p1+p2)m

∆2 , fol-
lows the negative binomial distribution with successful trial num-
ber 12(p1+p2)m

∆2 and probability c, and thus has expectation equals
to 12c(p1+p2)m

(1−c)∆2 . This proves that E[S] = O((p1+p2)m

∆2), and The-
orem 3.3 follows.

A.4 Proof of Theorem 4.1
Consider one row of counters. To simplify notation, we omit the

row index j and use C[k][b] to denote the counters in this row, and
use h to denote the hash function for that row. For any k ∈ [w], let
Cl[k][b] be the value of counter C[k][b] at time l. We further define
Dl[k] = Cl[k][1]− Cl[k][0]. By the construction of the persistent
AMS Sketch, Dl[k] is the value of the corresponding counter in
the ephemeral sketch at time l. By the linearity of the AMS Sketch,
Ds,t[k] = Dt[k]−Ds[k] is the value of the counter if we built an
AMS Sketch on fs,t.

Unbiasedness of the Estimator.
We first show that D̂s,t[k] is an unbiased estimator of Ds,t[k]

with a bounded variance. Define xk = D̂s,t[k]−Ds,t[k] to be the
deviation between our estimate from the persistent sketch from the
counter value in the AMS Sketch built on fs,t.

LEMMA A.4. For any k ∈ [w],E[xk] = 0 and E[x2
k] ≤ 24∆2.

For any time r, define Xr[k] = Ĉr[k][1]− Cr[k][1] and Y r[k] =

Ĉr[k][0]−Cr[k][0]. Recall xi = D̂s,t[k]−Ds,t[k] is the deviation
between the final estimator and ephemeral estimator. It follows that

D̂t[k] = Ĉt[k][1]−Ĉt[k][0] = Ct[k][1]+Xt[k]−(Ct[k][0]+Y t[k])

= Dt[k] +Xt[k]− Y t[k].

Similarly , we have D̂s[k] = Ds[k] +Xs[k]− Y s[k] for s. Thus

xi = D̂s,t[k]−Ds,t[k] =
(
D̂t[k]− D̂s[k]

)
−
(
Dt[k]−Ds[k]

)
=
(
D̂t[k]−Dt[k]

)
−
(
D̂s[k]−Ds[k]

)
= Xt[k]− Y t[k]− (Xs[k]− Y s[k]). (4)

Set p = 1/∆, we have the following lemma that bounds the
expectation and variance of Xr[k] and Y r[k]:

LEMMA A.5. For any time instances r, q ∈ [m] and i ∈ [4w],
Xr[k] and Y q[k] are independent, and satisfy (1) E[Xr[k]] =
E[Y q[k]] = 0; (2) E[Xr[k]2] ≤ 1/p2 and E[Y q[k]2] ≤ 1/p2.

PROOF. Since C̄r[k][1] and C̄r[k][0] are independently sam-
pled, it is easy to verify that Xr[k] and Y r[k] are independent.

By the definitions of Xr[k] and Ĉr[k][1], we have

Xr[k] =

{
C̄r[k][1]− Cr[k][1]− 1 + 1

p
, 0 < C̄r[k][1] ≤ Cr[k][1];

C̄r[k][1]− Cr[k][1], C̄r[k][1] = 0.
(5)

Recall that C̄r[k][1] is the last sampled predecessor of Cr[k][1],
and here we set C̄r[k][1] = 0 is there is no such predecessor
L[j][hj(i)][1]. If we review the sample process backwards from
Cr[k][1] to C̄r[k][1], then C̄r[k][1] is the first successful trial as
we keep flipping a coin with success probability p, with Cr[k][1]
being the upper bound of the number of trials. It follows that

Pr[C̄r[k] = Cr[k][1]−l] =

{
(1− p)lp, for 0 ≤ l < Cr[k][1];
(1− p)C

r [k][1], for l = Cr[k][1].
(6)

Combing (5) and (6), we have

Pr

[
Xr[k] =

1

p
− l − 1

]
=

{
(1− p)lp, 0 ≤ l < Cr[k][1];
(1− p)C

r [k][1], l = Cr[k][1] + 1 + 1
p

.

We can compute the expectation of Xr[k][1] as follows:

E[Xr[k]] =

Cr [k][1]−1∑
l=0

(−l − 1 +
1

p
)(1− p)lp− Cr[k][1](1− p)C

r [k][1]

= Cr[k][1](1− p)C
r [k][1] − Cr[k][1](1− p)C

r [k][1] = 0.

We can bound the expectation of Xr[k]2 as follow:

E[Xr[k]2] =

Cr [k][1]∑
l=1

(−l +
1

p
)2(1− p)l−1p+ Cr[k][1]2(1− p)C

r [k][1]

=
(1− p)(1− (1− p)C

r [k][1])

p2
≤ 1

p2
.

The same analysis holds for Y q[k], and thus the lemma follows.

Now we are ready to prove Lemma A.4.

PROOF OF LEMMA A.4. By equation (4), we have

E[xk] = E
[
Xt[k]− Y t[k]− (Xs[k]− Y s[k])

]
= E[Xt[k]]− E[Y t[k]]− (E[Xs[k]]− E[Y s[k]]) = 0.

For the second moment x2
k, we have

E[x2
k] = E

[(
Xt[k]− Y t[k]− (Xs[k]− Y s[k])

)2]
= E[Xt[k]2] + E[Y t[k]2] + E[Xs[k]2] + E[Y s[k]2]

− 2E[Xt[k]Xs[k]]− 2E[Y t[k]Y s[k]]. (7)

The second equation follows by the fact that any cross term of form
Xt[k]Y t[k], Xt[k]Y s[k], Xs[k]Y t[k], and Xs[k]Y s[k] are prod-
ucts of two independent and unbiased random variables, and thus
have 0 expectation. By Lemma A.4, we can upper bound the ex-
pectation of each square term with 1

p2
. We also notice that the

expectation of a cross term −2E[Xt[k]Xs[k]] satisfies

−2E[Xt[k]Xs[k]] ≤
(
E[Xt[k]2] + E[Xs[k]2]

)
≤ 2

p2
,

Similarly, we have −2E[Y t[k]Y s[k]] ≤ 2
p2

. Plugging into (7)
follows that E[x2

k] ≤ 4
p2

+ 2
p2

+ 2
p2

= 8
p2

.

Proof of Theorem 4.1.

PROOF. The following lemma follows from the key properties
of the AMS Sketch.

LEMMA A.6 ([9]). For any j ∈ [d],

1. E[ξ(i) · Ds,t[h(i)]] = fi(s, t) and Var[ξ(i) · Ds,t[h(i)]] ≤
ε2‖fs,t‖22;

2. E
[∑w

k=1 D
s,t
f [k]2

]
= ‖fs,t‖22 and E[

∑w
k=1 D

s,t
f [k]Ds,t

g [k]] =
I(fs,t,gs,t);

3. Var
[∑w

k=1 D
s,t
f [k]Ds,t

g [k]
]
≤ 1

w
‖fs,t‖2‖gs,t‖2.

The space bound follows by the fact that we sample each of the
m updates with probability p = Θ(1/∆) in a row, and thus the
expected number of samples is O(m

∆
).

Now we turn to the error bound. For a single row C with hash
function h, recall that the persistent AMS Sketch uses ξ(i)·D̂s,t[h(i)]
as an estimator for fi(s, t). Thus

E[ξ(i)D̂s,t[h(i)]] = E
[
ξ(i)Ds,t[h(i)] + ξ(i)xh(i)

]
= fi(s, t).

The last equation follows from E[Ds,t[h(i)]] = fi(s, t) by Lemma A.6,
and E[xh(i)] = 0 by Lemma A.4. To utilize Chebyshev’s inequal-
ity, we consider the variance of ξ(i) · D̂s,t[h(i)]:

Var[ξ(i) · D̂s,t[h(i)]] = Var
[
Ds,t[h(i)] + xh(i)

]
.

Since Ds,t[h(i)] and xh(i) are independent, we have

Var[ξ · D̂s,t[h(i)]] = Var
[
Ds,t[h(i)]

]
+ Var

[
xh(i)

]
,

We know that Var[Ds,t[h(i)]] ≤ ε2‖fs,t‖22 by Lemma A.6, and
Var[xh(i)] ≤ E[x2

h(i)
] ≤ 8∆2 by Lemma A.4, it follows that

Var[ξ · D̂s,t[h(i)]] ≤ ε2‖fs,t‖22 + 8∆2 ≤ 8 · (ε‖fs,t‖2 + ∆)2.

By Chebyshev’s inequality, we have

Pr[
∣∣Ds,t[h(i)]− fs,t(i)

∣∣ ≥ 4(ε‖fs,t‖2 + ∆)] ≤ 1

2
.

Since the final estimator f̂i(s, t) is the median of d = O(log 1
δ
)

independent copies of Ds,t[h(i)], standard chernoff bound implies

Pr
[∣∣∣f̂i(s, t)− fi(s, t)∣∣∣ ≥ 4(ε‖fs,t‖2 + ∆)

]
≥ 1− δ.

Scaling down ε and ∆ by a constant factor, Theorem 4.1 follows.

A.5 Proof of Theorem 4.2
With the help of Lemma A.6 and Lemma A.4, we compute the

expectations and variances of our estimators, and then use Cheby-
shev’s inequality to bound the error probability.

Consider a single row from each sketch. Let Cf and Cg de-
note the rows, respectively, and h denote the common hash func-
tion used by the two rows. We assume the two rows use sample
probabilities pf = 3/∆f and pg = 3/∆g, respectively. Given a
window join size query with time range [s, t], recall that we extract
D̂s,t

f [k] = Ds,t
f [k]+xk from Cf and D̂s,t

g [k] = Ds,t
g [k]+yk from

Cg for all k ∈ [w], and use

w∑
k=1

D̂s,t
f [k]D̂s,t

g [k] =

w∑
k=1

(Ds,t
f [k] + xk)(Ds,t

g [k] + yk).

to estimate I(ft,gt). Lemma A.4 gives a probabilistic bound on
xk and yk. We also note xk and yk are independent. To simplify
the representation, we define singular cross term to be a term with
one of the following forms: (1) xk · r(xi1 , yi2 , D

s,t
f [i3], Ds,t

g [i4]),
for i 6= i1; (2) yk · r(xi1 , yi2 , D

s,t
f [i3], Ds,t

g [i4]), for i 6= i2. Here
r denotes an arbitrary function. We claim that all singular cross
terms are unbiased.

LEMMA A.7. The expectation of a singular cross term is 0.

PROOF. Without loss of generality, assume the singular term
T = xkr(xi1 , yi2 , D

s,t
f [i3], Ds,t

g [i4]) where i 6= i1. Observe
that xk is unbiased and independent from xi1 , yi2 , Ds,t

f [i3] and
Ds,t

g [i4], so we have

E [T] = E [xk] E
[
r(xi1 , yi2 , D

s,t
f [i3], Ds,t

g [i4])
]

= 0,

and the lemma follows.

PROOF OF THEOREM 4.2. Now we can compute the expecta-
tion of the estimation.

E

[
w∑
k=1

D̂s,t
f [k]D̂s,t

g [k]

]
= E

[
w∑
k=1

Ds,t
f [k]Ds,t

g [k]

]
+

w∑
k=1

E
[
xkD

s,t
g [k]

]
+

w∑
k=1

E
[
ykD

s,t
f [i]

]
+

w∑
k=1

E [xkyk] .

By Lemma A.6, the first term E
[∑w

k=1 D
s,t
f [k]Ds,t

g [k]
]

= I(fs,t,gs,t).
We also observe that the rest terms are summations of singular cross
terms, and thus have expectations 0. It follows that

E[Î(fs,t,gs,t)] = E

[
w∑
k=1

Ds,t
f [k]Ds,t

g [k]

]
= I(fs,t,gs,t).

This proves the unbiasedness of our estimator.
We now bound the variance of our estimation.

Var
[
Î(fs,t,gs,t)]

]
= E

[
Î(fs,t,gs,t)

2
]
− E

[
Î(fs,t,gs,t)

]2
.

(8)
Note that E[(

∑w
k=1 D̂

s,t
f [k]D̂s,t

g [k])2] can be expanded as

E
[
Î(fs,t,gs,t)

2
]

= E

[(
w∑
k=1

(Ds,t
f [k] + xk)(Ds,t

g [k] + yk)

)2]

= E

[(
w∑
k=1

(
Ds,t

f [k]Ds,t
g [k] + xkD

s,t
g [k] + ykD

s,t
f [k] + xkyk

))2]
.

Note that the right hand of above equation can be expanded as sum
of square terms and cross terms. We observe that any cross term
that contains xk or yk, for k ∈ [w], is a singular cross terms. It
follows that

E
[
Î(fs,t,gs,t)

2
]

= E

[(
w∑
k=1

Ds,t
f [k]Ds,t

g [k]

)2]
+ E

[
w∑
k=1

x2
kD

s,t
g [k]2

]

+ E

[
w∑
k=1

y2
kD

s,t
f [k]2

]
+ E

[
w∑
k=1

x2
ky

2
k

]
. (9)

Using the fact that E[x2
k] ≤ 8/p2

f ≤ ∆2
f from Lemma A.4, and

E[
∑w
k=1 D

s,t
g [k]2] = ‖gs,t‖22 from Lemma A.6, and the fact that

x2
k and Ds,t

g [k]2 are independent, we can bound the second term
in (9) as follow:

E

[
w∑
k=1

x2
kD

s,t
g [k]2

]
≤ ∆2

f E

[
w∑
k=1

Ds,t
g [k]2

]
≤ ∆2

f ‖gs,t‖22.

(10)
Similarly, we have the following inequality for the third term in (9):

E

[
w∑
k=1

y2
kD

s,t
f [k]2

]
≤ ∆2

g‖fs,t‖22. (11)

Using E[x2
k] ≤ 8/p2

f ≤ ∆2
f and Using E[y2

k] ≤ 8/p2
g ≤ ∆2

g from
Lemma A.4 and the fact that x2

k and y2
k are independent, we have

E

[
w∑
k=1

x2
ky

2
k

]
=

w∑
k=1

E
[
x2
ky

2
k

]
≤

w∑
k=1

∆2
f ·∆2

g = w∆2
f ∆2

g.

(12)

Finally, by Lemma A.6, it follows that

E

[
(

w∑
k=1

Ds,t
f [k]Ds,t

g [k])2

]
− E

[
w∑
k=1

Ds,t
f [k]Ds,t

g [k]2
]

= Var[

w∑
k=1

Ds,t
f [k]Ds,t

g [k])2] ≤ 1

w
‖ft‖2‖gt‖2. (13)

Plugging (10), (11), (12) and (13) into (8) follows that

Var[Î(ft,gt)] ≤
1

w
‖ft‖22‖gt‖22 + ∆2

f ‖g‖22 + ∆2
g‖f‖22 + w∆2

f ∆2
g

≤ 1

w

(
‖ft‖22 + w∆2

f

) (
‖g‖22 + w∆2

g

)
.

Using Chebyshev’s inequality, it follows that

Pr

[∣∣∣Î(ft,gt)− I(ft,gt)
∣∣∣ ≥ 2

√
1

w
(‖ft‖22 + w∆2

f) (‖g‖22 + w∆2
g)

]

≤ Var[Î(ft,gt)]
/

4

(
1

w

(
‖ft‖22 + w∆2

f

) (
‖g‖22 + w∆2

g

))
≤ 1/4.

By setting w ≥ 4/ε2, we have

Pr
[∣∣∣Î(fs,t,gs,t)− I(fs,t,gs,t)

∣∣∣ ≤ E] ≤ 1/4,

where E = ε

√(
‖ft‖22 + (∆f

ε
)2
)(
‖g‖22 + (

∆g

ε
)2
)

. Finally, re-

call that we have d = O(log 1/δ) estimators Îj(ft,gt) for j =

1, . . . , d, and we take the median Î(ft,gt) = medianj∈[d]{Îj(ft,gt)}
as the final estimator. By standard Chernoff bound, we have

Pr
[∣∣∣Î(ft,gt)− I(ft,gt)

∣∣∣ ≥ E] ≥ 1− δ.

This complete the proof of Theorem 4.2.

A.6 Proof of Theorem 5.3
PROOF. By the proof of Theorem 3.3, the number of segment

for a single row in epoch [ti−1, ti) is O(
ti−ti−1

∆2
ti−1

),thus the total

size of the historical lists for this row is O(
∑s
k=1

ti−ti−1

∆2
ti−1

). Since

ε‖ft‖1 = Θ(∆ti−1) for ti−1 ≤ t < ti, for k = 1, . . . , s. It
follows that the total size of the historical lists for this row is

O

(
s∑

k=1

ti − ti−1

∆2
ti−1

)
=O

 s∑
k=1

ti−1∑
j=ti−1

1

∆2
ti−1

=O

(
m∑
k=1

1

ε2‖ft‖21

)
.

In the random streaming model, we have ‖ft‖21 = t2, and thus
the number of segments becomes O

(∑m
k=1

1
ε2t2

)
= O(1/ε2).

Summing up all d = O(log 1
δ
) rows, and the Theorem follows.

A.7 Proof of Theorem 5.6
PROOF. By the proof of Theorem 4.1, the size of the histori-

cal lists for this row in epoch [ti−1, ti) is O(
ti−ti−1

∆ti−1
), thus the

total size of the historical lists for this row is O(
∑s
k=1

ti−ti−1

∆ti−1
).

Since ε‖ft‖2 = Θ(∆ti−1) for ti−1 ≤ t < ti, for k = 1, . . . , s.
It follows that the total size of the historical lists for this row is
O
(∑s

k=1

∑ti−1
j=ti−1

1
ε‖ft‖2

)
= O

(∑m
k=1

1
ε‖ft‖2

)
.

In the standard streaming model, we have ‖ft‖2 ≥
√
‖ft‖1 =

√
t, thus the size of historical lists becomes O

(∑m
k=1

1
ε
√
t

)
=

O
(√

m
ε

)
. Summing up all d = O(log 1

δ
) rows, and the Theorem

follows.

