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ABSTRACT
Joins are expensive, and online aggregation over joins was
proposed to mitigate the cost, which offers users a nice and
flexible tradeoff between query efficiency and accuracy in
a continuous, online fashion. However, the state-of-the-art
approach, in both internal and external memory, is based
on ripple join, which is still very expensive and even needs
unrealistic assumptions (e.g., tuples in a table are stored in
random order). This paper proposes a new approach, the
wander join algorithm, to the online aggregation problem
by performing random walks over the underlying join graph.
We also design an optimizer that chooses the optimal plan
for conducting the random walks without having to collect
any statistics a priori. Compared with ripple join, wander
join is particularly efficient for equality joins involving mul-
tiple tables, but also supports θ-joins. Selection predicates
and group-by clauses can be handled as well. Extensive ex-
periments using the TPC-H benchmark have demonstrated
the superior performance of wander join over ripple join. In
particular, we have integrated and tested wander join in the
latest version of PostgreSQL, demonstrating its practicality
in a full-fledged database system.
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1. INTRODUCTION
Joins are often considered as the most central operation

in relational databases, as well as the most costly one. For
many of today’s data-driven analytical tasks, users often
need to pose ad hoc complex join queries involving multiple
relational tables over gigabytes or even terabytes of data.
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The TPC-H benchmark, which is the industrial standard
for decision-support data analytics, specifies 22 queries, 17
of which are joins, the most complex one involving 8 tables.
For such complex join queries, even a leading commercial
database system could take hours to process. This, unfor-
tunately, is at odds with the low-latency requirement that
users demand for interactive data analytics.

The research community has long realized the need for
interactive data analysis and exploration, and in 1997, ini-
tialized a line of work known as “online aggregation” [19].
The observation is that such analytical queries do not really
need a 100% accurate answer. It would be more desirable
if the database could first quickly return an approximate
answer with some form of quality guarantee (usually in the
form of confidence intervals), while improving the accuracy
as more time is spent. Then the user can stop the query
processing as soon as the quality is acceptable. This will
significantly improve the responsiveness of the system, and
at the same time saves a lot of computing resources.

Unfortunately, despite of many nice research results and
well cited papers on this topic, online aggregation has had
limited practical impact—we are not aware of any full-fledged,
publicly available database system that supports it. The
“CONTROL” project at Informix [18] in year 2000 report-
edly had implemented ripple join as an internal project, prior
to its acquisition by IBM. But no open source or commercial
implementation of the “CONTROL” project exists today.
Central to this line of work is the ripple join algorithm [15].
Its basic idea is to repeatedly take samples from each table,
and only perform the join on the sampled tuples. The re-
sult is then scaled up to serve as an estimation of the whole
join. However, the ripple join algorithm (including its many
variants) has two critical weaknesses: (1) Its performance
crucially depends on the fraction of the randomly selected
tuples that could actually join. However, we observe that
this fraction is often exceedingly low, especially for equality
joins (a.k.a. natural joins) involving multiple tables, while
all queries in the TPC-H benchmark (thus arguably most
joins used in practice) are natural joins. (2) It demands
that the tuples in each table be stored in a random order.

This paper proposes a different approach, which we call
wander join, to the online aggregation problem. Our basic
idea is to not blindly take samples from each table and just
hope that they could join, but make the process much more
focused. Specifically, wander join takes a randomly sampled
tuple only from one of the tables. After that, it conducts a
random walk starting from that tuple. In every step of the
random walk, only the “neighbors” of the already sampled
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Figure 1: Illustration of the ripple join algorithm [15] on two tables R1 and R2.

tuples are considered, i.e., tuples in the unexplored tables
that can actually join with them. Compared with the “blind
search” of ripple join, this is more like a guided exploration,
where we only look at portions of the data that can poten-
tially lead to an actual join result. To summarize, we have
made the following contributions:.

• We introduce a new approach called wander join to
online aggregation for joins. The key idea is to model
a join over k tables as a join graph, and then perform
random walks in this graph. We show how the random
walks lead to unbiased estimators for various aggrega-
tion functions, and give corresponding confidence in-
terval formulas. We also show how this approach can
handle selection and group-by clauses. These are pre-
sented in Section 3.

• It turns out that for the same join, there can be dif-
ferent ways to perform the random walks, which we
call walk plans. We design an optimizer that chooses
the optimal walk plan, without the need to collect any
statistics of the data a priori. This is described in
Section 4.

• We have conducted extensive experiments to compare
wander join with ripple join [15] and its system imple-
mentation DBO [9,26]. The experimental setup and re-
sults are described in Section 5. The results show that
wander join has outperformed ripple join and DBO by
orders of magnitude in speed for achieving the same ac-
curacy for in-memory data. When data exceeds main
memory size, wander join and DBO initially have sim-
ilar performance, but wander join eventually outper-
forms DBO on very large data sets.

• We have implemented wander join in PostgreSQL. On
the TPC-H benchmark with tens of GBs of data, wan-
der join is able to achieve 1% error with 95% confidence
for most queries in a few seconds, whereas PostgreSQL
may take minutes to return the exact results for the
same queries.

Furthermore, we review the background of online aggrega-
tion, formulate the problem of online aggregation over joins,
and summarize the ripple join algorithm in Section 2. Ad-
ditional related work is surveyed in Section 6. The paper is
concluded in Section 7 with remarks on a few directions for
future work.

2. BACKGROUND, PROBLEM FORMULA-
TION, AND RIPPLE JOIN

Online aggregation. The concept of online aggregation
was first proposed in the classic work by Hellerstein et al.
in the late 90’s [19]. The idea is to provide approximate
answers with error guarantees (in the form of confidence
intervals) continuously during the query execution process,
where the approximation quality improves gradually over

time. Rather than having a user wait for the exact answer,
which may take an unknown amount of time, this allows the
user to explore the efficiency-accuracy tradeoff, and termi-
nate the query execution whenever s/he is satisfied with the
approximation quality.

For queries over one table, e.g., SELECT SUM(quantity) FROM

R WHERE discount > 0.1, online aggregation is quite easy.
The idea is to simply take samples from table R repeatedly,
and compute the average of the sampled tuples (more pre-
cisely, on the value of the attribute on which the aggregation
function is applied), which is then appropriately scaled up
to get an unbiased estimator for the SUM. Standard statisti-
cal formulas can be used to estimate the confidence interval,
which shrinks as more samples are taken [14].

Online aggregation for joins. For join queries, the prob-
lem becomes much harder. When we sample tuples from
each table and join the sampled tuples, we get a sample of
the join results. The sample mean can still serve as an un-
biased estimator of the full join (after appropriate scaling),
but these samples are not independently chosen from the
full join results, even though the joining tuples are sampled
from each table independently. Haas et al. [14, 16] studied
this problem in depth, and derived new formulas for com-
puting the confidence intervals for such estimators, and later
proposed the ripple join algorithm [15]. Ripple join repeat-
edly takes random samples from each table in a round-robin
fashion, and keep all the sampled tuples in memory. Ev-
ery time a new tuple is taken from one table, it is joined
with all the tuples taken from other tables so far. Figure 1
illustrates how the algorithm works on two tables, which
intuitively explains why it is called “ripple” join.

There have been many variants and extensions to the basic
ripple join algorithm. First, if an index is available on one
of the tables, say R2, then for a randomly sampled tuple
from R1, we can find all the tuples in R2 that join with it.
Note that no random sampling is done on R2. This variant
is also known as index ripple join, which was actually noted
before ripple join itself was invented [32, 33]. In general,
for a multi-table join R1 ./ · · · ./ Rk, the index ripple join
algorithm only does random sampling on one of the tables,
say R1. Then for each tuple t sampled from R1, it computes
t ./ R2 ./ · · · ./ Rk, and all the joined results are returned
as samples from the full join.

Problem formulation. The type of queries we aim to
support is the same as in prior work on ripple join, i.e., a
SQL query of the form

SELECT g, AGG(expression)

FROM R1, R2, . . . , Rk

WHERE join conditions AND selection predicates

GROUP BY g

where AGG can be any of the standard aggregation functions
such as SUM, AVE, COUNT, VARIANCE, and expression can in-
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volve any attributes of the tables. The join conditions

consist of equality or inequality conditions between pairs of
the tables, and selection predicates can also be applied
to any number of the tables.

At any point in time during query processing, the algo-
rithm should output an estimator Ỹ for AGG(expression)
together with a confidence interval, i.e.,

Pr[|Ỹ − AGG(expression)| ≤ ε] ≥ α.

Here, ε is called the half-width of the confidence interval
and α the confidence level. The user should specify one of
them and the algorithm will continuously update the other
as time goes on. The user can terminate the query when it
reaches the desired level. Alternatively, the user may also
specify a time limit on the query processing, and the algo-
rithm should return the best estimate obtainable within the
limit, together with a confidence interval.

3. WANDER JOIN

3.1 Wander join on a simple example
For concreteness, we first illustrate how wander join works

on the natural join between 3 tables R1, R2, R3:

R1(A,B) ./ R2(B,C) ./ R3(C,D), (1)

where R1(A,B) means that R1 has two attributes A and B,
etc. The natural join returns all combinations of tuples from
the 3 tables that have matching values on their common
attributes. We assume that R2 has an index on attribute
B, R3 has an index on attribute C, and the aggregation
function is SUM(D).
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Figure 2: The 3-table join data graph: there is an
edge between two tuples if they can join.

We model the join relationships among the tuples as a
graph. More precisely, each tuple is modeled as a vertex
and there is an edge between two tuples if they can join.
For this natural join, it means that the two tuples have the
same value on their common attribute. We call the resulting
graph the join data graph (this is to be contrasted with the
join query graph introduced later). For example, the join
data graph for the 3-table natural join (1) may look like the
one in Figure 2. This way, each join result becomes a path
from some vertex in R1 to some vertex in R3, and sampling
from the join boils down to sampling a path. Note that this
graph is completely conceptual: we do not need to actually
construct the graph to do path sampling.

A path can be randomly sampled by first picking a vertex
in R1 uniformly at random, and then “randomly walking”
towards R3. Specifically, in every step of the random walk,
if the current vertex has d neighbors in the next table (which
can be found efficiently by the index), we pick one uniformly
at random to walk to.

One problem an acute reader would immediately notice is
that, different paths may have different probabilities to be
sampled. In the example above, the path a1 → b1 → c1 has
probability 1

7
· 1
3
· 1
2

to be sampled, while a6 → b6 → c7 has

probability 1
7
· 1 · 1 to be sampled. If the value of the D

attribute on c7 is very large, then obviously this would tilt
the balance, leading to an overestimate. Ideally, each path
should be sampled with equal probability so as to ensure
unbiasedness. However, it is well known that random walks
in general do not yield a uniform distribution.

Fortunately, a technique known in the statistics literature
as the Horvitz-Thompson estimator [20] can be used to re-
move the bias easily. Suppose path γ is sampled with proba-
bility p(γ), and the expression on γ to be aggregated is v(γ),
then v(γ)/p(γ) is an unbiased estimator of

∑
γ v(γ), which

is exactly the SUM aggregate we aim to estimate. This can
be easily proved by the definition of expectation, and is also
very intuitive: We just penalize the paths that are sampled
with higher probability proportionally. Also note that p(γ)
can be computed easily on-the-fly as the path is sampled.
Suppose γ = (t1, t2, t3), where ti is the tuple sampled from
Ri, then we have

p(γ) =
1

|R1|
· 1

d2(t1)
· 1

d3(t2)
, (2)

where di+1(ti) is the number of tuples in Ri+1 that join with
ti.

Finally, we independently perform multiple random walks,
and take the average of the estimators v(γi)/pi. Since each
v(γi)/pi is an unbiased estimator of the SUM, their average
is still unbiased, and the variance of the estimator reduces
as more paths are collected. Other aggregation functions
and how to compute confidence intervals will be discussed
in Section 3.4.

A subtle question is what to do when the random walk
gets stuck, for example, when we reach vertex b3 in Figure 2.
In this case, we should not reject the sample, but return 0
as the estimate, which will be averaged together with all
the successful random walks. This is because even though
this is a failed random walk, it is still in the probability
space. It should be treated as a value of 0 for the Horvitz-
Thompson estimator to remain unbiased. Too many failed
random walks will slow down the convergence of estimation,
and we will deal with the issue in Section 4.

3.2 Wander join for acyclic queries
Although the algorithm above is described on a simple 3-

table chain join, it can be extended to arbitrary joins easily.
In general, we consider the join query graph (or query graph
in short), where each table is modeled as a vertex, and there
is an edge between two tables if there is a join condition
between the two. Figure 3 shows some possible join query
graphs.

When the join query graph is acyclic, wander join can
be extended in a straightforward way. First, we need to
fix a walk order such that each table in the walk order
must be adjacent (in the query graph) to another one ear-
lier in the order. For example, for the query graph in Fig-
ure 3(b), R1, R2, R3, R4, R5 and R2, R3, R4, R5, R1 are both
valid walk orders, but R1, R3, R4, R5, R2 is not since R3

(resp. R4) is not adjacent to R1 (resp. R1 or R3) in the
query graph. (Different walk orders may lead to very dif-
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Figure 3: The join query graph for a (a) chain join;
(b) acyclic join; (c) cyclic join.

ferent performances, and we will discuss how to choose the
best one in Section 4.)

Next, we simply perform the random walks as before, fol-
lowing the given order. The only difference is that a random
walk may now consist of both “walks” and “jumps”. For ex-
ample, using the order R1, R2, R3, R4, R5 on Figure 3(b),
after we have reached a tuple in R3, the next table to walk
to is R4, which is connected to the part already walked via
R2. So we need to jump back to the tuple we picked in R2,
and continue the random walk from there.

Finally, we need to generalize Equation (2). Let dj(t) be
the number of tuples in Rj that can join with t, where t is
a tuple from another table that has a join condition with
Rj . Suppose the walk order is Rλ(1), Rλ(2), . . . , Rλ(k), and
let Rη(i) be the table adjacent to Rλ(i) in the query graph
but appearing earlier in the order. Note that for an acyclic
query graph and a valid walk order, Rη(i) is uniquely defined.
Then for the path γ = (tλ(1), . . . , tλ(k)), where tλ(i) ∈ Rλ(i),
the sampling probability of the path γ is

p(γ) =
1

|Rλ(1)|

k∏
i=2

1

dλ(i)(tη(i))
. (3)

3.3 Wander join for cyclic queries
The algorithm for acyclic queries can also be extended to

handle query graph with cycles. Given a cyclic query graph,
e.g., the one in Figure 3(c), we first find any spanning tree
of it, such as the one in Figure 3(b). Then we just perform
the random walks on this spanning tree as before. After we
have sampled a path γ on the spanning tree, we need to put
back the non-spanning tree edges, e.g., (R3, R5), and check
that γ should satisfy the join conditions on these edges. For
example, after we have sampled a path γ = (t1, t2, t3, t4, t5)
on Figure 3(b) (assuming the walk order R1, R2, R3, R4, R5),
then we need to verify that γ should satisfy the non-spanning
tree edge (R3, R5), i.e., t3 should join with t5. If they do not
join, we consider γ as a failed random walk and return an
estimator with value 0.

3.4 Estimators and confidence intervals
To derive estimators and confidence interval formulas for

various aggregation functions, we establish an equivalence
between wander join and sampling from a single table with
selection predicates, which has been studied by Haas [14].
Imagine that we have a single table that stores all the paths
in the join data graph, including both full paths, as well as
partial paths (like a1 → b3). Wander join essentially samples
from this imaginary table, though non-uniformly.

Suppose we have performed a total of n random walks

γ1, . . . , γn. For each γi, let v(i) be the value of the expression
on γi to be aggregated, and set u(i) = 1/p(γi) if γi is a suc-
cessful walk, and 0 otherwise. With this definition of u and
v, we can rewrite the estimator for SUM as 1

n

∑n
i=1 u(i)v(i).

We observe that this has exactly the same form as the one
in [14] for estimating the SUM for a single table with a selec-
tion predicate, except for two differences: (1) in [14], u(i) is
set to 1 if γi satisfies the selection predicate and 0 otherwise;
and (2) [14] does uniform sampling over the table, while our
sampling is non-uniform. However, by going through the
analysis in [14], we realize that it holds for any definition
of u and v, and for any sampling distribution. Thus, all
the results in [14] carry over to our case, but with u and v
defined in our way. We give the estimators and confidence
intervals for various estimators in Appendix A; here we just
point out that any of them can be computed easily in O(n)
time.

3.5 Selection predicates and group-by
Wander join can deal with arbitrary selection predicates

in the query easily: in the random walk process, whenever
we reach a tuple t for which there is a selection predicate, we
check if it satisfies the predicate, and fail the random walk
immediately if not.

If the starting table of the random walk has an index on
the attribute with a selection predicate, and the predicate
is an equality or range condition, then we can directly sam-
ple a tuple that satisfies the condition from the index, using
Olken’s method [38]. Correspondingly, we replace |Rλ(1)| in
(3) by the number of tuples in Rλ(1) that satisfy the con-
dition, which can also be computed from the index. This
removes the impact of the predicate on the performance of
the random walk, thus it is preferable to start from such a
table. More discussion will be devoted on this topic under
walk plan optimization in Section 4.

If there is a GROUP BY clause in the query, the algorithm re-
mains the same, except that each random walk path will end
up in one of the groups and an estimator (and its confidence
interval) is maintained for each group separately. However,
this simple strategy will not work well when different groups
have very different selectivities: popular groups tend to get
hit by more random walks, while small groups may have
few hits, leading to estimates with large confidence inter-
vals. For queries on a single table (i.e., non-joins), there is
a powerful technique to address this issue, known as strat-
ified sampling [2, 28]. But how to extend this technique to
handling joins remains an open problem.

3.6 Justification for using indexes
Our random walk based approach crucially depends on

the availability of indexes. For example, for the 3-table
chain join in (1), R2 needs to have an index on its B at-
tribute, and R3 needs to have an index on its C attribute.
In general, a valid walk order depends on which indexes over
join attributes are available. Insufficient indexing will limit
the freedom of choices of random walk orders, which will be
discussed in detail in Section 4.

However, we would argue that having plenty of indexes is
actually a reasonable assumption: (1) Indexes can speed up
general query processing tremendously. Without indexes,
any query will require at least one full scan of the entire ta-
ble, so indexes should have been built for any table that is
queried often. (2) The main concern of not having an index
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is the maintenance cost, i.e., the cost and overhead (such
as locking) to update the index when new data records are
inserted or deleted from the base table. But note that com-
plex analytical (OLAP) queries, for which online aggregation
is most useful, usually work in a data warehousing environ-
ment, which only sees batch updates that take place in offline
time (e.g., at night). Even for online updates, new indexes
are now available, such as the fractal tree index [5] (already
implemented in MySQL and MongoDB), and recent work on
adaptive and holistic indexing [12, 13, 17, 22, 41] with trans-
action and concurrency control support, that support such
updates much more efficiently than traditional database in-
dexes. (3) The ripple join algorithm also requires an index
if tuples are to be maintained in a random order [15]. (4)
When an index is not available, we could first build an index
over the join attribute on the fly; building a secondary, un-
clustered index is usually cheaper than evaluating the join
in full, say, with sort-merge joins.

3.7 Comparison with ripple join
It is interesting to note that ripple join and wander join

take two “dual” approaches. Ripple join takes uniform but
non-independent samples from the join, while random walks
return independent but non-uniform samples. It is difficult
to make a rigorous analytical comparison between the two
approaches: Both sampling methods yield slower conver-
gence compared with ideal (i.e., independent and uniform)
sampling. The impact of the former depends the amount of
correlation, while the latter on the degree of non-uniformity,
both of which depend on actual data characteristics and the
query. Thus, an empirical comparison is necessary, which
will be conducted in Section 5. Here we give a simple ana-
lytical comparison in terms of sampling efficiency, i.e., how
many samples from the join can be returned after n sam-
pling steps, while assuming that non-independence and non-
uniformity have the same impact on converting the samples
to the final estimate. This comparison, although crude with
many simplifying assumptions, still gives us an intuition why
wander join can be much better than ripple join.

Consider a chain join between k tables, each having N
tuples. Assume that, for each table Ri, i = 1, . . . , k − 1,
every tuple t ∈ Ri joins with d tuples in Ri+1. Suppose that
ripple join has taken n tuples randomly from each table, and
correspondingly wander join has performed n random walks
(successful or not).

Consider ripple join first. The probability for k randomly
sampled tuples, one from each table, to join is ( d

N
)k−1. If n

tuples are sampled from each table, then we would expect
nk( d

N
)k−1 join results. Note that if the join attribute is the

primary key in table Ri+1, we have di = 1. As a matter
of fact, all join queries in the TPC-H benchmark, thus ar-
guably most joins used in practice, are primary key-foreign
key joins. Suppose N = 106, k = 3, d = 1, then we would

need to take n = (N
d

)
k−1
k = 10, 000 samples from each table

until we get the first join result. Making things worse, this
number grows with N and k.

Now let us consider wander join. In fact, under the as-
sumption that each tuple joins with d tuples in the next ta-
ble, the random walk will always be successful. In general,
the efficiency of the random walks depends on the fraction
of tuples in a table that have at least one joining tuple in
the next table. We argue that this should not be too small.
Indeed, for primary key-foreign key joins, each foreign key

should have a match in the primary key table, so this frac-
tion is 1. But if we walk from the primary key to the foreign
key, this may be less than one. In general, this fraction is not
too small, since if it is small, computing the join in full will
be very efficient anyway, so users would not need online ag-
gregation at all. Now we assume that this fraction is at least
1/2 for each table. Then the success rate of a random walk
is ≥ 1/2k−1, i.e., we expect to get at least n/2k−1 samples
from the join after n random walks have been performed.
This leads to the most important property of our random
walk based approach, that its efficiency does not depend
on N , which means that it works on data of any scale, at
least theoretically. Meanwhile, it does become worse expo-
nentially in k. However, k is usually small; the join queries
in the TPC-H benchmark on average involve 3 to 4 tables,
with the largest one having 8 tables. But regardless of the
value of k, wander join is better than ripple join as long
as n/2k−1 ≥ nk/Nk−1 (assuming d = 1), i.e., n/N ≤ 1/2.
Note that n/N > 1/2 means we are sampling more than
half of the database. When this happens and the confidence
interval still has not reached the user’s requirement, online
aggregation essentially has already failed.

Computational costs. There is also a major difference
in terms of computational costs. Computing the confidence
intervals in ripple join requires a fairly complex algorithm
with worst-case running time O(knk) [14], due to the non-
independent nature of the sampling. On the other hand,
wander join returns independent samples, so computing con-
fidence intervals is very easy, as described in Section 3.4. In
fact, it should be clear that the whole algorithm, including
performing random walks, computing estimators and confi-
dence intervals, takes only O(kn) time, assuming hash tables
are used as indexes. If B-trees are used, there will be an ex-
tra log factor.

Run to completion. Another minor thing is that ripple
join, when it completes, computes the full join exactly. Wan-
der join can also be made to have this feature, by doing the
random walks “without replacement”. This will introduce
additional overhead for the algorithm. A more practical so-
lution is to simply run wander join and a traditional full join
algorithm in parallel, and terminate wander join when the
full join completes. Since wander join operates in the “read-
only” mode on the data and indexes, it has little interference
with the full join algorithm.

Worst case. Note that the fundamental lower bounds
shown by Chaudhuri et al. [8] for sampling over joins apply
to wander join as well. In particular, both ripple join and
wander join perform badly on the hard cases constructed by
Chaudhuri et al. [8] for sampling over joins. But in prac-
tice, under certain reasonable assumptions on the data (as
described above and as evident from our experiments), wan-
der join outperforms ripple join significantly.

4. WALK PLAN OPTIMIZER
Different orders to perform the random walk may lead

to very different performances. This is akin to choosing
the best physical plan for executing a query. So we term
different ways to perform the random walks as walk plans.
A relational database optimizer usually needs statistics to be
collected from the tables a priori, so as to estimate various
intermediate result sizes for multi-table join optimization. In
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R1 R2 R3

R4 R5

Figure 4: A directed join query graph and all its
walk plans.

this section we present a walk plan optimizer that chooses
the best walk plan without the need to collect statistics.

4.1 Walk plan generation
We first generate all possible walk plans. Recall that the

constraint we have for a valid walk order is that for each
table Ri (except the first one in the order), there must ex-
ist a table Rj earlier in the order such that there is a join
condition between Ri and Rj . In addition, Ri should have
an index on the attribute that appears in the join condition.
Note that the join condition does not have to be equality. It
can be for instance an inequality or even a range condition,
such as Rj .A ≤ Ri.B ≤ Rj .A + 100, as long as Ri has an
index on B that supports range queries (e.g., a B-tree).

When there is at least one valid walk order. Under
the constraint above, there may or may not be a valid walk
order. We first consider the case when at least one walk
order exists. In this case, each walk order corresponds to a
walk plan.

To generate all possible walk orders, we first add direc-
tions to each edge in the join query graph. Specifically, for
an edge between Ri and Rj , if Ri has an index on its at-
tribute in the join condition, we have a directed edge from
Rj to Ri; similarly if Rj has an index on its attribute in
the join condition, we have a directed edge from Ri to Rj .
For example, after adding directions, the query graph in
Figure 3(b) might look like the one in Figure 4, and all pos-
sible walk plans are listed on the side. These plans can be
enumerated by a simple backtracking algorithm. Note that
there can be exponentially (in the number of tables) many
walk plans. However, this is not a real concern because (1)
there cannot be too many tables, and (2) more importantly,
having many walk plans does not have a major impact on
the plan optimizer, which we shall see later.

We can similarly generate all possible walk plans for cyclic
queries, just that some edges will not be walked, and they
will have to be checked after the random walk, as described
in Section 3.3. We call them non-tree edges, since the part
of the graph that is covered by the random walk form a tree.
An example is given in Figure 5.

R1, R2, R3, R4. non-tree edge: (R2, R4)
R1, R2, R4, R3. non-tree edge: (R2, R3)

R1 R2 R3

R4

Figure 5: Walk plan generation for a cyclic query
graph.

R1 R2 R3

R4 R5

R1 R2 R3

R4 R5

R6 R7R6 R7

(a)
(b)

Figure 6: Decomposition of the join query graph
into directed spanning trees. Dashed edges are non-
tree edges.

When there is no valid walk order. The situation gets
more complex when there is no valid walk order, like for the
two query graphs in Figure 6 (dashed edges are also part of
the query graph). First, one can easily verify that the suffi-
cient and necessary condition for a query graph to admit at
least one valid walk order is that it has a directed spanning
tree1. When there are not enough indexes, this condition
may not hold, in which case we will have to decompose the
query graph into multiple components such that each com-
ponent has a directed spanning tree. Figure 6 shows how
the two query graphs can be decomposed, where each com-
ponent is connected by solid edges.

After we have found directed spanning tree decomposi-
tion, we generate walk orders for each component, as de-
scribed above. A walk plan now is any combination of the
walk orders, one for each component. Then, we will run
ripple join on the component level and wander join within
each component. More precisely, we perform random walks
for the components in a round-robin fashion, and keep all
successful paths in memory. For each newly sampled path,
it is joined with all the paths from other tables, i.e., checking
that the join conditions on the edges between these compo-
nents are met. For example, we check (R3, R5) in Figure 6(a)
and (R5, R6) in 6(b). Note that (R3, R5) in 6(a) is checked
by wander join for the component {R1, R2, R3, R4, R5}. For
every combination of the paths, one from each table, we use
the HT estimator as in Section 3, except that p(γ) is re-
placed by the product of the p(γi)’s for all that paths γi’s
involved.

Directed spanning tree decomposition. It remains to
describe how to find a directed spanning tree decomposi-
tion. We would like to minimize the number of components,
because each additional component pushes one more join
condition from wander join to ripple join, which reduces the
sampling efficiency. In the worst scenario, each vertex is in
a component by itself, then the whole algorithm degrades to
ripple join.

Finding the smallest directed spanning tree decomposi-
tion, unfortunately, is NP-hard (by a simple reduction from
set cover). However, since the graph is usually very small
(8 in the largest TPC-H benchmark query), we simply use
exhaustive search to find the optimal decomposition.

For a given query graph G = (V,E), the algorithm pro-
ceeds in 3 steps. In step 1, for each vertex v, we find
the set of all vertices reachable from v, denoted as T (v).
Then, we remove T (v) if it is dominated (i.e., completely
contained) in another T (v′). For example, for the query
graph in Figure 6(b), only T (R1) = {R1, R2, R3, R4, R5} and

1A directed tree is a tree in which every edge points away
from the root. A directed spanning tree of a graph G is a
subgraph of G with all vertices of G, and is a directed tree.
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T (R6) = {R3, R4, R5, R6, R7} remain, since other T (v)’s are
dominated by either T (R1) or T (R6). Denote the remaining
set of vertices as U .

In step 2, we find the smallest subset of vertices C such
that

⋃
v∈C T (v) covers all vertices, by exhaustively check-

ing all subsets C of U . This gives the smallest cover, not a
decomposition, since some vertices may be covered by more
than one T (v). For example, T (R1) and T (R6) are the opti-
mal cover for the query graph in Figure 6(b), and they both
cover R3, R4, R5.

In step 3, we convert the cover into a decomposition.
Denote the set of multiply covered vertices as M , and let
GM = (M,EV ) be the induced subgraph of G on M . We will
assign each u ∈ M to one of its covering T (v)’s. However,
the assignment cannot be arbitrary. It has to be consistent,
i.e., after the assignment, all vertices assigned to T (v) must
form a single connected component. To do so, we first find
the strongly-connected components of GM , contract each
to a “super vertex” (containing all vertices in this strongly-
connected component). Then we do a topological sort of the
super vertices; inside each super vertex, the vertices are or-
dered arbitrarily. Finally, we assign each u ∈M to one of its
covering T (v)’s by this order: if u has one or more predeces-
sors in GM that have already been assigned, we assign u to
the same T (v) as one of its predecessors; otherwise u can be
assigned to any of its covering T (v)’s. For the query graph
in Figure 6(b), the topological order for M is R5, R3, R4

or R5, R4, R3, and in this example, we have assigned all of
them to T (R1). In Appendix B, we give a proof that this
algorithm produces a consistent assignment.

4.2 Walk plan optimization
We pick the best walk plan by choosing the best walk

order for each component in the directed spanning tree de-
composition. Below, we simply assume that the entire query
graph is one component.

The performance of a walk order depends on many fac-
tors. First, it depends on the structure of the join data
graph. Considering the data graph in Figure 7, if we per-
form the random walk by the order R1, R2, R3, then the
success probability is only 2/7, but if we follow the order
R3, R2, R1, it is 100%.

a1

a2

a3

a4

a6

a7

b1

b2

b3

b4

b5

b6

b7

c1

c2

c3

c4

c5

c6

c7

a5

R2 R3R1

Figure 7: Structure of the join data graph has a
significant impact on the performance of different
walk plans.

Second, as mentioned, if there is a selection predicate on
an attribute and there is a table with an index on that at-
tribute, it is preferable to start from that table. Thirdly,
for a cyclic query graph, which edges serve as the non-tree
edges also affects the success probability. And finally, even
if the success probability of the random walks is the same,
different walk orders may result in different non-uniformity,

which in turn affects how fast the variance of the estimator
shrinks.

Instead of dealing with all these issues, we observe that
ultimately, the performance of the random walk is measured
by the variance of the final estimator after a given amount of
time, say t. Let Xi be the estimator from the i-th random
walk (e.g., u(i)v(i) for SUM if the walk is successful and 0
otherwise), and let T be the running time of one random
walk, successful or not. Suppose a total of W random walks
have been performed within time t. Then the final estimator
is 1

W

∑W
i=1Xi, and we would like to minimize its variance.

Note that W is also a random variable, we cannot just
break it up as in standard variance analysis. Instead, we
should do a conditioning on W , and use the law of total
variance [36]:

Var

[
1

W

W∑
i=1

Xi

]

=E

[
Var

[
1

W

W∑
i=1

Xi

∣∣∣∣∣ W
]]

+ Var

[
E

[
1

W

W∑
i=1

Xi

∣∣∣∣∣ W
]]

=E[Var[X1]/W ] + Var[E[X1]] //Var[Xi] = Var[Xj ] and

//E[Xi] = E[Xj ] for any i, j

=Var[X1]E[1/W ] + 0

=Var[X1]E[T/t]

=Var[X1]E[T ]/t.

Thus, for a given amount of time t, the variance of the
final estimator is proportional to Var[X1]E[T ].

The next observation is that both Var[X1] and E[T ] can
also be estimated by the random walks themselves! In par-
ticular, Var[X1] is just estimated as in Section 3.4 and Ap-
pendix A; for E[T ], we simply count the number of index
entries looked up, or the number of I/Os in external mem-
ory, in each random walk and take the average.

Now, for each walk order, we perform a certain number of
“trial” random walks and estimate Var[X1] and E[T ]. Then
we compute the product Var[X1]E[T ] and pick the order with
the minimum Var[X1]E[T ]. How to choose the number of
trials is the classical sample size determination problem [6],
which again depends on many factors such as the actual data
distribution, the level of precision required, etc. However, in
our case, we do not have to pick the very best plan: If two
plans have similar values of Var[X1]E[T ], their performances
are close, so it does not matter which one is picked anyway.
Nevertheless, we do have to make sure that, at least for the
plan that is picked, its estimate for Var[X1]E[T ] is reliable;
for plans that are not picked, there is no need to determine
exactly how bad they are. Thus, we adopt the following
strategy: We conduct random walks following each plan in
a round-robin fashion, and stop until at least one plan has
accumulated at least τ successful walks. Then we pick the
plan with the minimum Var[X1]E[T ] that has at least τ/2
successful walks. This is actually motivated by association
rule mining, where a rule must both be good and have a
minimum support level. In our implementation, we use a
default threshold of τ = 100.

Finally, we observe that all the trial runs are not wasted.
Since each random walk, no matter which plan it follows,
returns an unbiased estimator. So we can include all the
random walks, before and after the optimal one has been
picked, in computing the final estimator. The confidence
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interval is also computed with all these random walks. This
is unlike traditional query optimization, where the cost in-
curred by the optimizer itself is pure “overhead”.

5. EXPERIMENTS

5.1 Experimental setup
We have evaluated the performance of wander join in com-

parison with ripple join and its variants, the DBO engine,
under two settings, which are described in detail below.

Standalone implementation. We first implemented both
wander join and ripple join in C++. For wander join, data
in each table is stored in primary key order in an array
(using std :: vector); for each join key, a hash table index
is built (using std :: unordered map); for each key having a
selection predicate, a binary search tree (BST) is built as
the index (using std :: ordered map). Note that using these
index structures, each step of the random walk takes O(1)
time and sampling from a table with a selection predicate
takes O(logN) time. We ensure that all the index structures
fit in memory; in fact, all the indexes combined together
take space that is a very small fraction of the total amount
of data, because they are all secondary indexes, storing only
pointers to the actual data records, which have many other
attributes that are not indexed. Furthermore, building these
indexes is very efficient; in fact, they can be built with very
minimum overhead while loading data from the file system
to the memory (which one has to do anyway).

Similarly, for ripple join, we give it enough memory so that
all samples taken can be kept in memory. For all samples
taken from each table, we keep them in a hash table (also
using std :: unordered map). Ripple join can take random
samples in two ways. If the table is stored in a random order
(in an array), we can simply retrieve the tuples in order.
Alternatively, if an index is available, we can use the index
to take a sample. The first one takes O(1) time to sample a
tuple and is also very cache-efficient. However, when there is
a selection predicate, then the algorithm still has to read all
tuples, but only keep those that satisfy the predicate. In this
case, the second implementation is better (when the index
is built on the selection predicate), though it takes O(logN)
time to take a sample. We have implemented both versions;
for the index-assisted version, indexes (BSTs) are built on
all the selection predicates.

The idea for the standalone implementation is to give an
ideal environment to both algorithms without any system
overhead, so as to have a “barebone” comparison between
the two algorithms.

System implementation. To see how the algorithms ac-
tually perform in a real database system, we have imple-
mented wander join in the latest version of PostgreSQL (ver-
sion 9.4; in particular, 9.4.2). Our implementation covers
the entire pipeline from SQL parsing to plan optimization
to physical execution. We build secondary B-tree indexes
on all the join attributes and selection predicates.

The only system implementation available for ripple join
is the DBO system [9, 25, 26]. In fact, the algorithm im-
plemented in DBO is much more complex than the basic
ripple join in order to deal with limited memory, as de-
scribed in these papers. We compared wander join in our
PostgreSQL implementation with Turbo DBO, using the
code at http://faculty.ucmerced.edu/frusu/Projects/DBO/

dbo.html, as a system-to-system comparison. Note that due
to the random order storage requirement, DBO was built
from ground up. Currently it is still a prototype that sup-
ports online aggregation only (i.e., no support for other ma-
jor features in a RDBMS engine, such as transaction, lock-
ing, etc.). On the other hand, our integration of wander join
into PostgreSQL retains the full functionality of a RDBMS,
with online aggregation just as an added feature. Thus,
this comparison can only be to our disadvantage due to the
system overhead inside a full-fledged DBMS for supporting
many other features and functionality.

Note that the original DBO papers [25] compared the
DBO engine against the PostgreSQL database by running
the same queries in both systems. We did exactly the same
in our experiments, but simply using the PostgreSQL ver-
sion with wander join implemented inside its kernel.

Data and queries. We used the TPC-H benchmark data
and queries for the experiments, which were also used by the
DBO work [9, 25, 26]. We used 5 tables, nation, supplier,
customer, orders, and lineitem. We used the TPC-H data
generator with the appropriate scaling factor to generate
data sets of various sizes. We picked queries Q3 (3 tables),
Q7 (6 tables; the nation table appears twice in the query)
and Q10 (5 tables) in the TPC-H specification as our test
queries.

5.2 Results on standalone implementation
We first run wander join and ripple join on a 2GB data set,

i.e., the entire TPC-H database is 2GB, using the“barebone”
joins of Q3, Q7, and Q10, where we drop all the selection
predicates and group-by clauses. In Figure 8 we plot how
the confidence interval (CI) shrinks over time, with the con-
fidence level set at 95%, as well as the estimates returned
by the algorithms. They are shown as a percentage error
compared with the true answer (which were obtained of-
fline by running the exact joins to full completion). We
can see that wander join (WJ) converges much faster than
ripple join (RJ), due to the much more focused search strat-
egy. Meanwhile, the estimates returned are indeed within
the confidence interval almost all the time. For example,
wander join converges to 1% confidence interval in less than
0.1 second whereas ripple join takes more than 4 seconds
to reach 1% confidence interval. The full exact join on Q3,
Q7, and Q10 in this case is 18 seconds, 28 seconds, and 19
seconds, respectively, using hash join.

Next, we ran the same queries on data sets of varying sizes.
Now we include both the random order ripple join (RRJ) and
the index-assisted ripple join (IRJ). For wander join, we also
consider two other versions to see how the plan optimizer
has worked. WJ(B) is the version where the optimal plan is
used (i.e., we run the algorithm with every plan and report
the best result); WJ(M) is the version where we use the
median plan (i.e., we run all plans and report the median
result). WJ(O) is the version where we use the optimizer
to automatically choose the plan, and the time spent by the
optimizer is included. In Figure 9 we report the time spent
by each algorithm to reach ±1% confidence interval with
95% confidence level on data sets of sizes 1GB, 2GB, and
3GB. We also report the time costs of the optimizer in Table
1. From the results, we can draw the following observations:

(1) Wander join is in general faster than ripple join by two
orders of magnitude to reach the same confidence interval.

(2) The running time of ripple join increases with N , the
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Figure 8: Standalone implementation: Confidence intervals and estimates on barebone queries on 2GB TPC-
H data set; confidence level is 95%.
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Figure 9: Standalone implementation: Time to reach ±1% confidence interval and 95% confidence level on
TPC-H data sets of different sizes.

data size, though mildly. Recall from Section 3.7 that rip-
ple join expects to get nk( d

N
)k−1 sampled join results af-

ter n tuples have been retrieved from each of the k tables.
Thus, to obtain a given sample size s from the join, it needs
n = s1/k(N

d
)(k−1)/k samples from each table. This partially

explains the slightly-less-than-linear growth of its running
time as a function of N .

(3) The running time of wander join is not affected by N .
This also agrees with our analysis: When hash tables are
used, its efficiency is independent of N altogether.

(4) The optimizer has very low overhead, and is very ef-
fective. In fact, from the figures, we see that WJ(B) and
WJ(O) have almost the same running time, meaning that
the optimizer spends almost no time and indeed has found
either the best plan or a very good plan that is almost as
good as the best plan. Recall that all the trial runs used
in the optimizer for selecting a good plan are not wasted;
they also contribute to building the estimators. For bare-
bone queries, many plans actually have similar performance,
as seen by the running time of WJ(M), so even the trial runs
are of good quality.

Finally, we put back the selection predicates to the queries.
Figure 10 shows the time to reach ±1% confidence interval
with 95% confidence level for the algorithms on the 2GB
data set, with one selection predicate of varying selectivity,
while Figure 11 shows the results when all the predicates are
put back. Here, we measure the overall selectivity of all the
predicates as:

1− (join size with predicates)/(barebone join size), (4)

so higher means more selective.
From the results, we see that one selection predicate has

little impact on the performance of wander join, because

size (GB) optimization (ms) execution (ms)

Q3
1 2.8 88.7
2 2.8 91.3
3 2.9 101.9

Q7
1 6.4 106.1
2 6.4 112.1
3 6.6 123.7

Q10
1 7.0 105
2 7.3 105.6
3 8.8 116

Table 1: Standalone implementation: Time cost
of walk plan optimization (execution time to reach
±1% confidence interval and 95% confidence level on
TPC-H data sets of different sizes).

most likely its optimizer will elect to start the walk from
that table. Multiple highly selective predicates do affect
the performance of wander join, but even in the worst case,
wander join maintains a gap with ripple join of more than
an order of magnitude.

These experiments also demonstrate the importance of the
plan optimizer: With multiple highly selective predicates, a
mediocre plan can be much worse than the optimal one,
and the plan optimizer almost always picks the optimal or a
close-to-optimal plan with nearly no overhead. Note that in
this case we do have poor plans, so some trial random walks
may contribute little to the estimation. However, the good
plans can accumulate τ = 100 successful random walks very
quickly, so we do not waste too much time anyway.
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Figure 10: Standalone implementation: Time to reach ±1% confidence interval and 95% confidence level on
the 2GB TPC-H data set with one selection predicate of varying selectivity.
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Figure 11: Standalone implementation: Time to reach ±1% confidence interval and 95% confidence level on
the 2GB TPC-H data set with multiple selection predicate of varying selectivity.

5.3 Results on system implementation
For the experimental evaluation on our PostgreSQL im-

plementation of wander join, we first tested how it performs
when there is sufficient memory, and then tested the case
when memory is severely limited. We compared against
Turbo DBO in the latter case. Turbo DBO [9] is an im-
provement to the original DBO engine, that extends ripple
join to data on external memory with many optimizations.

When there is sufficient memory. Due to the low-
latency requirement for data analytical tasks and thanks
to growing memory sizes, database systems are moving to-
wards the “in-memory” computing paradigm. So we first
would like to see how our system performs when there is
sufficient memory. For this purpose, we used a machine
with 32GB memory and data sets of sizes up to 20GB. We
ran both wander join (implemented inside PostgreSQL) and
the built-in PostgreSQL full join on the same queries, both
through the standard PostgreSQL SQL query interface. We
extended PostgreSQL’s parser, plan generator, and query
executor to support keywords like CONFIDENCE, WITHINTIME,
REPORTINTERVAL, and ONLINE. We also integrated the plan
optimizer of wander join into the query optimizer of Post-
greSQL. For example, an example based on Q3 of TPC-H
benchmark is:

SELECT ONLINE

SUM(l_extendedprice * (1 - l_discount)), COUNT(*)

FROM customer, orders, lineitem

WHERE c_mktsegment=‘BUILDING’ AND c_custkey=o_custkey

AND l_orderkey=o_orderkey

WITHINTIME 20 CONFIDENCE 95 REPORTINTERVAL 1

This tells the engine that it is an online aggregation query,

such that the engine should report the estimations and their
associated confidence intervals, calculated with respect to
95% confidence level, for both SUM and COUNT every 1 second
for up to 20 seconds.

Note that since we have built indexes on all the join at-
tributes and there is sufficient memory, the PostgreSQL op-
timizer had chosen index join for all the join operators to
take advantage of the indexes. We used Q3, Q7, and Q10
with all the selection predicates, but without the group-by
clause.

The results in Figure 12 clearly indicate a linear growth
of the full join, which is as expected because the index join
algorithm has running time linear in the table size. Also
because all joins are primary key-foreign key joins, the in-
termediate results have roughly linear size. On the other
hand, the data size has a mild impact on the performance of
wander join. For example, the time to reach ±1% confidence
interval for Q7 merely increases from 3 seconds to 4 seconds,
when the data size increases from 5GB to 20GB in Figure
12(b). By our analysis and the internal memory experimen-
tal results, the total number of random walk steps should
be independent of the data size. However, because we use
B-tree indexes, whose access cost grows logarithmically as
data gets larger, so the cost per random walk step might
grow slightly. In addition, on larger data sets, the CPU
cache may not be as effective as on smaller data sets. These
system reasons might have explained the small performance
drop of wander join on larger data sets. Nevertheless, Post-
greSQL with wander join reaching 1% CI has outperformed
the PostgreSQL with full join by more than one order of
magnitude when data size grows.

We have also run Turbo DBO in this case. However, it
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(c) Wander join in PostgreSQL: Q10
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Figure 12: System implementation experimental results with sufficient memory: 32GB memory.
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Figure 13: System implementation experimental results with limited memory, 4GB memory.

turned out that Turbo DBO spends even more time than
PostgreSQL’s full join, so we do not show its results. This
seems to contradict with the results in [26]. In fact, this
is because DBO is intentionally designed for large data and
small memory. In the experiments of [26], the machine used
had only 2GB of memory. With such a small memory, Post-
greSQL had to resort to sort-merge join or nested-loop join
for each join operator, which is much less efficient than in-
dex join (for in-memory data). Meanwhile, DBO follows the
framework of sort-merge join, so it is actually not surprising
that it is not as good as index joins for in-memory data. In
our next set of experiments where we limit the memory size,
we do see that DBO performs better than the full join.

We also tested wander join with Q10 with a “GROUP BY

c mktsegment” clause. The confidence intervals as time goes
on for each group are plotted in Figure 12(c). In the data
set, data is evenly distributed among the groups defined by
c mktsegment, so the confidence intervals of all the groups
reduce at the rate.

When memory is limited. In our last set of experiments,
we used a machine with only 4GB memory, and ran the same
set of experiments as above on data sets of sizes starting from
10GB and increasing to 40GB. The time for wander join
inside PostgreSQL and Turbo DBO to reach ±5% confidence
interval with 95% confidence level, as well as the time of the
full join in PostgreSQL, are shown in Figure 13.

From the results, we see that a small memory has a signif-
icant impact on the performance of wander join. The run-
ning time increases from a few seconds in Figure 12 to more
than 100 seconds in Figure 13, and that’s after we have re-
laxed the target confidence interval from ±1% to ±5%. The
reason is obviously due to the random access nature of the
random walks, which now has a high cost due to excessive
page swapping. Nevertheless, this is a “one-time” cost, in
the sense that each random walk step is now much more ex-

pensive, but the number of steps is still not affected. After
the one-time, sudden increase when data size exceeds main
memory, the total cost remains almost flat afterward. In
other words, the cost of wander join in this case is still in-
dependent of the data size, albeit to a small increase in the
index accessing cost (which grows logarithmically with the
data size if B-tree is used). Hence, wander join still enjoys
excellent scalability as data size continues to grow.

On the other hand, both the full join and DBO clearly
have a linear dependency on the data size, though at differ-
ent rates. On the 10GB and 20GB data sets, wander join
and DBO have similar performance, but eventually wander
join would stand out on very large data sets.

Anyway, spending 100 seconds just to get a ±5% estimate
does not really meet the requirement of interactive data an-
alytics, so strictly speaking both wander join and DBO have
failed in this case (when data has significantly exceeded the
memory size). Fundamentally, online aggregation requires
some form of randomness so as to have a statistically mean-
ingful estimation, which is at odds with the sequential access
nature of hard disks. This appears to be an inherent bar-
rier for this line of work. However, as memory sizes grow
larger and memory clouds get more popular (for example,
using systems like RAMCloud [39] and FaRM [10]), with the
SSDs as an additional storage layer, in the end we may not
have to deal with this barrier at all. What’s more, as shown
in Figure 13, wander join (and DBO) still shows much better
latency (for an acceptable confidence interval like 5%) than
the full join, and the gap only becomes larger as data size
continues to grow. So it is still very useful to have online
aggregation over joins as a valuable tool available for data
analysts.

Effectiveness of walk plan optimization. In the stan-
dalone implementation, we have observed that the walk plan
optimizer has low overhead and can generate walk plans
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much better than the median plan. Similarly, we conducted
experiments with our PostgreSQL implementation of wander
join to see the effectiveness and the overhead of the walk plan
optimizer, with either sufficient memory or limited memory.
The results are shown in Table 2 (in Appendix C). In Table
2, instead of reporting the time of a median plan, we used
the plan as constructed from the input query and used by
PostgreSQL. From the results, we see that with sufficient
memory, the results are similar to those on the standalone
implementation, namely, there is very little overhead in the
walk plan optimization. With limited memory, the optimizer
tends to spend more time, due to system overhead and the
page faults incurred by the round-robin exploration. But
the total time (walk plan optimization + plan execution) is
not much more expensive than the best plan execution itself,
and is still much better than the plan used by PostgreSQL.

In summary, we see that in all cases, the optimizer can
pick a plan that is much better than the plan generated
from the input query and used by PostgreSQL. And gen-
erally speaking, query optimizer in a database engine tries
to optimize the full join, not online aggregation. That’s
the value of having our own walk plan optimizer for wander
join, and our walk plan optimization is both very effective
and very efficient.

Comparing with a commercial-level database sys-
tem. Finally, to gauge how our PostgreSQL (PG) im-
plementation of wander join performs in comparison to a
commercial-level database system, we ran the queries (in
full) on System X2, and then see how much accuracy our
PG (with wander join) and DBO can achieve with 1/10 of
the System X’s full query time for the same query. System
X uses the same machine and builds the same indexes as PG
with wander join does.

We ran these experiments on both sufficient memory and
limited memory for TPC-H data of different size (from 10GB
to 40GB), using Q3, Q7, and Q10. The results are reported
in Table 3 (in Appendix C). These results clearly demon-
strate the benefits of wander join in getting high-quality
approximate results in just a fraction of the time needed
to get the accurate result, even when compared to state-
of-the-art commercial-level database systems. Note that in
many cases, DBO did not return any results in the time
given, which is consistent with previously reported results,
that DBO usually starts to return results after a few min-
utes [9, 26].

6. RELATED WORK
The concept of online aggregation was first proposed in

[19], and since then has generated much follow-up work, in-
cluding the efforts in extending it to distributed and parallel
environments [40, 42, 43, 47, 50] and multiple queries [48]; a
complete survey of these work is out of the scope of this
paper. In particular, related to our problem, online aggre-
gation over joins was first studied in [15], where the ripple
join algorithm was designed. Extensions to ripple join were
done over the years [9, 25, 26, 35], in particular, to support
ripple join in DBO for large data on external memory. Note
that we have already reviewed the core ideas in online ag-
gregation and ripple join in Section 2.

Online aggregation is closely related to another line of

2Legal restrictions prevent us from revealing the actual ven-
dor name.

work known as query sampling [8, 21, 38, 45]. In online ag-
gregation, the user is only interested in obtaining an aggre-
gate, such as SUM or AVE, on a particular attribute of all
the query results. However, a single aggregate may not be
expressive enough to represent sufficient properties of the
data, so the user may require a random sample, taken uni-
formly and independently, from the complete set of query
results that satisfy the input query conditions. Note that
query sampling immediately solves the online aggregation
problem, as the aggregate can be easily computed from the
samples. But this may be an overkill. In fact, both wander
join and ripple join have demonstrated that a non-uniform or
a non-independent sample can be used to estimate the aggre-
gate with quality guarantees. Nevertheless, query sampling
has received separate attention, as a uniform and indepen-
dent sample can serve more purposes than just computing
an aggregate, including many advanced data mining tasks;
in some cases, the user may just want the sample itself.

In addition to these efforts, there are also extensive work
on using sampling for approximate query processing, selec-
tivity estimation, and query optimization [1, 2, 7, 11, 27–30,
37, 44, 46, 49, 51, 52]. In partiluar, there is an increasing in-
terest in building sampling-based approximate query pro-
cessing systems, e.g., represented by systems like BlinkDB,
Monte-Carlo DB, Analytical Bootstrap, DICE and others
[1–3, 23, 24, 31, 37, 51, 52], but these systems do not support
online aggregations over joins.

7. FUTURE DIRECTIONS
This work has presented some promising results on wander

join, a new approach to online aggregation for joins. Yet, it
has a lot of potential to be further exploited. Here we list a
few directions for future work:

• Wander join is an “embarrassingly parallel” algorithm,
and it should be very easy to implement it on a multi-
core machine or a cluster. In particular, we are work-
ing on integrating wander join with SparkSQL [4]. Be-
cause wander join works much better for in-memory
data than data from external memory on hard disks,
Spark’s massively parallel, in-memory computing frame-
work provides an ideal platform for wander join. Re-
cent efforts on extending traditional online aggregation
techniques to Spark SQL in systems like G-OLA have
already shown promising results [50].

• Because wander join can estimate COUNT very quickly,
we can run wander join on any sub-join and estimate
the intermediate join size. This in turn provides im-
portant statistics to a traditional cost-based query op-
timizer. It would be interesting to see if this can lead
to improved query plan selection for full join compu-
tation.

• When the query has a group-by clause and the groups
are highly unbalanced, some groups might be under-
sampled. This problem can be in general solved by
stratified sampling [1, 2, 34, 50, 52]. If the group-by at-
tributes are from a single table, wander join can eas-
ily handle by simply starting the random walks from
that table, but the problem is more complicated when
the group-by involves attributes from different tables,
which deserves further investigation.
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APPENDIX
A. ESTIMATORS AND CONFIDENCE IN-

TERVALS
For any function f, h : N→ R, we introduce the following

notation:

Tn(f) =
1

n

n∑
i=1

f(i),

Tn,q(f) =
1

n− 1

n∑
i=1

(f(i)− Tn(f))q,

Tn,q,r(f, h) =
1

n− 1

n∑
i=1

(f(i)− Tn(f))q(h(i)− Tn(h))r.

The estimators for a few common aggregation functions,
as well as estimators for their variances, are given by:

SUM : Ỹn = Tn(uv), σ̃2
n = Tn,2(uv);

COUNT : Ỹn = Tn(u), σ̃2
n = Tn,2(u);

AVE : Ỹn = Tn(uv)/Tn(u), σ̃2
n =

1

T 2
n(u)

(
Tn,2(uv)− 2Rn,2Tn,1,1(uv, u) +R2

n,2Tn,2(u)
)
,

where Rn,2 = Tn(uv)/Tn(u).

Please see [14] for formulas for VARIANCE and STDEV.
Finally, after we have obtained an estimate σ̃2

n(t) for the

variance of an estimator Ỹ , the half-width of the confidence
interval is computed as (for a confidence level threshold α)

εn =
zασ̃n√
n
, (5)

where zα is the α+1
2

-quantile of the normal distribution with
mean 0 and variance 1.

B. ADDITIONAL PROOFS
Lemma 1 The algorithm produces a consistent assignment.

Proof. Suppose that after the assignment, some T (v) is
disconnected. Then there must be a u ∈ T (v) ∩ M such
that all its predecessors in T (v) have been assigned to other
T (v′)’s, but u remains in T (v). If any of u’s predecessors is
assigned before u, then the algorithm cannot have assigned
u to T (v). If all of u’s predecessors are assigned after u, then
they must be in the same strongly-connected component as
u, and u does not have other predecessors in M . This means
that u is directed connected to T (v) \M .

C. ADDITIONAL TABLES
Table 2 (see next page) presents the results on the effec-

tiveness and overhead of walk plan optimization for wan-
der join in PostgreSQL. Table 3 (see next page) presents
our PostgreSQL implementation of wander join against both
DBO and a commercial database system (denoted as System
X). For results in both Tables 2 and 3, we investigated both
sufficient memory and limit memory scenarios. The results
of which have been discussed in the end of Section 5.
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SF1
sufficient memory limited memory

total time2
optimized plan3 PG plan4

total time
optimized plan PG plan

time AE5 time AE time AE time AE

Q3

10 9.24 9.03 0.26 20.2 0.09 330 323 0.95 556 2.91
20 11.27 11.05 0.39 21.4 0.34 390 382 0.43 673 0.05
30 11.28 11.03 0.23 21.5 0.37 429 422 1.22 702 0.49
40 11.38 11.04 0.30 21.5 0.27 455 447 3.63 706 0.56

Q7

10 9.18 9.02 0.19 51.6 0.03 126 90 1.23 937 0.45
20 9.32 9.22 0.42 56.4 0.07 188 131 3.90 1359 1.72
30 8.47 8.17 0.28 60.5 0.11 215 145 1.67 1613 0.53
40 8.56 8.27 1.16 60.6 0.30 230 157 1.00 1742 0.71

Q10

10 3.23 3.05 1.19 3.12 0.11 71 61 0.31 95 0.43
20 3.33 3.17 0.39 4.34 0.02 96 79 0.51 118 1.03
30 3.35 3.06 0.45 5.54 0.84 107 90 2.22 125 1.17
40 4.22 4.07 0.06 7.87 0.76 111 93 2.48 134 0.97

Table 2: PostgreSQL with wander join: time cost of walk plan optimization and total
execution time (and the actual error achieved).

1 SF: scale factor (GB).
2 total time: the total wall clock time for walk plan optimization and plan execution to reach the target

confidence interval (CI) with 95% confidence level. The target CI is 1% for sufficient memory and 5%
for limited memory.

3 optimized plan: time taken and actual error achieved to reach the target CI by directly using the best
plan selected by wander join’s query optimizer (i.e., the plan execution time from the total time).

4 PG plan: time taken and actual error achieved to reach the target CI by using the plan constructed
from the input query and used by PostgreSQL.

5 AE: actual error (%).

SF1
sufficient memory limited memory

System X2 DBO PG+WJ5

System X
DBO PG+WJ

CI3 AE4 CI AE CI AE CI AE

Q3

10 32.24 – – 1.18 0.09 107.27 – – 15.9 7.8
20 74.29 – – 0.78 0.43 249.94 – – 11.1 4.3
30 65.17 – – 0.84 0.40 428.39 – – 9.6 4.5
40 90.23 – – 0.76 0.26 707.04 48.50 30.60 8.1 4.7

Q7

10 33.62 – – 1.15 0.24 103.3 – – 15.1 4.1
20 73.03 – – 0.70 0.35 205.7 – – 11.2 3.4
30 57.82 – – 0.79 0.35 326.35 – – 9.6 1.7
40 77.92 – – 0.69 0.05 445.86 – – 8 0.3

Q10

10 40.43 – – 0.75 0.01 146.57 47.71 23.24 13.7 1.2
20 98.96 82.06 21.93 0.47 0.02 326.67 35.62 14.60 8.7 2.1
30 109.19 138.29 66.50 0.46 0.05 697.06 26.43 6.69 6.9 1.3
40 138.87 97.68 11.99 0.42 0.06 829.97 11.31 1.32 5.2 0.5

Table 3: Accuracy achieved in 1/10 of System X’s running time for computing the full join.
1 SF: scale factor (GB).
2 System X: full join time on System X (seconds).
3 CI: half width of the confidence interval (%).
4 AE: actual error (%).
5 PG+WJ: Our version of PostgreSQL with Wander Join implemented inside the PostgreSQL engine.

–: no result reported in the time given.
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