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ABSTRACT
A large number of analytical queries (e.g., all the 22 queries

in the TPC-H benchmark) are based on acyclic foreign-key

joins. In this paper, we study the problem of incrementally

maintaining the query results of these joins under updates,

i.e., insertion and deletion of tuples to any of the relations.

Prior work has shown that this problem is inherently hard,

requiring at least Ω(|db |
1

2
−ϵ ) time per update, where |db | is

the size of the database, and ϵ > 0 can be any small constant.

However, this negative result holds only on adversarially

constructed update sequences; on the other hand, most real-

world update sequences are “nice”, nowhere near these worst-

case scenarios.

We introduce a measure λ, which we call the enclosureness
of the update sequence, to more precisely characterize its

intrinsic difficulty. We present an algorithm to maintain the

query results of any acyclic foreign-key join in O(λ) time

amortized, on any update sequence whose enclosureness is λ.
This is complemented with a lower bound of Ω(λ1−ϵ ), show-

ing that our algorithm is essentially optimal with respect

to λ. Next, using this algorithm as the core component, we

show how all the 22 queries in the TPC-H benchmark can

be supported in Õ(λ) time. Finally, based on the algorithms

developed, we built a continuous query processing system on

top of Flink, and experimental results show that our system

outperforms previous ones significantly.
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1 INTRODUCTION
Query evaluation on a static database has been well studied.

In this paper, we focus on the problem of continuous query

evaluation on a database, which is a central problem in many

real-time analytical systems.

Let db be the contents of the current database and let

Q(db) denote the results of evaluating query Q on db. For
an update u to db, where u can be either the insertion or

deletion of a tuple, we write db + u as the new database

instance after applying u. We say that the query Q can be

updated in f (|db |) time, if there is a data structure on db,
denoted D(db), such that the following operations can be

supported:

• Update: Given any update u, compute D(db + u) from
D(db) in f (|db |) time.

• Delta enumeration: After computing D(db + u) from
D(db), one can, if needed, enumerate the delta ∆Q ,
i.e., all differences between Q(db) and Q(db + u), with
constant delay.

• Full results enumeration: Whenever needed, all query

results in Q(db) can be enumerated from D(db) with
constant delay.

In the last two operations above, one is required to enu-

merate a set of tuples with constant delay [5]. More precisely,

this means that the time between the start of the enumer-

ation process to the first tuple, the time between any two

consecutive tuples, and the time between the last tuple and

the termination of the enumeration process, should all be

constant.

This problem is generally known as continuous query eval-
uation under updates or incremental view maintenance. As the
convention in the literature, we treat the size of the query as
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· · ·

time:

0

(a) Insertion-only: λ = 1

· · ·

time:

0

(b) First-in-first-out: λ = 1

time:
0

(c) Hierarchical: λ = O (logN )

· · ·

time:
0

· · ·

(d) Worst-case: λ = O (N )

Figure 1: Example update sequences with different λ.

a constant, which is the number relations and attributes in-

volved in the query, plus the number of relational operators

such as selection, project, aggregation, join, etc.

Previous work. One standard approach to the problem of

continuous query evaluation under updates is the change
propagation framework [11, 13]. Given a query/view to be

maintained, we take an operator tree (or a DAG), where each

leaf of the DAG corresponds to a base table and an internal

node corresponds to a relational operator. At each internal

node v , we maintain a materialized view of the sub-query

below v . When any of the base tables receives an update,

we compute changes to each of these materialized views in

a bottom-up fashion, eventually updating the view at the

root of the operator tree, which corresponds to the results of

the full query. One issue with this approach is that a single

update to a base table may potentially incur a lot of changes

in these views, which can be O(|Q(db)|) in the worst case.

Higher-order IVM (HIVM) [4, 17–19] has been proposed to

remedy this problem, which takes the changes to a view as

another query (delta query), and maintains this delta query

recursively. HIVM improves upon IVM for many complex

queries in practice, but there is still no theoretical guarantee

on its update time.

In 2017, two papers [8, 14] simultaneously studied the

worst-case complexity of the problem. Berkholz et al. [8]

showed that constant update time can be achieved for the

class of q-hierarchical queries, while for non-q-hierarchical
queries, the update time must be at least Ω(|db |

1

2
−ϵ ) for

any small constant ϵ > 0, if constant-delay enumeration is

needed. This result is mostly negative, because q-hierarchical

queries are a small class of queries. Very simple queries such

as ψ1 := πx (R1(x,y) Z R2(y)) and ψ2 := R1(x) Z R2(y) Z
R3(x,y) are already non-q-hierarchical. Idris et al. [14] de-

signed the Dynamic Yannakakis algorithm, a practical al-

gorithm that supports all α-acyclic queries [7, 22], a super-
set of q-hierarchical queries, but the constant update time

guarantee only holds for q-hierarchical queries. On non-q-

hierarchical but α-acyclic queries, their algorithmmay spend

O(|db |) time on an update. Recently, Kara et al. [15, 16] de-

signed algorithms for certain non-q-hierarchical queries with

update time O(
√
|db |).

Our contributions. The starting point of our work is the ob-
servation that the Ω(|db |

1

2
−ϵ ) lower bound holds only in the

worst case, where the update sequence can be constructed

adversarially. However, most real-world update sequences

are nowhere near the worst-case scenario. Can we do better

on these non-worst-case update sequences? Can we quan-

titatively separate “easy” update sequences with the hard

ones?

The first contribution of this paper is the introduction of

a measure, called enclosureness, which exactly captures the

inherent difficulty of an update sequence. Given an update

sequence, the lifespan of a tuple t can be considered as an

time interval i(t) = (is , ie ), where is is the start time (when

t is inserted) and ie is the end time (when t is deleted). The
start time can be −∞, if the tuple exists in the initial database,

and the end time can be +∞ if the tuple still exists in the

final database. Note that if a tuple is deleted and inserted

again later, it will be logically treated as two different tuples,

which have the same attributes but different lifespans. Given

an update sequence, all its lifespans form a set of intervals

I. For each interval i ∈ I, define its enclosureness λ(i) as

λ(i) = max

J⊆I
∀j ∈J, j⊆i

∀j1, j2∈J, j1∩j2=∅

|J |,

i.e., the largest number of disjoint intervals contained in i . The
enclosureness of the whole update sequence is the average

enclosureness of all its intervals, i.e.,

λ(I) =

∑
i ∈I λ(i)

|I|
.

We will often just write λ instead of λ(I) when the context

is clear. Figure 1 shows some example update sequences

with different λ; we see that, in many practically relevant

scenarios, λ is small. However, λ can be O(N ) in the worst

case, where N is the number of intervals.

We present both upper and lower bounds to substantiate

the claim that λ captures the inherent difficulty of update

sequences. In Section 3, we design an algorithm that can

update a foreign-key acyclic join in time O(λ) amortized on

any update sequence with enclosureness λ. Note that λ is

only used in the analysis; our algorithm does not need to



know the value of λ. Intuitively, a join is foreign-key acyclic

if the join conditions are all on primary-foreign key rela-

tionships and the graph formed by the primary-foreign key

relationships contains no directed cycles; a more formal defi-

nition is given in Section 2. Foreign-key acyclic joins are very

common in analytical query processing. For example, all the

22 queries in the TPC-H benchmark are foreign-key acyclic

joins, combined with other relational operators such as selec-

tion, projection, and aggregation (possibly with group-by).

On the lower bound side, we show in Section 4 that no al-

gorithm can achieve O(λ1−ϵ ) amortized update time, subject

to the condition λ ≤
√
|db |. Note that when λ >

√
|db |, we

can just invoke the lower bound of Ω(|db |
1

2
−ϵ ) [8].

In Section 5, we extend our basic acyclic join algorithm

to more general forms, so that all 22 queries in the TPC-H

benchmark can be supported in our framework. The majority

of the 22 TPC-H queries can be updated inO(λ) time, except

for a few (Q2, Q11, Q15, Q17, Q22), for which the update

time has an additional O(log |db |) factor.
Finally, based on the newly developed algorithms, we built

AJU (Acyclic Join under Updates), a continuous query eval-

uation system, on top of Flink [9]. AJU supports all the 22

TPC-H queries under arbitrary updates. AJU can be con-

sidered as a query compiler that takes in a SQL query (our

current prototype takes in a manually written query plan

instead of a SQL query) and produces Flink code, which is

then executed by the Flink engine. We evaluated AJU against

Dynamic Yannakakis [14], DBToaster [4], as well as Trill

[10]. All these systems are centralized. On the other hand, by

leveraging on the power of Flink, AJU easily scales to many

nodes with excellent scalability and fault tolerance. It is thus

the first fault-tolerant, distributed system for answering SQL

queries under updates. Experimental results show that AJU,

when running in single-thread mode, already offers 2x to 80x

improvements over the existing systems, and adding more

workers lead to even higher speedups.

2 PRELIMINARIES
2.1 Foreign-key Acyclic Schemas
Let R1(x̄1),R2(x̄1), . . . be the relations in the database, where

x̄i = {xi1, xi2, . . . } denotes the set of attributes of relation
Ri . Let PK(R) be the primary key of R, and we also use

the notation x̄i = {xi1, xi2, · · · } to indicate that PK(R) =
xi1. At any time instance, all tuples in a relation must

have unique values on the primary key. For a compos-

ite primary key, we (conceptually) create a combined pri-

mary key by concatenating the attributes in the compos-

ite key, while the original attributes in the composite key

are treated as regular, non-key attributes. For example, in

lineitem

orderspartsupp

part supplier customer

nation

region

Figure 2: The foreign-key graph of TPC-H schema.

the TPC-H schema, the relation partsupp with a compos-

ite primary key (ps_partkey, ps_suppkey) is rewritten into

partsupp(ps_partsuppkey, ps_partkey, ps_suppkey, ...).
An attribute xik of a relation Ri is a foreign key referencing

the primary key x j1 of relation R j , if the xik values taken

by tuples in Ri must appear in x j1 [21]. If a relation has a

composite foreign key, we similarly create a combined at-

tribute referencing the composite primary key. For example

in the TPC-H schema, the relation lineitem has a compos-

ite foreign key (l_partkey,l_suppkey). We create a new

attribute l_partsuppkey referencing ps_partsuppkey.
We can model all the primary-foreign key relationships as

a directed graph: Each vertex represents a relation, and there

is a directed edge from Ri to R j if Ri has a foreign key refer-

encing the primary key of R j . We call this graph the foreign
key graph. We say that the schema is foreign key acyclic, if
its foreign key graph is an acyclic directed graph (DAG). For

example, the TPC-H schema, shown in Figure 2, is foreign

key acyclic. Foreign key acyclic schemas are very common

in schema design [2]; circular foreign key dependencies may

cause various problems in database maintenance, and should

always be avoided if possible [1].

2.2 Foreign-key Acyclic Joins
We start by considering multi-way natural joins

1
of the form

σϕ1
R1(x̄1) Z · · · Z σϕnRn(x̄n), (1)

where ϕi is a selection condition on x̄i .

1
A multi-way equi-join can be written as a natural join by properly re-

naming the attributes. Specifically, we first find the equivalence class of

attributes induced by the equalities, and then replace all attributes in the

same equivalence class by the attribute name. Meanwhile, equality join con-

ditions on composite primary keys only need to be applied on the combined

attribute, not the individual attributes in the composite key. For example,

the join

SELECT ∗ FROM lineitem, partsupp, part

WHERE l_partkey = ps_partkey AND l_suppkey = ps_suppkey

AND ps_partkey = p_partkey



We require the query to be a foreign key join, i.e., for any
attribute x appearing in more than one relation in (1), x
must be the primary key of at least one of them. We can

similarly define the foreign key graph of a query: Introduce

a vertex for each Ri , and build a directed edge from Ri to
R j if PK(R j ) appears as an attribute of Ri . We say that the

query is foreign-key acyclic, if this graph is a DAG with one

vertex (relation) having in-degree 0. This relation is called

the root of the query. Note that this definition implies that

every relation in the multi-way join (1) must have a primary

key, which is joined with another relation, except for the root

relation. In the rest of the paper, the term “acyclic” always

means “foreign key acyclic” unless stated otherwise.

We observe that all multi-way joins in the TPC-H queries

satisfy these requirements. In Section 5, we will consider

other relational operators such as selection, projection, and

aggregations (with or without group-by).

Note that the query’s foreign key graph is not necessarily a

subgraph of the schema’s foreign key graph, because a query

may involve multiple logical copies of the same relation.

For example, the multi-way join in TPC-H Q7, written as a

natural join, is

lineitem(orderkey, suppkey, shipdate, . . . )

Zsupplier(suppkey, nationkey1) Z nation(nationkey1)

Zorders(orderkey, custkey)

Zcustomer(custkey, nationkey2) Z nation(nationkey2)

The foreign key graph of this query is shown in Figure 3,

which is not a subgraph of Figure 2. However, it is easy to

see that the foreign key graph of any foreign key join on an

acyclic schema must be acyclic.

Our notion of acyclicity differs from α-acyclicity [14]. For

example, TPC-H Q5, which is the same as Q7 above except

that there is only one copy of nation (and nationkey1 and

nationkey2 are both just nationkey), is still acyclic by our

definition, but is not α-acyclic. On the other hand, α-acyclic
queries do not need any key constraints, so some α-acyclic
queries are not acyclic by our notion, either.

2.3 Updates and Deltas
An update to a relation Ri is either the insertion or deletion

of a tuple t in Ri . We adopt the set semantics for relations,

which means that, if Ri already contains t , then inserting t

is written as

lineitem(partsuppkey, l_partkey, l_suppkey, . . . )

Z partsupp(partsuppkey, partkey, ps_suppkey, . . . )

Z part(partkey, . . . )

Note that the condition l_partkey = partkey is not explicitly enforced by

the natural join, but implicitly due to the composite key partsuppkey.

lineitem

orderssupplier

nation customer

nation

Figure 3: The foreign-key graph of TPC-H Q7.

into Ri will not change Ri ; if Ri does not contain t , deleting
t from Ri has no effect, either.

As a simplification, when considering updates to a query

Q in the form of (1), we just discard the update if it does

not pass ϕi . Subsequently, we will ignore all the selection
operators, since it just takes O(1) time to decide if t passes
the condition ϕi or not. As a result, the database which we

operate upon consists of only a subset of the original tuples,

which means that the foreign-key constraint may not hold

on the subset. For example, TPC-H Q7 actually has a filter

condition on nation, and not all customers come from some

nation in the filtered nation relation.
When inserting or deleting a tuple t in Ri , the delta of a

query Q in the form of (1) is

∆Q = R1 Z · · ·Ri−1 Z {t} Z Ri+1 Z · · · Z Rn .

If we are inserting a tuple that does not exist in Ri , the query
results will be updated asQ(db + t) := Q(db)+∆Q ; similarly,

deleting an existing tuple from Ri will update the query

results asQ(db−t) := Q(db)−∆Q . Our goal is to design a data

structure and algorithms so that as to be able to enumerate

both Q(db) and ∆Q with constant delay.

2.4 Index Support
An important building block of our algorithms is an index

structure, built on a relation Ri using one of its attributes,

say xik , as the key. The index should be able to:

• enumerate all tuples in Ri in constant time per tuple;

• given any value v , enumerate all tuples whose value

on xik is v with constant delay, or report that there is

none;

• insert or delete a tuple in constant time; and

• use O(|Ri |) memory.

A standard implementation of such an index is a hash table

on all the distinct key values of xik . Each slot of the hash

table stores a pointer to the list of all tuples whose value on

xik is the given value. Using universal hash functions, all the

above operations can be done in expected O(1) time [12].



R4(x2, x3)

R2(x1, x2) R3(x1, x3)

R1(x1)

Figure 4: A simple foreign-key graph. Note that each
edge Ri → R j represents a join condition between a
foreign key of Ri and the primary key of R j .

3 ALGORITHMS
3.1 Live Tuples
Given a query in the form of (1), we first construct its foreign-

key DAG. A leaf in the DAG is a node with out-degree 0,

while the root has in-degree 0. We say that R j is a child of

Ri if there is an edge from Ri to R j , and Ri is a parent of R j .
We say that R j is a descendant of Ri if there is a directed

path from Ri to R j . One important observation for acyclic

joins is that every join result must include a distinct tuple in

the root relation, because any tuple in the root relation can

join with at most one tuple in every other relation. Thus, the

key idea in maintaining the join results efficiently is to keep

track of the tuples in the root relations that can join with

one tuple in every other relation. We say that these tuples

are alive. Once all the live tuples can be maintained, we just

need constant time to retrieve each full join result.

For a relation R, let C(R) be the set of its child relations,

P(R) be the set of its parent relations, and D(R) be the set
of its descendant relations.

Definition 1. For a leaf relation R, all its tuples are alive.
For a non-leaf relation R, a tuple t in R is alive if it can join

with one tuple in every relation in D(R), i.e.

t Z (ZRd ∈D(R) Rd ) , ∅. (2)

However, using this definition directly to maintain the set

of live tuples is expensive. We introduce the notion of alive
on a child, which recursively depends on a child tuple being

alive.

Definition 2. Let R be a non-leaf relation in T , and Rc ∈
C(R) a child relation of R. A t tuple in R is alive on Rc if there
is an alive tuple tc in Rc such that πPK (Rc )t = πPK (Rc )tc .

An example using the query in Figure 4 is given in Figure 5,

where all live tuples are marked in white and non-live tuples

in gray.

If whether a tuple in a relation R is alive could be de-

termined by only checking whether it is alive on its child

relations C(R), we would be able to close the recursion and

arrive at an efficient maintenance algorithm. However, being

R4(x2, x3)

R2(x1, x2) R3(x1, x3)

R1(x1)
x1

1
2

x1 x2

1 1
2 2
3 3

x1 x3

1 1
2 2
3 3

x2 x3

1 1
2 2
3 3

Figure 5: An instance of the query in Figure 4.

R4(x2, x3)

R2(x1, x2) R3(x1, x3)

R1(x1) x1

1
2

x1 x2

1 1
2 2

x1 x3

1 1
2 2

x2 x3

1 2
2 1

Figure 6: A counter example.

alive on all Rc ∈ C(R) is only a necessary condition for a

tuple to be alive. Figure 6 gives an example showing that this

is not a sufficient condition. In this example, both tuples in

R4 are alive on both children, however, neither can produce a

join result because they do not join on a common tuple in R1.

To fix the problem, before declaring a t tuple in R1 to be alive,

we need to find the tuples that join with t in its two child

relations R2 and R3, and make sure that they have the same

value on x1, the primary key of R1. Below, we generalize this

idea and present the concept of assertion keys.

3.2 Assertion Keys
First, we observe that the mismatching problem demon-

strated in Figure 6 may arise between two relations Ri ,R j ∈
T only if there exist two or more node-disjoint paths

from R j to Ri in T . We say that such a pair of relations

Ri ,R j are unconstrained. For example, R1 and R4 in Fig-

ure 4 are an unconstrained pair. A more complex exam-

ple is given in Figure 7, which has 4 unconstrained pairs:

(R1,R3), (R1,R6), (R1,R7), (R2,R6). Note that (R2,R7) is not an

unconstrained pair because both paths from R7 to R2 pass

through R6. If all paths from R j to Ri pass a common relation,

say Rk , then intuitively (a more formal statement of correct-

ness will be given later), as long as the mismatching issue

is resolved at Rk , there will be no problem at Ri , since any
tuple in Rk can only join one tuple in Ri , if any at all.

For each unconstrained pair of relations (Ri ,R j ), we will
need to make sure that for each tuple tj ∈ R j to be considered



alive, there is a unique tuple ti ∈ Ri that joins with ti no
matter which path is taken. Checking every possible path

would be inefficient. Instead, we take the following approach.

We call the primary key of Ri an assertion key of R j , and add

it to R j as an additional attribute
2
In the example of Figure 7,

x1 is an assertion key of R3,R6,R7, and x2 is an assertion

key of R6. These assertion keys are extra attributes added

to the relations, even though they may already exist in the

relations, such as x1 in R3 in the example.

The value of the assertion key for each tuple tj ∈ R j is
defined as follows:

Definition 3. Let (Ri ,R j ) be an unconstrained pair of rela-

tions so that x = PK(Ri ) is an assertion key at R j . For each
tuple tj ∈ R j , πx tj is:

(1) NULL, if there is no tuple in Ri that can join with tj ;
(2) πx ti , if there is a unique tuple ti ∈ Ri that can join

with tj no matter which path is taken; or

(3) a special value ⊥, if there are more than one tuple in

Ri that can join with tj through any path.

The following lemma gives a sufficient and necessary con-

dition for a tuple to be alive:

Lemma 4. For a leaf relation R, all its tuples are alive. For
a non-leaf relation R, a tuple t in R is alive if and only if it is
alive on every Rc ∈ C(R), and for every assertion key x of R,
πx t , ⊥.

Proof. The “only if” direction is trivial. The “if” direction

can be proved by induction on the height of R in T . Consider

any tuple t ∈ R that is alive on every child Rc ∈ C(R). This
means that for every Rc ∈ C(R), there is a live tuple tc ∈ Rc
such that πPK (Rc )t = πPK (Rc )tc . Then the key is to show that

for every two children Rc and R
′
c , if they have any common

descendant S , tc and t ′c should join with the same tuple in

S , no matter which path is taken. This can be proved by

exploiting the properties of the assertion keys. □

Note that if t is alive on at least one child ofR, the assertion
key of t cannot be NULL. So the condition πx t , ⊥ in Lemma 4

is equivalent to saying that it must fall under case (2) in

Definition 3.

The remaining issue is how to maintain the assertion keys

efficiently when the database is being updated. For the ex-

ample in Figure 4, this is trivial since the assertion key in R4,

x1, already exists in its two child relations R2 and R3. This

may not be the case in general. Given a general DAG T , we

will need to add the assertion keys to certain relations as

auxiliary attributes. More precisely, auxiliary attributes must

be added so that the following condition holds:

2
We add attributes to the relations for notational convenience; in the actual

implementation, we create another relation to manage the extra attributes.

The additional relation uses the same primary key as original relation, and

contains all extra attributes.

R7(x5, x6, x7 | x̂1)

R5(x1, x5)

R6(x3, x4, x6 | x̂1, x̂2)

R3(x1, x2, x3 | x̂1) R4(x2, x4 | x̃1)

R2(x1, x2)

R1(x1)

Figure 7: Assertion keys (denoted with hats) and aux-
iliary attributes (denoted with tilde). Attributes after
the bar are extra attributes added to each relation.

Condition 5. For each unconstrained pair of relations
(Ri ,R j ), and for every Rc ∈ C(R j ), there is at least one path
from Ri to Rc on which all relations have PK(Ri ) as an original
attribute, an assertion key, or an auxiliary attribute.

For the example of Figure 7, after adding x1 as an auxiliary

attribute of R4 (denoted with tilde), one can verify that the

condition above is satisfied. In general, finding the minimum

number of auxiliary attributes to add is an NP-hard problem

with respect to the size of the DAG. But since we regard the

query size as a constant, we can just do a brute-force search

to find the optimal solution. Furthermore, this is only done

once, when the query is first registered in the system, but

not during updates.

3.3 The Algorithms

Data structures. Let L(R) be the set of live tuples in R and

N (R) the set of non-live tuples inR. The data structureD(db)
maintained by our algorithm consists of the following in-

dexes for each relation R(x1, x2, . . . ).

• I (L(R)): An index on L(R), using x1 as the key.

• I (N (R)), for non-leaf R: An index on N (R), using x1 as

the key.

• For a non-leaf R, a counter s(t) for each tuple t ∈ R
that is equal to the number of children of R on which t
is alive. This counter is stored together with the tuple

in I (N (R)).
• I (R,Rc ), for non-leaf R and each child Rc ∈ C(R): An
index on πx1,PK (Rc )R using PK(Rc ) as the key.

It can be easily shown that all the indexes take linear space.

Lemma 6. |D(db)| = O(|db |).

Algorithms. The algorithm to insert a tuple t into R is

shown in Algorithm 1. We assume that t does not exist in R,



Algorithm 1: Insert(t,R)
Input: D(db)
Output: D(db + t) and ∆Q

1 ∆Q ← ∅

2 if R is not a leaf then
3 s ← 0

4 foreach Rc ∈ C(R) do
5 I (R,Rc ) ← I (R,Rc ) + (πPK (Rc )t →

πPK (R),PK (Rc )t)

6 if πPK (Rc )t ∈ I (Rc ) then s(t) ← s(t) + 1

7 if s(t) = |C(R)| then
8 foreach Rc ∈ C(R) do
9 tc ← look up I (Rc ) with key πPK (Rc )t

10 foreach assertion key x of R do
11 if x ∈ Rc then
12 if πx t = NULL then πx t ← πx tc
13 else if πx t , πx tc or πx t = ⊥

then πx t ← ⊥

14 if R is a leaf or (s(t) = |C(R)| and all assertion keys are
not ⊥) then

15 Insert-Update(t,R, t )

16 else
17 I (N (R)) ← I (N (R)) + (πPK (R)t → t)

which can be checked in O(1) time. The algorithm updates

the data structure D(db) and computes the delta ∆Q . When

a new tuple t is inserted into relation R, we need to find out

whether t is alive or not. If R is a leaf relation, t is alive by
definition. Otherwise, we need to compute s(t). To do so, for

each child Rc ∈ C(R), we look up I (L(Rc )) with key πPK (Rc )t .
If there is a tuple in I (L(Rc )) with key πPK (Rc )t , that means t
is alive on Rc . In the meantime, we maintain the assertion

keys and auxiliary keys. After computing s(t), we check if

s(t) = |C(R)| and all assertion keys not equal to ⊥. If so, t is
alive and we add it to I (L(R)); otherwise we add it to I (N (R)).
Meanwhile, we also need to update the index I (R,Rc ) for
each Rc ∈ C(R).
If t is not alive, then it will not affect other tuples’ status

nor the join result. If it is alive, then it will increase the s(tp )
value for each tuple tp ∈ Rp that joins with t . These tuples
can be found by probing the index I (R,Rp ). This may make

these tuples alive, which in turn may trigger further updates

in a bottom-up fashion. When this process reaches the root

of T , a new join result will be included in ∆Q . This process

is described in Algorithm 2.

For example, suppose a new tuple (3) is inserted into rela-

tion R1 on the instance shown in Figure 5. First, because R1

Algorithm 2: Insert-Update(t,R, join_result )
Input: t ∈ R is becoming alive, join_result is the

current new join result produced by t
Output: Update all affected tuples and ∆Q

1 I (L(R)) ← I (L(R)) + (πPK (R)t → t)

2 if R is the root of T then
3 ∆Q ← ∆Q ∪ {join_result}

4 else
5 P ← look up I (Rp,R) with key πPK (R)t

6 foreach tp ∈ P do
7 s(tp ) ← s(tp ) + 1

8 if s(tp ) = |C(Rp )| then
9 foreach Rc ∈ C(Rp ) do
10 tc ← look up I (Rc ) with key πPK (Rc )tp
11 foreach assertion key x of Rp do
12 if x ∈ Rc then
13 if πx t = NULL then

πx tp ← πx tc
14 else if πx tp , πx tc or

πx tp = ⊥ then πx tp ← ⊥

15 if πx tp , ⊥ for every assertion key x then
16 I (N (Rp )) ← I (N (Rp )) − (πPK (Rp )tp →

tp )

17 Insert-Update(tp,Rp, join_result Z tp )

is a leaf, the tuple is alive by definition. Then the tuple (3, 3)
in R3 and the tuple (3, 3) in R2 become alive, which further

turns the tuple (3, 3) in R4 to alive.

Deletions of tuples can be handled in a similar fashion, but

slightly simpler. To delete a tuple t from R, we first check if it
is alive. If it is non-alive, then we simply delete from I (N (R)).
Otherwise, it will affect the status of tuples in Rp . More

precisely, it will decrement the s(tp ) value for every tp ∈ Rp
that joins with t . If a tp is currently alive, this will make it

non-alive, which may trigger further updates recursively in

a bottom-up fashion. When a live tuple in the root relation

becomes non-alive or deleted, its corresponding join result

will be deleted (included in ∆Q). Finally, we also need to

update the index I (Rp,R). The deletion process is described

in Algorithm 3 and 4.

After computing ∆Q , we can obviously enumerate tuples

in ∆Q with constant delay. To enumerate the full join results,

we simply retrieve all tuples in L(R) at the root relation. For
each tuple t , we find its joining tuple in every other relation

in a top-down manner. This takes O(1) time per tuple so we

can enumerate all join results with constant delay.



Algorithm 3: Delete(t,R)
Input: D(db)
Output: D(db − t) and ∆Q

1 ∆Q ← ∅

2 if t ∈ L(R) then
3 Delete-Update(t,R, t )

4 else
5 I (N (R)) ← I (N (R)) − (πPK (R)t → t)

6 if R is not the root of T then
7 I (Rp,R) ← I (Rp,R) − (πPK (R)t → πPK (Rp ),PK (R)t)

Algorithm 4: Delete-Update(t,R, join_result )
Input: t ∈ R is becoming non-alive, join_result is the

current join result involving t
Output: Update all affected tuples and ∆Q

1 I (L(R)) ← I (L(R)) − (πPK (R)t → t)

2 if R is the root of T then
3 ∆Q ← ∆Q ∪ {join_result}

4 else
5 P ← look up I (Rp,R) with key πPK (R)t

6 foreach tp ∈ P do
7 if tp ∈ N (Rp ) then
8 s(tp ) ← s(tp ) − 1

9 else
10 s(tp ) ← |C(R)| − 1

11 I (N (Rp )) ← I (N (Rp )) + (πPK (Rp )t → t)

12 Delete-Update(tp,Rp, join_result Z tp )

3.4 Update Time Analysis
The major concern in the update time is that a single update

may trigger the status change of a lot of tuples. For the query

in Figure 4, for example, it may happen that a single deletion

in R1 may make many tuples in R3 and R2 non-alive, which

in turn may render a lot of join results invalid. However, we

show below that the amortized update time is O(λ), where
λ is the enclosureness of the update sequence. Intuitively,

the update cost will be high if a tuple affecting a lot of other

tuples is repeatedly deleted and inserted back. However, such

update sequences must have high enclosureness; see e.g.

Figure 1(d). The analysis below formalizes this intuition.

The total update cost of the entire update sequence is

asymptotically bounded by the number of times all the s(t)
counters can change. The following lemma connects this

quantity with the enclosureness of the update sequence.

Lemma 7. For any tuple t ∈ R with lifespan i = (is , ie ), s(t)
changes at most O(λ(i)) times.

Proof Sketch. The proof of this lemma is lengthy, so

we just give a sketch here. Each tuple that can join with

t affects s(t) at most twice, once upon insertion and once

upon deletion, so it suffices to bound the number of such

tuples. A child relation R′ ∈ C(R) contains at most λ(i) such
tuples, since they must have the same primary key for them

to join with t . Then the bound follows from the primary key

constraint that no two tuples with same primary key can be

alive at the same time.

However, things get more complicated when we go fur-

ther down. Consider a child relation R′′ ∈ C(R′). Its tuples
that can join with t may not necessarily have the same pri-

mary key, because they can join with different tuples in R′,
which in turn join with t . An easy but loose bound on the

number of tuples in R′′ that can join with t is thus O(λ(i)2),
and continuing this analysis would lead to a final bound of

O(λ(i)h), where h is the height of T .

To tighten the bound, we make the key observation that,

although tuples in R′′ that can join with t may not have the

same primary key, many of them must have disjoint lifes-

pans, since they need to join with tuples in R′ with disjoint

lifespans. There are at most λ(i) such tuples. Some other tu-

ples in R′′ may indeed have overlapping lifespans, but each

tuple in R′ will have at most two such tuples in R′′, so the

number of such tuples is also O(λ(i)). By a careful induction

proof, we can show that the O(λ(i)) bound holds for any

descendant relation, although the hidden constant grows

exponentially in the height of T . □

Now suppose the update sequence is I, then by Lemma 7

the total update cost isO (
∑

i ∈I λ(i)), which isO
(∑

i∈I λ(i)
|I |

)
=

O(λ) amortized.

Theorem 8. An acyclic join Q can be updated inO(λ) time
amortized on any update sequence with enclosureness λ.

An easy but important corollary is that the amortized size

of each ∆Q is also bounded by O(λ), because our update

algorithms construct ∆Q during the update process, so its

size cannot be more than the update time.

Corollary 9. For an acyclic join Q , the amortized size of
∆Q is O(λ) over any update sequence with enclosureness λ.

3.5 Implication to the Change Propagation
Framework

The standard change propagation framework [11, 20] can

also be applied to maintain the results of a multi-way join

Q incrementally. Here, one arranges the relations in a tree

(see e.g. Figure 8), where each leaf corresponds to a relation,

and each internal node corresponds to an intermediate join,

also called a view. When a tuple t is inserted or deleted in a

relation, say R1, we follow the leaf-to-root path to compute



R1 Z R2 Z R3 Z R4

R4

R1 Z R3 Z R4

R2 R1 Z R3

R1 R3

Figure 8: A change propagation join tree that guaran-
tees O(λ) update time for the query in Figure 4.

R1 Z R2 Z R3 Z R4

R4

R1 Z R2 Z R3

R1 R2 Z R3

R2 R3

Figure 9: A change propagation join tree with linear-
time update cost for the query in Figure 4.

∆Q , i.e., we first compute ∆(R1 Z R3) = {t} Z R3, then

∆(R1 Z R3 Z R4) = ∆(R1 Z R3) Z R4, and finally ∆Q =
∆(R1 Z R3 Z R4) Z R2.

However, the generic change propagation framework does

not specify what join tree should be used, and as matter of

fact, different join trees may lead to significantly different

update costs. For example, Figure 8 and 9 are two possible

join trees for the multi-way join in Figure 4. As we will show

shortly, the one in Figure 8 also achieves O(λ) update time

while the update cost using Figure 9 is linear.

In fact, the O(λ) guarantee of the join tree in Figure 8

follows from its equivalence to our algorithm. Specifically,

we can prove the following correspondence result. Recall

that we use L(R) to denote the set of live tuples in R, and
D(R) the set of descendant relations of R.

Lemma 10. Given an acyclic multi-way join, for any relation
R, we have

L(R) = R ⋉ (ZRd ∈D(R) Rd ).

Proof. By the definition of live tuples. □

Following Theorem 8 and 10, we can show that there is

always a join tree under the change propagation framework

that guarantees O(λ) update time over acyclic joins.

Theorem 11. For any acyclic join, there exists a join tree
under the change propagation framework that achieves an

amortized update cost of O(λ) on any update sequence with
enclosureness λ.

Proof. The join tree can be constructed as follows. Tra-

verse the foreign-key DAG bottom-up. For a leaf relation

R, let V (R) := R. For a non-leaf relation R, introduce a view
V (R) := R Z (ZRd ∈D(R) Rd ). If R has more than one child,

compute V (R) using a left-deep (or right-deep) join tree in

which every join is a foreign-key join. Then invoke Theo-

rem 8 and 10. □

Now, we see that the join tree in Figure 8 is constructed fol-

lowing the proof of Theorem 11, thus achievingO(λ) update
time. On the other hand, the join tree in Figure 9 will incur a

linear update cost, and the intermediate views R2 Z R3 and

R1 Z R2 Z R3 may have quadratic size.

Note that unlike query optimization on static databases,

finding the optimal query plan over streaming data at present

is still done on an ad hoc basis. In fact, to perform complex

analytic queries in most streaming systems (including Trill,

Spark Streaming, and Flink) under the change propagation

framework, the user has to manually write the query plan.

Thus, Corollary 11 actually provides a guidance to writing

the query plan for amulti-way acyclic join that achieves good

update time. In Section 6, we experimentally evaluate the

performance of different plans under the change propagation

framework, and will see that the plan indicated by Corol-

lary 11 can be order-of-magnitude faster than sub-optimal

plans.

Furthermore, although we have shown that theoretically,

there is a join tree under the change propagation framework

that can also achieves O(λ) update, the hidden constant can

be much larger than that in our algorithm. It incurs a lot of

overhead as many intermediate views need to be maintained.

On the other hand, our algorithm does not have any interme-

diate views, and the only overhead is the assertions keys and

the indexes. Note that in the change propagation framework,

indexes are also needed on the intermediate views in order

to update them efficiently.

Finally, it should be pointed out that we have assumed

that changes may happen to any of the relations, and we

aim at providing a performance guarantee on any update

sequence. If changes can only happen to a particular relation,

then certain join trees can be more efficient. For example,

although the join tree in Figure 9 is bad for updates to ar-

bitrary relations, it will be ideal if updates only happen to

R4.

4 LOWER BOUND
In this section, we show that the O(λ) update time is essen-

tially the best possible for dealing with update sequences

with enclosureness λ, thus establishing the optimality of

Theorem 8.



We consider the simple queryψ1 := πx (R1(x,y) Z R2(y)),

which is clearly foreign-key acyclic, and show that it is not

possible to achieveO(λ1−ϵ ) update time andO(λ1−ϵ ) enumer-

ation delay simultaneously, unless the online matrix-vector
multiplication conjecture (OMv) fails. Note that the lower

bounds of [8] rely on the same conjecture.

Conjecture 12 (OMv). The following problem cannot be
solved in O(n3−ϵ ) time for any constant ϵ > 0: Given an n × n
matrixM and a sequence of n-dimensional vectors v1, . . . ,vn ,
computeMvi for each i , where the matrix-vector multiplication
is performed over the Boolean semiring. The algorithm is re-
quired to outputMvi beforevi+1 is revealed, for i = 1, . . . ,n−1.

Theorem 13. Suppose there exists an algorithm with
amortized O(λ1−ϵ ) update time that can enumerate ψ1 :=

πx (R1(x,y) Z R2(y)) with delay O(λ1−ϵ ) over any update

sequence with enclosureness λ ≤
√
|db |, then there is an algo-

rithm that can solve the OMv problem in time O(n3−ϵ ).

Proof Sketch. We encode the matrix by R1(x,y), and use
R2(y) to encode the vectors. Given an algorithm with amor-

tized O(λ1−ϵ ) update time that can enumerateψ1 with delay

O(λ1−ϵ ), we construct an update sequence I as follow: (1)

let n = λ and the matrixM has size n · n, we first encode the
matrix M into R1(x,y); (2) for each vector vi , we encode it
into R2(y) and output the query result. After that, we reset

R2(y) and receive vectorvi+1 until n vectors are all processed.

For each record t ∈ R1(x,y), its lifespan is (1,+∞). For the
i-th vector, each record t ∈ R2(y) has lifespan (n · (i − 1),n · i)
as the vector is inserted at time n · (i − 1) and deleted at time

n · i .
By the definition of enclosureness, ∀i(t) = (is , ie ), t ∈

R1(x,y), λ(i) = n and ∀i(t) = (is , ie ), t ∈ R2(y), λ(i) = 1,

then the enclosurenessof I is
n ·n2+1·n2

n2
= O(n) = O(λ).

Thus, if there exists an algorithm can achieve amortized

O(λ1−ϵ ) update time and O(λ1−ϵ ) enumeration delay, the on-

line matrix-vector multiplication problem can be solved in

O(n2 ·λ1−ϵ ) = O(n3−ϵ ) time. Note that the construction above

requires a database of size at least n2 = λ2
. □

5 GENERAL SQL QUERIES
Using Theorem 8, Corollary 11 as the base case, we can

extend the class of queries supported recursively, using stan-

dard change propagation algorithms. The following results

are straightforward (all time bounds can be amortized):

Theorem 14. Suppose Q (resp. Q ′) can be updated in
f (|db |) (resp. f ′(|db |)) time and has delta size д(|db |) (resp.
д′(|db |)), then

• σ (Q), π (Q), GSUM(Q), and GCOUNT(Q) (possibly with
group-by) can be updated in O(f (|db |) + д(|db |)) time
and has delta3 size O(д(|db |));
• GMAX(Q) and GMIN(Q) (possibly with group-by) can be
updated in O(f (|db |) + д(|db |) log |db |) time and has
delta size O(д(|db |));
• Q ∪ Q ′ and Q − Q ′ can be supported in O(f (|db |) +
f ′(|db |)) time and has delta size O(д(|db |) + д′(|db |)).

For example, letQ be an acyclic multi-way join in the form

of (1), so it has f (|db |) = O(λ) and д(|db |) = O(λ). Then the

query

SELECT x, SUM(z′) FROM

(SELECT x, y, MAX(z) AS z′ FROM Q GROUP BY x, y)

GROUP BY x

can be updated in O(λ log |db |) time with delta size O(λ).
Importantly, however, the join operator is missing in The-

orem 14. Indeed, Q Z Q ′ has no provable update time, if we

are only given the fact that Q and Q ′ can each be updated.

Nevertheless, most TPC-H queries can be rewritten without

using Q Z Q ′, i.e., all the joins can be pushed into a number

of acyclic multi-way joins in the form of (1), which are then

connected by operators supported in Theorem 14.

Still, some TPC-H queries cannot be rewritten, as they do

a join between sub-queries that perform aggregations after

joins. Fortunately, we observe that all such TPC-H queries

follow a particular pattern, which is captured by the two

composite operators we introduce below.

Join-select. A join-select takes the form of

σx2?x3
(Q(x

1
, x2, . . . ) Z Q ′(x1, x3, . . . )), (3)

where ? can be any of <, ≤, >, ≥,=. Here Q and Q ′ could be

queries after recursively applying Theorem 14 and the join

key x1 is the primary key of Q . Note that handling the join
and the selection separately may be costly, even if both Q
and Q ′ have bounded deltas, because a single change in Q
may affect many join results.

Below, we present an algorithm to process this join-select

as one operator. For each value v ∈ dom(x1), we maintain

Q ′(v, x3, . . . ) in a binary tree by the order of x3. In addition,

we keep a pointer in the binary tree to the predecessor of

πx2
Q(v, x2, . . . ). Note that this pointer allows us to enumer-

ate the full query results with constant delay.

An update may happen in either Q or Q ′. To process an

update inQ ′, we just update the corresponding binary tree in
O(log |db |) time. In this case, the delta of the join-select may

only contain the updated tuple, if it satisfies the condition

x2?x3. Next, consider an update to a tuple t = (x1 = a1, x2 =

a2, . . . ) ∈ Q , changing its x2 attribute to a
′
2
. In this case, we

3
For aggregation queries, the delta will consist of changes in the aggregates.



need to update the pointer to the new location corresponding

to a′
2
. The delta thus consists of all tuples between the old

and new locations of the pointer, which can be enumerated

with constant delay. Note that although we can enumerate

the delta with constant delay, there is no bound on the size

of the delta, so we cannot further apply Theorem 14 after a

join-select.

Join-select-aggregate. A variant of the above join-select

operator is join-select-aggregate:

x1
GAGG(σx2?x3

(Q(x
1
, x2, . . . ) Z Q ′(x1, x3, . . . ))), (4)

namely, after a join-select, an aggregate is computed for each

group of join results sharing the same x1 value (i.e., GROUP
BY x1). The aggregation function AGG can be SUM, COUNT, MAX
or MIN. This composite operator appears in, e.g., TPC-H Q17.

We can use the same algorithm described above to handle

this composite operator in O(log |db |) time. The only dif-

ference is that, in the binary tree on Q ′(v, x3, . . . ), we also
annotate each internal node of the binary tree with the par-

tial aggregate of all tuples in its subtree. For an update in Q ,

we can use the binary tree to recompute the new aggregate

in O(log |db |) time. For an update in Q ′, we can also update

the binary tree in O(log |db |) time and find the delta. Note

that for this operator, the delta has constant size for each

update in either Q or Q ′.

Theorem 15. Suppose Q (resp. Q ′) can be updated in
f (|db |) (resp. f ′(|db |)) time and has |∆Q | = д(|db |) (resp.
д′(|db |)), then
• query (3) can be updated in O(f (|db |) + f ′(|db |) +
(д(|db |) + д′(|db |)) log |db |) time;
• query (4) can be updated in O(f (|db |) + f ′(|db |) +
(д(|db |) + д′(|db |)) log |db |) time and has delta size
O(д(|db |) + д′(|db |)).

TPC-H queries. By combining Theorem 8, 14, 15, and Corol-

lary 11, we are able to handle all the 22 TPC-H queries with

the performance guarantees that depend on λ. In particu-

lar, 5 queries (Q2, Q11, Q15, Q17, Q22) can be updated in

O(λ log |db |) time amortized, while the rest inO(λ) time. Both

full query results and deltas can be enumerated with con-

stant delay, although the delta size may not be bounded if a

join-select is used.

6 EXPERIMENTAL EVALUATION
6.1 System Design
We have implemented our algorithms and built a system

prototype called AJU (Acyclic Join under Updates). We built

AJU on top of Flink, and the update sequence is fed to our

system as a data stream. Each record in the stream specifies

an update, including (1) a flag indicating whether it is an

insertion or deletion; (2) which relation this update is applied

to, and (3) the attributes of the tuple to be inserted, or just

the primary key in case of a deletion.

AJU can be regarded as a query compiler that takes in a

SQL query and produces Flink code that can be executed

by the Flink engine. Its system architecture is shown in Fig-

ure 10. This design allows us to inherent all the benefits of

Flink: good scalability through distributed stream processing,

exactly-once semantics, fault-tolerance, and the ability to

work with a variety of data sources and sinks.

SQL 
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Optimizer
Flink 

CodeGen

Commu-
nication 

Rule

Process 

Function

SQL 
Query

AJU

Data
Source

KeyBy 
Function

Process 
Function

Data
Sink

Flink Backend

Figure 10: System architecture of AJU

More precisely, AJU generates two Flink functions: a

KeyBy function and a Process function. The KeyBy func-

tion instructs Flink on how to dispatch tuples to workers

while the Process function implements the actual query

evaluation algorithms. The data structures needed by the

algorithms are stored as keyed state managed by Flink in a

distributed and fault-tolerant fashion.

To dispatch tuples to workers in a load-balanced fashion,

we adopt ideas from the HyperCube algorithm [3, 6]. The

worker are arranged as a multi-dimensional grid, where each

dimension corresponds to a join key. The dimensions of the

grids are found by solving an optimization problem [3, 6].

Each tuple will be sent to a subset of workers that correspond

to a subspace of the grid, and the hypercube arrangement

guarantees that each join result will be reported by exactly

one worker.

For each relation, AJUwill implement the indexmentioned

in Section 3.3 with standard hash map. In addition, if the

relation needs an extra relation, AJU will keep the extra

information in a hash map, where the key is the primary key

of the extra relation.

At present, the SQL parser and optimizer of AJU are still

under development. Our current prototype takes a manu-

ally written query plan as input and produces Flink code as

output.
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Figure 11: Running time of AJU, DYN, Trill and DBToaster.

6.2 Experimental Setup

Queries and updates.We tested all the 22 TPC-H queries

in our experiments, and used the TPC-H data generator to

generate test data, using a scale factor of 5. We generated

two types of update sequences. The first is a FIFO sequence,

where we first insert 20% of the whole data set. Next, after

inserting each new tuple to the database, we immediately

delete the oldest one from the database. FIFO update se-

quences have λ = 1, so AJU can handle each update in O(1)
time amortized. The other update sequence is more general,

where we adjust the order of the insertions and deletions to

obtain different λ.

Query processing engines compared.We compared AJU

with three continuous query evaluation / incremental view

maintenance systems in our experimental study: (1) the Dy-

namic Yannakakis algorithm (DYN) [14], which is currently

the best algorithm for supporting α-acyclic queries under ar-
bitrary updates; (2) DBToaster [4], which is currently the best

Higher-order Incremental View Maintenance engine, and (3)

Trill [10], which is a continuous query evaluation system

over streaming data using the standard change propagation

framework.

Currently, DYN is not open-source. We obtained its hand-

written code for some of the TPC-H queries. DBToaster is a

general query processing engine that accepts SQL queries

directly. Trill requires the user to provide query plans under

the change propagation framework, using basic relational

operators like join, filter and user-defined aggregation func-

tion. As mentioned in Section 3.5, different queries plans will

affect the performance. During the experiments, we chose

multiple query plans for each query and report the best one.

Trill does not support all relational operators, and as a re-

sult, we were not able to write Trill plans for Q11, Q17, and

Q20-22.

Experimental environment. All experiments were per-

formed on a machine equipped with an 8-core Intel Xeon

E5-2682v4 2.5 GHz processor. Since DYN, DBToaster, and

Trill are all centralized, to obtain a fair comparison, we also

ran AJU in single-thread standalone mode. In addition, when

testing AJU in the distributed setting, we used a small cluster

of 3 such machines. All machines are running Linux, with

Scala 2.11.8, JVM 1.8.0, .NET Core 2.1.504 and Flink 1.6.1.

Each query was evaluated 10 times with each engine and

we report the average wall-clock time. We allocated 32 GB

of main memory to the JVM and forced garbage collection

before each test. We ran each experiment with a two-hour

timeout, not including I/O.

6.3 Experiment Results

Running time comparison. Figure 11 shows the running
times of the four systems on the FIFO update sequence for

all 22 TPC-H queries. Missing results are due to the query

not supported, no code (in the case of DYN), or exceeding

the two-hour time limit.

From the results, we can draw the following observations.

(1) On α-acyclic join queries, AJU provides a speedup of 2x

to 10x compared with DYN, 2x to 80x compared with Trill

and 5x to 800x compared with DBToaster. Meanwhile, recall

that among these queries, DYN provides constant update

time guarantee only on Q1, while AJU provides this guar-

antee on all of them, though this constant depends on the

query. (2) On queries that DYN cannot handle, AJU is 5x

to 30x faster than Trill, while DBToaster is 2 to 4 orders of

magnitude slower than AJU and Trill. (3) The experiment

results also suggest AJU performs better at those queries

with complex aggregation functions. For example, TPC-H

Q1 does not require any join between tables but contains

8 aggregation functions, where Trill performs much worse

than AJU or DYN. One possible reason is that Trill handles

these aggregations separately, while AJU and DYN consider

them as one aggregation.
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Figure 12: Processing time for Q5, Q13, Q15 under different scale factor
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Figure 13: Memory consumption of AJU, Trill, DYN
and DBToaster

Scalability. To test the scalability of AJU, we varied the data
size with the scale factor ranging from 0.05 to 5. The update

sequences are still FIFO. The experimental results are shown

in Figure 12, running on Q5, Q13 and Q15, respectively. First,

from the results we see that the running time of AJU scales

linearly as the number of updates (please note that both x-
axis and y-axis use logarithmic scale). This is to be expected,

since AJU spends constant time processing each update on

FIFO update sequences. Although the theoretical update time

is O(log |db |) on Q15, the MAX aggregate can be maintained

in O(1) time in practice by the technique of [23].

Comparison between query plans. As mentioned in Sec-

tion 3.5, under the standard change propagation framework,

one has to choose an appropriate query plan. Theorem 11

suggests that the plan corresponding to our algorithm is

optimal, while a sub-optimal plan might have a much worse

performance. To verify this claim in practice, we used two

query plans on Trill to run Q5, one following Theorem 11

and one does not. The experiment result is shown in Fig-

ure 12(a). As we can see, the running time of optimal query

plan scales linearly as the number of updates, but the worst

query plan scales exponentially. In fact, with the worst plan,

Trill broke down after running 1 hour on the 5 GB data set.

Memory consumption. Figure 13 shows the memory con-

sumption of the four systems. Compared to Trill, AJU and

DYN only require 1% to 30% memory consumption. This is

expected, as AJU and DYN does not materialize any auxiliary

views, but Trill needs to materialize some auxiliary views fol-

lowing the change propagation framework. Figure 14 shows

the memory consumption of AJU and Trill on Q5 with dif-

ferent scale factors ranging from 0.1 to 5. As we can see, the

memory consumption of AJU scales linearly as the instance

size, and consistently uses less memory than Trill, even with

best query plan.

Comparison on different λ. By our analysis, the update

cost of AJU closely depends on λ, the enclosureness of the
update sequence. To verify this claim, we tested Q5 and Q13

on different update sequences that has the same length but

different λ. The experiment result is shown in Figure 15 (note

that both x-axis and y-axis use logarithmic scale). For Q5,

we see that indeed, the processing time of AJU increases as

λ, which is expected. On the other hand, Trill cannot finish

the test point with λ = O(|db |).
For Q13, on the other hand, we see that the running time

of AJU does not increase as λ. This is because Q13 is a simple

two-way join plus two group-by aggregations. In fact, it

can be shown that our algorithm can achieve constant-time

update on arbitrary update sequences. Note that this does not

contradict our lower bound, which only says that for certain
queries, one cannot achieveO(λ1−ϵ ) time. On the other hand,

DYN failed to finish the test point with λ = O(|db |) after
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Q5 under different scale factor
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Figure 15: Processing time for Q5 and Q13 under different λ
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Figure 16: Processing time for Q5 and Q13 under different parallelism
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Figure 17: Enumeration latency.

Latency in delta enumeration.We also measured the la-

tency in delta enumeration, i.e., the time from the inser-

tion/deletion of a tuple to the output of its corresponding

delta in the query result. The results are shown in Figure 17.

As expected, due to the fast update time, AJU yields lower

latency than the other systems.

Distributed query processing. Finally, to test the perfor-

mance of AJU in a distributed environment, we built a small

cluster of 3 machines, and varied the parallelism from 1 to 12.

We could not perform this experiments with the other three

systems as they do not support distributed query processing.

The result is shown in Figure 16(a) and 16(b) for query 5 and

query 15, using FIFO update sequences. As we can see, we

obtain further speedups as we increase the parallelism. How-

ever, the marginal gain gets smaller as we add more workers.

This is in fact to be expected, since by the HyperCube analy-

sis, the speedup of using p workers to process a k-way join

is on the order of p1/k
, i.e., sublinear in p. In addition, Flink

has more scheduling overhead when managing more worker

nodes.

7 CONCLUSIONS
In this paper, we have presented a new algorithm for eval-

uating acyclic multi-way joins under updates, whose cost

depends on the enclosureness, a measure we introduce to

capture the inherent hardness of the update sequence. For

many practically relevant scenarios, such as insertion-only,

first-in-first-out, the enclosureness is a small constant, but

can be high in the worst case. We also present a lower bound

showing that the update sequences with high enclosureness

are inherently difficult to handle. Based on this core algo-

rithm, as well as a number of other relational operators, we

built AJU, a continuous query evaluation system on top of

Flink. AJU is able to handle all the 22 TPC-H queries with

provable performance guarantees.
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