

The power of buffering

- For numerous dynamic data structure problems in external memory, updates can be buffered.
 - Buffer tree [Arge 1995]
 - Logarithmic method [Bentley 1980] + B-tree

The power of buffering For numerous dynamic data structure problems in external memory, updates can be buffered. Buffer tree [Arge 1995] Logarithmic method [Bentley 1980] + B-tree problem cache-oblivious update query stack trivial O(1/b)trivial O(1/b)queue [Arge et. al. STOC 02] $O(\frac{1}{h}\log_h n)$ priority-queue trivial predecessor $O(\frac{1}{h}\log n)$ $O(\log n)$ range-sum $O(\frac{b^{\epsilon}}{b}\log n) \mid O(\log_b n)$ [Brodal et. al. this SODA] range-reporting

b: size of a block/cell (in words)

How about Dictionary and Membership?

- Dictionary and membership (selected)
 - Knuth, 1973: External hashing Expected average cost of an operation is $1 + 1/2^{\Omega(b)}$, provided the load factor α is less than a constant smaller than 1. (truly random hash function)
 - Data structures like Arge's Buffer tree:
 Update = $O(\frac{b^{\epsilon}}{b} \log n)$, Query = $O(\log_b n)$.

How about Dictionary and Membership?

- Dictionary and membership (selected)
 - Knuth, 1973: External hashing Expected average cost of an operation is $1 + 1/2^{\Omega(b)}$, provided the load factor α is less than a constant smaller than 1. (truly random hash function)
 - Data structures like Arge's Buffer tree:
 Update = $O(\frac{b^{\epsilon}}{b} \log n)$, Query = $O(\log_{b} n)$.

Question: can we improve the amortized update cost to o(1) in external memory, without sacrificing the query speed by much?

The conjecture

A long-time folklore conjecture in external memory community: (explicitly stated by Jensen and Pagh, 2007)

 t_u must be $\Omega(1)$ if t_q is required to be O(1)

 t_u : expected amortized update cost

 t_q : expected average query cost

The conjecture

A long-time folklore conjecture in external memory community: (explicitly stated by Jensen and Pagh, 2007)

- t_u must be $\Omega(1)$ if t_q is required to be O(1)Our small step: ≤ 1.1
- t_u: expected amortized update costt_q: expected average query cost

Problems

Membership: Maintain a set $S \subseteq U$ with $|S| \leq n$. Given an $x \in U$, is $x \in S$? Yes or No.

Dictionary: If $x \in S$, return associated info, otherwise say No. Often assumes "indivisibility".

Objective: Tradeoff between update cost t_u and query cost t_q

Two of the most fundamental data structure problems in computer science!

The computational model	
The cell probe model [Yao 1981] with a conter preserving cache	nt
A data structure is a collection of <u>b</u> -bit cells	
Cost of an operation: # of cells read/change	d
• A cache of m -bits; probing the cache is free	

The cache may not affect t_q by much, but does affect t_u in almost all common data structures (typically o(1)).

Let's go!

Membership

Problem: Maintain a set $S \subseteq U$. Given $x \in U$, is $x \in S$?

Goal: tradeoff between t_u and t_q

Membership $t_q = 1 + \delta$ $(0 \le \delta < 1/2)$ [this paper] Without indivisibility assumption Dictionary (successful) [SPAA 09] Wei, Yi and Zhang

- A model for queries
- Deterministic algorithm + random update sequence

- A model for queries
- Deterministic algorithm + random update sequence

Can be extended to:

- randomized algorithm
- the case with error

- A model for queries
- Deterministic algorithm + random update sequence

Can be extended to:

- randomized algorithm
- the case with error

Future work

Preliminaries

u $U = \{0, 1, \dots, u - 1\}$: universe. |U| = u.

\square *m*: size of cache. In bits.

b: size of one cell. In bits.

n: total number of inserted elements.

\square S: set of elements we are maintaining. $|S| \leq n$

Preliminaries

u $U = \{0, 1, \dots, u - 1\}$: universe. |U| = u.

m: size of cache. In bits.
 b: size of one cell. In bits.

n: total number of inserted elements.

\square S: set of elements we are maintaining. $|S| \leq n$

A very mild assumption

 $\square \ u \ge \Omega(n) \ge \Omega(mb)$

Consider queries at the final snapshot of a round.

1. The cache alone cannot answer too many queries. Intuition: $2^m \ll {u \choose \epsilon \cdot n}$

Consider queries at the final snapshot of a round.

1. The cache alone cannot answer too many queries. Intuition: $2^m \ll {u \choose \epsilon \cdot n}$

For a fixed cache state M

2. At any time $\geq \Omega(n)$ insertions, $\# \text{ of } x \text{ "} \mathcal{D}(x) = *$ " is small. Reason: by the constraint $t_q \leq 1.1$ answer is unknown

answer is unknown after 1 disk probe

Consider queries at the final snapshot of a round.

1. The cache alone cannot answer too many queries. Intuition: $2^m \ll {u \choose \epsilon \cdot n}$

For a fixed cache state M

- 2. At any time $\geq \Omega(n)$ insertions, # of x " $\mathcal{D}(x) = *$ " is small. Reason: by the constraint $t_q \leq 1.1$ answer is unknown after 1 disk probe
- 3 (because of 2). Cell selector $\pi(\cdot)$ used has to be balanced. Intuition: otherwise the data structure will not be correct, under a random insertion sequence w.h.p.

Let $\alpha_i = |\{x \mid \pi(x) = i\}|/u$. $\pi(\cdot)$ is balanced if there are not too many $\alpha_i \ge \Omega\left(\frac{b}{n}\right)$

Consider queries at the final snapshot of a round.

1. The cache alone cannot answer too many queries. Intuition: $2^m \ll {u \choose \epsilon \cdot n}$

For a fixed cache state M

- 2. At any time $\geq \Omega(n)$ insertions, # of x " $\mathcal{D}(x) = *$ " is small. Reason: by the constraint $t_q \leq 1.1$ answer is unknown after 1 disk probe
- 3 (because of 2). Cell selector $\pi(\cdot)$ used has to be balanced. Intuition: otherwise the data structure will not be correct, under a random insertion sequence w.h.p.

 $1 + 3 \Rightarrow 4$. In a round, inserted elements' query paths go to many different cells after probing the cache.

High level ideas of the proof (cont.)

5. $\Omega(s)$ cells have to change.

Intuition: new elements are chosen randomly from U. For cell i, no matter what B_i^{pre} is, if $\{f_{M,B_i^{\text{post}}}(x) \mid \pi_M(x) = i\}$ contains few "*", then $B_i^{\text{pre}} \neq B_i^{\text{post}}$ with high probability.

High level ideas of the proof (cont.)

5. $\Omega(s)$ cells have to change.

Intuition: new elements are chosen randomly from U. For cell i, no matter what B_i^{pre} is, if $\{f_{M,B_i^{\text{post}}}(x) \mid \pi_M(x) = i\}$ contains few "*", then $B_i^{\text{pre}} \neq B_i^{\text{post}}$ with high probability.

Finally,

- (2) (5) hold with high probability $(1 e^{-\Omega(n)})$, therefore hold for all 2^m states of M w.h.p.
- Total cost per round is $\Omega(s)$
- Amortized cost per insertion is at least $\Omega(s) \cdot (1 \sigma)n/s \cdot 1/n \ge \Omega(1).$

High level ideas of the proof (cont.)

5. $\Omega(s)$ cells have to change.

Intuition: new elements are chosen randomly from U. For cell i, no matter what B_i^{pre} is, if $\{f_{M,B_i^{\text{post}}}(x) \mid \pi_M(x) = i\}$ contains few "*", then $B_i^{\text{pre}} \neq B_i^{\text{post}}$ with high probability.

Finally,

- (2) (5) hold with high probability $(1 e^{-\Omega(n)})$, therefore hold for all 2^m states of M w.h.p.
- Total cost per round is $\Omega(s)$
- Amortized cost per insertion is at least $\Omega(s) \cdot (1 \sigma)n/s \cdot 1/n \ge \Omega(1).$

Finished

Futher work

We still cannot handle fast updates.

e.g. if $t_u = O(1/b)$, $t_q = \Omega(n^{\epsilon})$?

Futher work

- We still cannot handle fast updates. e.g. if $t_u = O(1/b)$, $t_q = \Omega(n^{\epsilon})$?
- Lower bounds of other dynamic problems in the external memory.
 - e.g., for union-find, need super-log query time if we want to batch up the updates?Call for new techniques?

Futher work

- We still cannot handle fast updates. e.g. if $t_u = O(1/b)$, $t_q = \Omega(n^{\epsilon})$?
- Lower bounds of other dynamic problems in the external memory.
 - e.g., for union-find, need super-log query time if we want to batch up the updates?Call for new techniques?
- Can we simplify the complicated combinatorial proof?
 Use, e.g., encoding arguments like Pătrașcu-Viola.

