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ABSTRACT
The massive adoption of smart phones and other mobile devices
has generated humongous amount of spatial and spatio-temporal
data. The importance of spatial analytics and aggregation is ever-
increasing. An important challenge is to support interactive explo-
ration over such data. However, spatial analytics and aggregation
using all data points that satisfy a query condition is expensive,
especially over large data sets, and could not meet the needs of
interactive exploration. To that end, we present novel indexing
structures that support spatial online sampling and aggregation on
large spatial and spatio-temporal data sets. In spatial online sam-
pling, random samples from the set of spatial (or spatio-temporal)
points that satisfy a query condition are generated incrementally in
an online fashion. With more and more samples, various spatial
analytics and aggregations can be performed in an online, interactive
fashion, with estimators that have better accuracy over time. Our
design works well for both memory-based and disk-resident data
sets, and scales well towards different query and sample sizes. More
importantly, our structures are dynamic, hence, they are able to deal
with insertions and deletions efficiently. Extensive experiments on
large real data sets demonstrate the improvements achieved by our
indexing structures compared to other baseline methods.

1. INTRODUCTION
The increasing presence of smart phones and other mobile devices

has generated humongous amounts of spatial and spatio-temporal
data. Spatial and spatio-temporal analytics and aggregation over
such data has become a building block for many such applications.
As a result, their importance cannot be overemphasized. Even
though various forms of spatial and spatio-temporal analytics and
aggregations have been extensively studied in the field, the ever-
increasing size of spatial and spatio-temporal data sets introduces
new challenges. In particular, when the underlying data set is large,
reporting all points that satisfy a query condition could be expensive,
since there could be simply too many points that satisfy a query.
The CPU cost of performing an analytical task or computing an
aggregation using all these points adds additional overhead, and
may not scale well with large numbers of points. Hence, waiting for
the exact analytical or aggregation results may take a long time.
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The good news is that often users do not need exact results;
instead, they are happy with approximations, especially if these
approximations come with quality guarantees. It is even better
if the approximation quality gradually improves over time in an
online fashion, while the query is being executed. This observation
motivates us to design a knob that allows users to adjust the trade-off
between query cost and approximation quality. It is important to
make this knob online and let users be able to tune the knob in real
time as needed, which enables interactive exploration/analytics over
large spatial and spatio-temporal data sets.
Interactive spatial exploration and analytics. Spatial and spatio-
temporal data are particularly suited for interactive exploration,
given the popularity of different online map services.

For example, a user wants to understand the sale operations in
NYC over the first quarter. But s/he wants to understand his/her
data for different area and time range combinations in this spatial
and temporal region. So s/he could zoom in to a particular area
from NYC on a map and specify between January 1 to March 2,
and ask for the average price for all sale transactions. In interactive
exploration, or formally interactive analytics, the user wants to be
able to change his/her query condition without the need of waiting
for the current query to complete. In other words, in the above
example, the user may change to a different area in NYC and/or
adjust the time range to between January 15 and March 12, while
the first query is still being executed.

On big spatial and spatio-temporal data sets, as explained above,
waiting for exact results may take a while. The user faces a dilemma:
either waits for the current query to complete or terminates the
current query and issues the new query. Another possibility is to
issue multiple queries in parallel and wait for all of them to complete
eventually. But this does not solve the latency issue, and is clearly a
waste of resources. Suppose the user is interested in finding a region
with a particular feature (e.g., high average salary). With interactive
exploration, s/he would be able to do some kind of binary search,
using only a logarithmic number of queries. Without interactivity,
a linear number of parallel queries would be needed, which is an
exponential blowup.

The knob we have envisioned above solves the dilemma. The
system provides a user with real-time feedback to his/her query from
the start of query execution, and the quality of the feedback improves
over time. The user can terminate the current query execution
anytime (e.g., when s/he is satisfied with the quality of the query
result) and change to a new query, without the worry that time spent
on the current query so far was wasted. Alternatively, a user may
specify a desired accuracy requirement and the system will stop the
query execution automatically whenever the approximation quality
has reached the specified level for a given query.



In the above example, assume that after 1 second into the execu-
tion of the first query, system reports that the average price is $278
with a standard deviation of $15 and 95% confidence, if the user
is happy with the quality of this estimation, s/he can immediately
change the query condition to stop the first query and start the sec-
ond query. S/he could also wait a bit longer for better quality, say,
using 1.5 seconds, system now reports the average price for the 1st
query as $276 with a standard deviation of $5 and 98% confidence.
This happens online in a continuous fashion. So the user could
monitor the feedback in real time and make such decision anytime
during the query.

Furthermore, for queries of his/her choice (e.g., a mission critical
task), s/he also has the option of waiting for the complete execution
of a query to get exact results. Lastly, note that parallel execution of
multiple queries at once is an orthogonal approach. Users still have
that option, but with the added flexibility of terminating/updating
any query at any time instance.
Spatial online sampling and aggregation. Random sampling is a
fundamental and effective approach for dealing with large data sets,
with a strong theoretical foundation in statistics supporting its wide
usage in a variety of applications that do not require completely
accurate answers. The use of random sampling for approximate
query processing in the database community also has a long history,
notably with line of work on online aggregation [13]. In online
aggregation, instead of evaluating a potentially expensive query
until the very end, we repeatedly take samples from all tuples that
satisfy the query condition, and continuously compute the required
aggregate based on the sampled tuples returned so far. The accuracy
of the computed aggregate gradually improves as we get more and
more samples, which is measured by confidence intervals, and the
user may stop the query processing as soon as the accuracy has
reached a satisfying level. Recently, online aggregation has received
revived attention [17, 30], as an effective tool for answering “big
queries” that touch a huge number of tuples but the user can often
be satisfied with just an accurate enough aggregate.

However, past work on online aggregation has focused on rela-
tional aggregates, group-by, and join queries [11, 13, 17, 30], on
relational data. In this paper, motivated by the needs for interactive
spatial exploration and analytics, we study this problem over spatial
and spatio-temporal data. Since the statistical side of online aggrega-
tion is relatively well understood [11, 13, 17, 23, 30], which we will
discuss briefly in Section 6, the problem essentially reduces to that
of online query sampling, i.e., how to repeatedly sample a tuple from
the query until the user says “stop”. On spatial and spatio-temporal
data, this problem can be formally defined as follows.

Definition 1 (Spatial online sampling) Given a set of n points P
in a d-dimensional space, store them in an index such that, for a
given range query Q, return sampled points from Q∩P (with or
without replacement) until the user terminates the query.

Spatial online aggregation is a direct product of spatial online
sampling, where online estimators for different types of spatial and
spatio-temporal aggregates, like sum or average, are built using
spatial online samples. A spatial online estimator ideally should
be an unbiased estimator, and its estimation quality, characterized
by confidence intervals, improves over time in an online fashion
while more spatial samples are obtained. This concept can be further
generalized beyond simple aggregates to a wide range of analytical
tasks, like spatial clustering, spatial kernel density estimate (KDE).
More details on this topic are provided in Section 6.
Our contributions. We formalize the problem of spatial online
sampling (and aggregation) in this paper. We show the limitations
of existing approaches when they are adapted to this setting, and

propose novel indexing structures that are much more efficient and
scalable. They also support dynamic updates. In summary,

• We formalize the problem of spatial online sampling and
review how one may adapt existing methods to solve this
problem in Section 2. We show that these approaches suffer
from various types of limitations.
• We present two baseline methods QueryFirst and SampleFirst

in Section 3.
• We design a new indexing structure, LS-tree, in Section 4 that

is based on the idea of “level sampling”. It is a collection of
R-trees where each R-tree indexes a set of samples from the
original data set. The sample rates for these sets of samples
form a geometric series.
• The LS-tree needs to maintain and query multiple trees, which

in practice may not be ideal. We design another new indexing
structure, RS-tree, in Section 5 that needs to build, main-
tain, and query a single R-tree, by embedding samples into
the R-tree. We show how we can tailor this structure for
memory-based, disk-resident, and hybrid scenarios.
• We extend the discussion to spatial online aggregation and

analytics in Section 6.
• We present extensive experimental results using two real data

sets in Section 7. The results confirm the superior perfor-
mance achieved by LS-tree and RS-tree compared to baseline
methods. In particular, RS-tree performs the best in practice
for nearly all experiments. We also show that both LS-tree
and RS-tree support dynamic updates efficiently.

In addition, the paper reviews other related work in Section 8,
and concludes the work in Section 9.

P The raw data set in Rd .
k The number of samples to report.

N |P|, the size of the raw data set.
Q A range query in Rd .

PQ P∩Q, elements in the query range.
q |PQ|, the number of elements in the query range.

u,v, · · · Tree nodes.
T (u) The subtree rooted at node u.
P(u) The set of all data points covered by T (u).
R(u) The MBB of P(u).
h(T ) The height of the subtree T .
f (T ) The fanout of tree T .

RQ The canonical set for Q.
r(N) The size of a canonical set in a R-tree of size N.

B The size of a disk block.
s The sample buffer size in RS-tree.

Table 1: Notation used in the paper.

2. PRELIMINARIES
Sampling with and without replacement. There are two com-
monly used random sampling methods: sampling with replacement
and sampling without replacement. The former repeatedly samples
a point from an underlying population, and the sampled point is then
immediately put back to the population (so the same point may be
sampled multiple times). The latter, on the other hand, does not put
a sampled point back. Strictly speaking, most formula on computing
confidence intervals hold only for sampling with replacement, but
the statistical difference between the two methods is quite small,
especially when the sample size is much smaller than the population
size. If needed, a sample obtained by sampling without replacement



Algorithm Query Time Query I/O Update Time Update I/O
QueryFirst r(N)+q r(N)+q/B logN logB N
SampleFirst kN/q kN/q logN logB N
RandomPath k logN k logB N logN logB N
RandomShuffle kN/q kN/(qB) logN logB N
LS-tree ∑

`
j=log(q/k) r

( N
2 j

)
+ k ∑

`
j=log(q/k) r

( N
2 j

)
+ k/B logN 1

B logN
RS-tree r(kN/q)+ k r(kN/q)+ k/B logN 1

B logN

Table 2: Comparison of various algorithms.

can be converted to a sample with replacement, provided that we
are also given the population size. Thus, mostly we will consider
both methods acceptable.
R-trees. The R-tree is a classic and popular index structure for multi-
dimensional data [10], which is often used to answer spatial range
queries. A large number of R-tree variants exist in the literature. We
will also use an R-tree to index our point set P. As our methods can
be applied to any R-tree variant, we will not be specific about which
R-tree variant is used.

Recall that an R-tree is similar to a B-tree in terms of the structure.
All the points are stored on the leaf level, while an internal node
stores the minimum bounding box (MBB) of all the points below.
For a node u in an R-tree, we use T (u) to denote the subtree rooted
at u, P(u) the set of data points stored below u, and R(u) the MBB
at u. Please see Table 1 for a list of symbols used in this paper.

To answer an (ordinary) range reporting query Q with an R-tree,
we start from the root and make a top-down traversal of the tree, and
visit a node u if and only if R(u)∩Q 6= /0. The cost of this query
consists of two components. For any node u such that R(u) ⊆ Q,
all the points stored in its subtree are reported, so the total cost of
accessing all such nodes is O(q), where q = |PQ| is the number of
points in the query range. Thus this part of the cost is “mandatory”
as q is the output size. The other type of nodes u accessed are those
such that R(u)∩Q 6= /0 but R(u) 6⊆Q. These are the nodes with their
MBBs on the boundary of Q or entirely contains Q. The cost of
accessing these nodes is the “overhead” we pay to answer the query.
We call these nodes the canonical set for Q, denoted as RQ. On
adversarial inputs, there can be as many as O(N) canonical nodes.
But on most real-world data, |RQ| is actually very small when the
R-tree is properly constructed. Therefore, it is meaningless to do
any worst-case analysis and we will simply use r(N) to denote the
size of the canonical set in an R-tree built on a set of N points in the
“typical” case1.

Using these notations, the cost of executing a range reporting
query is O(r(N)+q). For the spatial sampling problem, which is
the focus of this paper, the purpose is exactly to avoid executing the
query in its entirety, i.e., the O(q) term. The O(r(N)) term, on the
other hand, is the cost of “locating” the query in the R-tree, so is
probably unavoidable. Thus, the goal is to solve the spatial online
sampling problem in time O(r(N)+ k), where k is the number of
sampled points returned to the user. One additional challenge is that
the value of k is not known to the algorithm in advance; instead, it
is decided by the user on-the-fly.

As it turns out, we can actually do slightly better than O(r(N)+k),
the intuition being that to return a sample of Q, we do not have to
locate the boundary of Q precisely in the R-tree. Table 2 lists the

1We note that if one uses the priority R-tree [4], then r(N) =O(
√

N)
in the worst case. However, the priority R-tree is not as widely used
as other R-tree variants, such as the R*-tree and Hilbert R-tree,
which have a smaller r(N) in practice, although r(N) = O(N) in
the worst case. Thus, we still prefer to use a generic function r(N)
rather than instantiating it into any worst-case bound.

query and update costs of various solutions that will be presented in
the rest of the paper.
External memory indexing. We will consider both internal and
external memory indexing schemes for the spatial sampling problem.
For an R-tree in internal memory, the size of a node is a constant,
while it equals the disk block size B if it is stored in external memory.
For an index stored in external memory, we are primarily interested
in the I/O cost of answering queries and performing updates. When
the R-tree is stored in external memory, we assume that part of the
R-tree is cached in main memory, and that all the k samples can fit in
memory. We feel that this is a reasonable assumption as for nearly
no aggregation tasks will we ever need more than a few million
samples.

In order to facilitate query processing for spatial sampling, for
each node u in the R-tree, in addition to the MBB, we also assume
that |P(u)|, i.e., the number of points stored below u, is stored at u.
This count can be easily computed at construction time, as well as
maintained under insertions and deletions. Note that for a memory-
resident R-tree, this count (as well as the MBB) can be stored at the
node u itself. However, for a disk-based R-tree, this metadata has to
stored at its parent together with the pointer pointing to u, so as to
avoid unnecessary I/Os.

3. BASELINE ALGORITHMS
In this section, we first present three baseline methods that are

very natural solutions to the problem of spatial online sampling.
Two most straightforward methods for this problem would be

QueryFirst and SampleFirst:

QueryFirst Calculate P∩Q first, then repeatedly extract a sample
from the set upon request.

SampleFirst Upon request, pick a point randomly from P and test
if it is within Q. Return the sample if so, otherwise dispose it
and repeat.

The running time of QueryFirst is O(r(N)+ q), the same as a
full range reporting query. For SampleFirst, because a randomly
picked point falls inside Q with probability q/N, we expect to draw
O(N/q) samples in order to see one inside. Thus, the expected
cost of SampleFirst is O(kN/q). This could be good for very large
q, say, a query that covers a constant fraction of P. However, for
most queries, this cost can be extremely large. If q = 0, it never
terminates.

A better solution is to adapt the random sampling method of
Olken [26] to R-trees. His method takes a sample from PQ by
walking along a random path from the root down to the leaf level.
When deciding which branch to take, the subtree sizes |P(u)| need
to be taken into consideration so that the probabilities can be set
appropriately. More specifically, it finds the canonical cover for
the input range query using a count tree over P (e.g, an aggregate
R-tree). For each subtree within the canonical cover, it is sampled in
proportion to the number of data elements included by its leaf level.



Once such a subtree T is sampled, the same process is recursively
carried out within T .

This way, a sample can be obtained in O(logN) time. Over k sam-
ples, the total time is O(k logN). We call this method RandomPath.
It is reasonably good, but only in internal memory. When the R-tree
resides on disk, each random path may involve a traversal in a com-
pletely different part of the R-tree, resulting in at least Ω(k) I/Os in
total, which is very expensive.

A variant of SampleFirst, which we call RandomShuffle, is to
perform a linear scan on a random permutation of the data, until k
points in the query range have been found. The expected query cost
is then reduced to O(kN/(qB)). The algorithm also enjoys a speedup
factor in practise, as the elements are always read sequentially.
On the other hand, unlike SampleFirst, RandomShuffle cannot be
applied on an existing indexing structure, and a shuffled copy of the
data set must be stored.

Because of that, update cannot be performed efficiently this way
in RandomShuffle, especially to remove an element we might need
to scan the whole data set. To fix this, instead of truly randomly
shuffling the data, we assign a random ID for each data element, and
build a B-tree on it. The random ID of an element may be obtained
by hashing some attributes of the element so we will be able to
locate and delete any item.

4. THE LS-TREE
In this section, we present the LS-tree, our first index structure

for the spatial online sampling problem. It is based on the “level
sampling” idea, which is perhaps known as a folklore.

Starting from S0 = P, we build Si+1 by independently sampling
each point from Si with probability 1/2, and stop until we have an
S` that only has constant size. Then we build an R-tree Ti for each
Si, for i = 0,1,2, . . . , `. Note that in expectation, we have O(logN)
R-trees. Since their sizes form a geometric series, the total size is
still O(N).

Upon a query Q, we simply execute an ordinary range reporting
query on the R-trees in turn T`,T`−1, . . . ,T0. Note that from Ti, each
reported point is sampled with probability 1/2i independently, and
all must fall inside Q. Thus, they form a probability-(1/2i) coin-
flip sample of PQ. To turn this into a sample without replacement,
according to [7], we just need to perform a random permutation,
and start to report the points to the user one by one, until the user
terminates the query, or all samples are exhausted. In the latter
case, we move on to the next R-tree Ti−1. Since S j ⊆ Si if j > i, we
need to make sure that any sample must not be reported twice, by
maintaining a set of all the samples that have been reported.

Suppose the user terminates the query after receiving k samples.
Then in expectation, we have reached tree Tj such that q/2 j ≈ k,
i.e., j = log(q/k). Thus, the total query cost (in expectation) is

`

∑
j=log(q/k)

(
r
(

N
2 j

)
+

q
2 j

)
= O(k)+

`

∑
j=log(q/k)

r
(

N
2 j

)
.

The O(k) term is quite satisfying, though the second term looks
ugly. If r(N) = O(

√
N) as in the priority R-tree, then the sum

(asymptotically) reduces to the largest term, i.e., O(r(Nk/q)). How-
ever, for other R-tree variants, we cannot make this simplification,
and that part of the cost can be as large as O(log(q/k)) times the
overhead of one R-tree.

This solution works well in external memory, since the query on
each R-tree is just a normal R-tree range query.
Query (non-)independence. One issue with the LS-tree is that
of query independence. From the construction of the LS-tree, it
is clear that the samples returned for one query are independent.

But if the user issues the same query again, the same samples
will be returned, i.e., samples returned for different queries are not
independent. However, we argue that this should not be a serious
issue. First, since sampling is online, if a user issues the same query
again and wants different and independent samples, s/he could
just continue the previous query with a larger k. Secondly, if two
different users issue the same query, then it is probably OK to return
the same samples to the two different users. Third, precomputing
the samples, as done in LS-tree, is important for query efficiency
and scalability. If queries are to be independent, then samples must
be taken on-the-fly, which is extremely slow, especially in external
memory (as done as in the baseline solutions). Very recently, Hu
et al. [14] proposed indexing structures that achieve independent
query sampling without expensive I/O costs (theoretically), but their
structures work only on one-dimensional data, are very complicated
and of only theoretical value. In addition, the structure of their index
changes during the querying process, which means that only one
query can be processed at a time, resulting in poor concurrency.
Finally, we can always reconstruct the samples periodically (say,
every evening), as done in BlinkDB [2], which is another query
sampling system that is also based on precomputed samples.

5. THE RS-TREE
The LS-tree is a simple structure that supports spatial online

sampling, but it suffers from a couple of drawbacks. First, it consists
of multiple R-trees, which may lead to additional system overhead.
And second, its query performance is not ideal, as shown in Table 2.

In this section, we introduce our second index structure, the
RS-tree, which addresses these drawbacks.

5.1 In-memory structure
The design of the RS-tree is based on the following three ideas.

Sample buffering. In LS-tree, we build a separate R-tree on each
level of samples, which are stored at the leaves of the R-tree. This in-
troduces additional overhead in retrieving these samples. In RS-tree,
we attach a buffer of sampled points to each internal node u of the
R-tree, which are taken randomly from u’s subtree with replacement.
The sample buffer attached at node u is denoted as Samples(u),
and we set its size at s, for some s to be decided later. This way,
we integrate searching and sampling in one go, which improves
performance and removes the need to have multiple R-trees.

Note that for a node u with |P(u)| ≤ 2s, we will not attach a
sample buffer, since its subtree is already small enough, and we can
simply go directly to its leaves to get the actual data points instead.
Therefore, the total size of all the sample buffers is still O(N).
Rejection sampling. Having a sample buffer attached to each inter-
nal node of the R-tree means that we can start reporting samples in
the very beginning, even at the root of the R-tree. However, since
the samples in the buffer are taken from the entire R-tree, many of
them may not be inside the query Q. Thus, we only return samples
that are actually inside Q, and reject the rest. This idea, known as
rejection sampling, is a common technique to draw values from
some arbitrary distribution. Similarly, we apply this technique at
each internal node u that we encounter in the query process.
Lazy exploration. The first two ideas naturally leads to the third
idea, that of lazy exploration. As the sampling is online, we should
not do more than what the user asks for. Thus, we start from the root
of the R-tree, and visit its children only after its sample buffer is
exhausted (either reported or rejected). We do recursively for each
internal node visited in the top-down traversal. This way, we make
sure only the nodes we have to access get visited. This idea exactly
captures the intuition that for query sampling, we do not have to



locate the query Q accurately in the R-tree. In particular, if the node
has a small subtree, even if its MBB intersects the boundary of Q, it
may not get visited, as the probability of reaching that node is small.
So we do not even need to visit all the canonical nodes RQ, which is
necessary for a range-counting query.

Query algorithm
With the ideas above, the query algorithm follows quite straight-
forwardly. The algorithm essentially mimics SampleFirst, but in a
much more efficient manner.

More precisely, we maintain a list Frontier of nodes that we
want to take samples from. Initially, only the root of the R-tree
is in Frontier. Then, we repeatedly sample a node from Frontier,
with probabilities proportional to the |P(u)|’s. After a node u is
selected, we extract the next sample point stored in Samples(u). If
it is inside Q, we report it; otherwise we reject it. When Samples(u)
is exhausted, we remove u from Frontier and add all its children to
Frontier. The process repeats until user termination. The detailed
algorithm is described in Algorithm 1.

Algorithm 1: Querying an RS-tree

Input: tree T ; range query Q
Output: random samples from P∩Q

1 Frontier←{root node of T};
2 while need more samples do
3 if Frontier = /0 then return P∩Q = /0 ;
4 u← a randomly picked node from Frontier with

probability proportional to |P′(u)|, P′(u) = P(u) initially
and is defined in line 8;

5 if R(u)∩Q = /0 then
6 Remove u from Frontier;
7 else if Samples(u) does not exist then
8 e← a random sample from P′(u), where P′(u) contains

only non disabled elements in P(u);
9 if e ∈ Q then Report e as a sample ;

10 else if e /∈ Q then
11 Flag e as “disabled” in P(u)

12 else
13 e← the next sample from Samples(u);
14 if e ∈ Q then Report e as a sample ;
15 if there are no more samples in Samples(u) then
16 Remove u from Frontier;
17 Add u’s children to Frontier;

Query cost analysis
Suppose the algorithm is terminated after k samples have been re-
ported. Then all the nodes visited by the algorithm form a tree rooted
at the root of the R-tree, with Frontier at the bottom. Consider any
R-tree node u visited. It is either a canonical node, or its MBB is
entirely inside Q. There are r(N) canonical nodes. This bound can
be further improved since not all canonical nodes will be visited,
especially those down in the tree. If only k samples are returned,
then in expectation we only need to reach the level of the R-tree
which has kN/q nodes. Thus, the number of canonical nodes is
actually only r(kN/q) in expectation.

For those visited nodes whose MBBs are entirely inside Q, we
further classify them into two types, depending on whether they are
in the Frontier list or not when the query terminates. If a node is
not in the Frontier list, then it must have contributed s samples to
the user, so there are at most k/s such nodes. If a node is in the

Frontier list, then it may not have contributed any, so we cannot
bound the number of such nodes in terms of k. The idea is to
consider the parent of such a node. We note that the parent must
be a canonical node, or a node of the first type, so there are at most
(r(kN/q)+ k/s) · f of them, where f is the fanout of the R-tree.
Thus, the total number of nodes visited is O((r(kN/q)+ k/s) · f ).
Since we pay a cost of O(s) per node to examine its sample buffer2,
the total query cost is O(s f · r(kN/q)+ k f ). By setting both s and
f to some constant, this is O(r(kN/q)+ k), as claimed in Table 2.

Batch sampling: an optimization
In the query cost analysis above, we have implicitly assumed we
can pick a node from the Frontier list randomly in O(1) time in line
4 of Algorithm 1. However, since the sampling is not uniform, and
Frontier is changing, it is not as easy. The naive implementation
will take time O(log |Frontier|), by building a binary tree on top of
the probabilities which are proportional to the |P(u)|’s. Below, we
describe a batch sampling technique that can drive the cost down to
O(1) amortized.

The idea, as the name of the technique suggests, is not to sample
the nodes one by one. Instead, we will take |Frontier| samples
with one single scan of the Frontier list. More precisely, for each
node u ∈ Frontier, we calculate how many samples would be taken
from u in the next |Frontier| draws with replacement. Note that this
is simply a binomial distribution. If this number is more than the
number of samples remaining in Samples(u), then we know this
node would be exhausted in the next |Frontier| draws. Suppose we
need b more samples than what Sample(u) has, then we visit u’s
children, and allocate these b samples to these children according to
their subtree sizes. This process may take place recursively until we
have drawn enough random nodes.

After this process, we have |Frontier| nodes randomly drawn
with replacement with the right probabilities. To supply the deci-
sion to line 5 of Algorithm 1 one at a time, we need to perform a
random permutation. Overall, the cost of one batch of sampling is
O(|Frontier|), which will last for the next |Frontier| iterations of
the main algorithm. Thus the amortized cost is O(1). Meanwhile,
by doing so we at most overshoot k by O(|Frontier|). But from
the previous analysis, this is at most O(r(kN/q)+ k), so it does not
affect the overall cost asymptotically.

Maintaining the sample buffers
Given the R-tree, we can build the sample buffers easily by a DFS
traversal. We maintain the invariant that, after the DFS completes
its visit to a node u, we have filled Samples(u) with s elements, as
well as found enough samples for all its ancestors. The detailed
procedure is described in Algorithm 2.

The sample buffers can also be maintained easily as the R-tree
itself performs insertion or deletion of points. We first perform a
normal insertion or deletion in the R-tree. Then we update all the
affected sample buffers. To ensure a low amortized cost, we allow
the buffer size to vary between s/2 and 2s.

When a point e has been inserted to a subtree T (u), each existing
point in Samples(u) should be replaced with e with probability
|P(u)|−1 (this can be done efficiently using binomial distribution,
instead of doing a separate test for each point in the buffer). When
a point e is removed from T (u), all occurrences of e in Samples(u)
must be removed. When the sample buffer is less than half-full due
to many deletions, we replenish it by drawing more samples from
its children’s buffers, which may trigger recursive replenishing.

2When Samples(u) does not exists for a node u, it must be |P(u)|=
O(s), so it takes O(s) time to access all the elements in P(u).



Algorithm 2: BuildSamples
Input: a tree node u; d, which is 0 by default
Output: Samples(v) is filled for any node v in T (u)

1 if u is a leaf node then
2 return {d random samples from P(u) with replacement};
3 if |Samples(u)|< s then
4 d← d +2s−|Samples(u)|;
5 S← /0;
// We want to get d samples from T (u)

6 foreach child node v of u do
7 d′← the number of samples we need from T (v);
8 S← S∪BuildSamples(v,d′);

9 Fill up Samples(u) with elements in S;
10 return the rest of S;

When nodes are split or merged, we similarly merge and split the
sample buffers. We remove extra points if the sample buffer has
overflowed, and replenish it if it is too empty.

5.2 RS-tree in external memory
The RS-tree naturally extends to a disk-based index by simply

setting f = Θ(B) and s = Θ(B), such that each R-tree tree node,
together with its sample buffer, fits in one disk block. Inserting a
point in a disk-based R-tree costs O(logB N) I/Os, by traversing a
root-to-leaf path.

To support fast insertions, we adopt the buffer tree idea [3,18], and
associate with each internal node u of the R-tree with an insertion
buffer of size B that temporarily keeps the points to be inserted into
u’s subtree. The buffer of the root is always kept in main memory.
To insert a new point, e, instead of finding the path all the way down
to the corresponding leaf node, we just put it into the insertion buffer
of the root node. When the insertion buffer is full, we flush these
points to the insertion buffers of its children. This might make these
buffers overflow, which may trigger recursive flushings down the
tree. When a point is flushed to a leaf node, it is stored there and
no more flushing will be done. Instead, if the leaf node is full, the
leaf block is split into two. After a point has been inserted into
the insertion buffer of a node u, we also update Samples(u) to take
the new insertion into consideration, as we need to maintain the
invariant that Samples(u) is always taken from all points stored
below u (including u). The procedure is the same as in “maintaining
the sample buffers” previously described.

By an analysis similar to that in [3], we can show that the amor-
tized I/O cost for each insertion is O

(
f
B log f N

)
. The detailed proof

can be found in [3], while the basic intuition is that an inserted point
starts from the root and then gradually follows a root-to-leaf path
consisting of O(log f N) nodes. On each node, the amortized I/O
cost of moving this point from its parent to this node is O( f/B).
By tweaking the value of f , we may trade off between insertion
performance and query performance. In particular, if f is a constant,
then insertions can be done in O

( 1
B logN

)
I/Os amortized, which

means that most insertions can be done without incurring any I/O
cost. Meanwhile, since the query I/O cost is O(r(kN/q)+ f k/B)
I/Os, it is desirable to set f to be a constant, so that the query I/O
cost is O(r(kN/q)+ k/B), as claimed in Table 2. Note that, how-
ever, using a constant f may increase the number of canonical nodes
slightly, by roughly an O(logB) factor, since the height of the R-tree
increases from O(logB N) to O(log f N) = O(logN). Nevertheless,
since the O(k/B) term dominates the cost, using a small fanout is
beneficial overall.

Even with the insertion buffers, the query algorithm actually
remains the same, with the following clarification. First, recall that
P(u) is defined to be the set of points stored below u, so it now also
includes those stored in the insertion buffers below u. Second, we
will consider the insertion buffer at u to be an extra leaf directly
below u, so that not all leaf nodes are on the same level. In line 15
of Algorithm 1, one of u’s children may be its insertion buffer, and
we just add it to Frontier list.

Deletion is handled slightly differently. To delete a point e, we
first search for e. Note that e might reside in a leaf block or in one of
the insertion buffers on a root-to-leaf path. So we follow the search
path and remove e whenever it is encountered. We also remove e
from any sample buffer where it is kept.

5.3 RS-tree: The Hybrid
The external memory version of the RS-tree tree described above

requires only one block of main memory space. In general, there
can be more memory available, which calls for a hybrid version that
optimizes the total cost by fully utilizing all available memory.

As shown in Figure 1, the whole data structure is still an R-tree.
Nodes in the top layers are kept in the memory, which are called
mem layers. The nodes in the lowest mem layer are called leaf mem
nodes, while the other higher nodes are called internal mem nodes.
Similarly for the disk-resident layers, we classify them into internal
disk nodes and leaf disk nodes.

As before, we attach a sample buffer to each node u, but the size
differs for the mem nodes and the disk nodes. For a mem node, the
sample buffer has a constant size, but s = B for a disk node. As
before, for a node u with |P(u)| ≤ 2s, we do not attach a sample
buffer. The fanout is a constant for all nodes, mem or disk. The
insertion buffers are associated to all the leaf mem nodes and the
internal disk nodes. The rationale is that, since we do not incur
any I/O in memory, we do not have to buffer the insertions at the
root. Instead, an insertion can go as deep as possible until we reach
the mem/disk boundary. This way, effectively, the subtree rooted
at each leaf mem node is the same as the external memory version
of the RS-tree. While the memory-resident part is the same as the
internal memory version of the RS-tree.

5.4 Extending to GiST Indexes
While the R-tree was chosen as the underlying tree structure

for RS-tree to simplify the analysis and implementation, the ideas
behind RS-tree can be naturally extended to any GiST index on
either spatial or non-spatial data. Recall that a GiST index defines a
generic tree-structured hierarchical partitioning of the data domain,
where raw data is stored on the leaves. By using the same algorithms
of the RS-tree on any GiST index, we can maintain samples attached
to the internal nodes of the GiST tree, and use them to answer queries
approximately. Nevertheless, the bounds claimed in Table 2 may
vary according to the particular instantiation of a GiST index.

6. SPATIAL ONLINE AGGREGATION AND
ANALYTICS

Recall that both the LS-tree and RS-tree report random samples
uniformly chosen from PQ, either with or without replacement3

Generally speaking, any aggregate of the whole population can
be estimated from a sample, and the accuracy improves as more
samples are obtained and the sample size increases. Suppose each
point e in our data set is associated with an attribute e.x of interest.
Then for example, it is well known that the sample mean is an

3The statistical difference between the two sampling methods is
insignificant; see [13].
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Figure 1: An example of the hybrid version of RS-tree.

unbiased estimator of the population mean, i.e., letting S be the set
of k samples returned, we have

E[X̄ ] = E

[
1
k ∑

e∈S
e.x

]
= µ =

1
q ∑

e∈PQ

e.x.

By the central limit theorem, X −µ approaches Normal(0,σ2/k),
where σ is the population standard deviation. This means that
sample variance is inversely proportional to the sample size, and
we expect the accuracy to improve quite rapidly as k. In addition,
we can estimate σ2 also from the sample, and further compute the
confidence intervals, as in standard online aggregation [12, 13].

Estimating query size
Many aggregates other than average, like sum or count (when e.x
is either 0 or 1 depending on a predicate), require the knowledge
of the population size, which is q = |PQ| in our case. One way
to obtain q is to perform a range-count query using the R-tree,
costing time O(r(N)). However, our sampling algorithm actually
returns a very good estimate of q as a by-product. Recall that the
Frontier list in the query algorithm always maintains a list of R-tree
nodes that do not have ancestor-descendant relationship, i.e., the
points stored below these nodes do not overlap (their MBBs may
overlap, though). Thus, the total query size q is simply the sum
of the numbers of points below each node u ∈ Frontier that fall
inside Q. There are two cases: If R(u)⊆ Q, then we know exactly
the number of points inside Q, which is |P(u)|, associated with
u. Otherwise, not all points in P(u) are inside Q. But recall that
we also have a sample buffer Samples(u) associated with u, which
contains sampled points from P(u) with replacement. Then we
simply check how many of them are actually inside Q, and estimate
|P(u)∩Q| as |Samples(u)∩Q|

|Samples(u)| · |P(u)|. This is an unbiased estimator

with standard deviation at most |P(u)|/
√
|Samples(u)|. Adding the

estimates from all nodes in Frontier, we obtain an estimate of q as
well as the variation. If it is not accurate enough, we can always keep
pushing Frontier down to explore more nodes, which eventually
becomes a standard range-counting query. However, for most cases,
the accuracy of the estimate is already high enough before reaching
the leaf level.

Spatial analytics
In the spatial setting, there are more complicated statistics than
simple aggregates like sum or mean. A widely used one is the
kernel density estimation (KDE), which constructs a continuous
spatial distribution from discrete points. Specifically, the distribution
density at some point p is defined as f (p) = 1

q ∑e∈PQ
κ(d(e, p)),

where d(·, ·) is the distance between two points, and κ(·) is the

kernel function that models the “influence” of e at p. Then we can
compute f (p) at regularly spaced points (say, all grid points), and
construct a density map of the underlying spatial distribution. We
observe that the distribution density at each point, f (p), is still an
average, so we can, as before, compute an approximated density map
by drawing a sample from PQ, and derive the confidence interval
(for each point p).

Other spatial analytics tasks, such as clustering, can also be per-
formed on a sample of points. Intuitively, the clustering quality also
improves as the sample size increases, but in this case, it is unclear
how a confidence interval should be defined and computed, which
may remain as an interesting question for further investigation.

7. EXPERIMENTS
Implementation. We implemented 5 methods in C++: RandomPath,
LS-tree, RS-tree (hybrid), RandomShuffle and RangeReport, where
the last one is to extract and store PQ with a range reporting query
on the tree, then choose random samples from PQ upon request.

A random shuffle of the original data is used by RandomShuffle,
while all other algorithms use a Hilbert R-tree as the underlying tree
structure, which is essentially a B+-tree where nodes are sorted by
their Hilbert values [21] (the Hilbert value of a point is the order
imposed by a Hilbert space filling curve). Hilbert R-tree usually
preserves locality well [21], which is crucial to answer range queries
promptly, yet it is also easy to implement. In this section we will
simply refer to our implementation of Hilbert R-tree as R-tree, unless
specified otherwise.

Fanout of each node is between 4 and 16. Other parameters are
set such that each of the following fits into a 8KB disk block:
• Elements inside a leaf disk node.
• (Up to 16) child node entries and all buffered insertions of an

internal disk node.
• Samples associated with an internal disk node.

In this way, each leaf disk node occupies 1 disk block, and each in-
ternal disk node occupies 2 disk blocks. In case insertion buffers are
not used, we may combine the child node entries and samples such
that only 1 disk block is occupied by an internal disk node. Using
different page size value does have a modest impact on query per-
formance. We have tested different page size values, and observed
that increasing page size initially leads to better query performance,
but it will then negatively affect the query efficiency, and 8KB is
roughly a sweet spot for different methods.

The data set is sorted with the disk based sorting algorithm before
the corresponding R-tree is built. An extra pass over the tree is taken
to build the samples for RS-tree. For LS-tree, we scan and sample
the sorted data set and build R-tree’s until the data set becomes small
enough (less than 256k nodes).



Low Memory High Memory
Machine Machine

CPU i7-960 i7-3820
Memory 6GB 64GB
Hard Disk 2TB Western Digital RE4
OS Ubuntu 12.04 LTS
Compiler GCC 4.8.1 (-O3)

Table 3: Experiment environment.

Data N binary R-tree RS-tree LS-tree

GEO 25 million 569MB 878MB 933MB 1.7GB
OSM 2.2 billion 49.5GB 75GB 80GB 151GB
4xOSM 8.8 billion 198GB 322GB 342GB 643GB

Table 4: Data set statistics.

The first few layers of RS-tree is loaded into memory, as well as
for RandomPath and RangeReport. For LS-tree, to make it fair,
layers from the few smallest R-trees are loaded into memory such
that LS-tree uses roughly the same amount of memory as the other
methods. Note that we did this because queries always start with
smaller trees in LS-tree. We did the same for RandomShuffle so
that enough blocks are loaded into the same amount of memory.
Environment. Table 3 lists the specifications of the machines we
used to perform the experiments. Experiments were preformed
using the low memory machines except where we state we are using
the high memory machines.
Data sets. Two data sets are used as input. GeoLife GPS trajectories
from Microsoft Research [37], abbreviated as GEO in this paper.
This contains 17,621 GPS trajectories tracking various outdoor
movements including shopping, hiking, sightseeing, and traveling
to and from work. Each trajectory contains information such as
latitude, longitude, time stamp and altitude, but only the first three
are used in the experiments.

The other data set, abbreviated as OSM, is obtained from Open-
StreetMap [29,31]. This collection of data comes from a community
of volunteers from around the world mapping the globe. This in-
cludes nodes and ways. A node represents a specific location on the
earth’s surface described by latitude and longitude coordinators. A
way is described as a collections of nodes which describes a polyline.
A way can be used to describe roads, boarders, shorelines etc. Only
latitude, longitude, and time stamp of each node in the OSM data
set is used in the experiments.

To see how the algorithms perform with a much larger data set,
the OSM data set was replicated four times to create a much larger
data set. We call this data set 4xOSM.

After each data set was processed and filtered they were stored
into a csv file. The sizes of the raw data files are shown in Table 4.

For each data set, each element is represented by three 32-bit
numbers internally, two floating point numbers for latitude and
longitude, and one integer for timestamp. A unique 12-byte ID is
also included in each element to uniquely identify a data element.

7.1 Index construction cost
We first compare the index construction cost for different methods.

Both RandomPath and RangeReport simply build a single R-tree,
while LS-tree needs to build multiple R-trees (of decreasing size).
RS-tree needs to build a single R-tree, but with carefully chosen
samples embedded into each node.

Figure 2(a) compares their total construction costs, including the
cost of sorting the data sets based on Hilbert values since Hilbert
R-tree is used. The complete OSM data set is used in this case. The
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Figure 2: Construction time of different indexes.

extra cost for RS-tree to build samples on top of a standard R-tree
is shown to be not much, comparing with the construction time
of R-tree itself, while LS-tree takes more than twice longer than
R-tree, as a number of R-trees are built, whose sizes are decreasing
geometrically.

Note that the scalability of an R-tree is well understood in the
literature. Different variants of R-tree, including Hilbert R-tree,
all have excellent scalability with respect to the size of the data
sets. RS-tree is the only structure that has made changes to an
R-tree, hence, we investigate its scalability in further details. For this
experiment we constructed RS-tree from the OSM data with various
amounts of the complete data set to see how the time to construct
RS-tree would vary when the number of elements changed.

Building happens in three phases. In the reading phase the data is
read from the raw data file and each record is tagged with a Hilbert
value. Next the elements are sorted by their Hilbert value. Finally
the RS-tree is constructed using the sorted data. We timed the
construction of RS-tree for various amounts of data.

The results of this experiment is shown in Figure 2(b). The lower
part represents how much time was spent in the sort phase, while the
upper part represents the amount of time taken during the construct
phase. The time of the reading phase is dominated by the sort and
construct phases, hence, is omitted in the figure for clarity.

Clearly, RS-tree demonstrates excellent scalability as data grows.
Its construction cost is slightly worse than being linear to the growth
of the data size. Each phase of construction takes about 50 minutes
on the full OSM data set. By calculating the amount of data read
and written to the disk and considering the throughput of the disk
used, this construction time is very reasonable.

Lastly, we also compared the size of different index structures on
the full GEO and OSM data sets respectively. The results are shown
in Table 4. It is well known that R-tree has linear size with respect
to an input data set, which is reflected in our result. Not surprisingly,
RS-tree also has linear size since the only change it has made to a
R-tree is to embed some carefully selected samples (into a single
R-tree). LS-tree also has linear size, but due to the multiple R-trees
it builds over different sets of samples, its size is the largest, which
is roughly twice as large as plain R-tree.

Lastly, the construction cost of RandomShuffle is to sort the data
based on the random IDs that were assigned to each record. In
addition, as explained in Section 3, to support efficient update, an
B+ tree needs to be built over the randomly assigned IDs. Hence, its
construction cost and index size is very similar to that in an R-tree
(which is simply a B+ tree over Hilbert values in our case using
Hilbert R-tree), hence, we have omitted these results.

7.2 Query cost: vary k
The efficiency of performing a spatial online sampling query is

of primary importance. A typical usage of spatial online sampling
query is to keep asking for samples in an interested region Q until
suffecient samples have been collected. We study the performance



10-5

10-4

10-3

10-2

0% 2% 4% 6% 8% 10%

tim
e

(s
)

k/q

RandomPath
RS-tree

RangeReport
LS-tree

RandomShuffle

(a) GEO data, q = 250000.

10-3

10-2

10-1

100

101

102

0% 2% 4% 6% 8% 10%

tim
e

(s
)

k/q

RandomPath
RS-tree

RangeReport
LS-tree

RandomShuffle

(b) OSM data, q = 2.2 million.
Figure 3: Vary k, number of samples

10-4

10-2

100

0 50 100 150 200 250

tim
e

(s
)

q (×103)

RandomPath
RS-tree

RangeReport
LS-tree

RandomShuffle

(a) GEO data, k = 5000.

10-4

10-2

100

0 5 10 15 20 25

tim
e

(s
)

q (×106)

RandomPath
RS-tree

RangeReport
LS-tree

RandomShuffle

(b) OSM data, k = 10000.
Figure 4: Vary q, fixed k

of the algorithms by asking for up to k = 0.1q samples for a fixed Q.
Recall that q equals |PQ|, the total number of data elements in the
complete query result for a range query Q.

Figure 3(a) shows the performance of all 5 methods on the full
GEO data set, where q is 0.25 million. The result is the average of
10 random Qs with the same value of q (within a relative error of
0.1%). The dataset was loaded completely into main memory.

The time of RangeReport appears as a horizontal line in the
figures. This is what is expected because it is always gathering all
elements in the region regardless of the number of samples requested.
RandomPath starts much faster than RangeReport because it can
relatively quickly find a few elements in the query region. The cost
of RandomPath is totaled per sampled taken. As the number of
samples increases the benefit of using RandomPath decreases.

In this experiment, LS-tree takes approximately the same amount
of time as RandomPath does to return samples for the GEO dataset.
The cost of RandomShuffle is highest out of the algorithms tested,
when k/q starts to exceed 2%. Overall RS-tree performs the best
when q = 0.25 million because it can quickly return samples from
the region when requested due to its block structure.

The same experiment is repeated on the full OSM data set except
for q is set to 2.2 million. The result is presented in Figure 3(b). The
experiment was performed on the same machine as before. Because
the full OSM dataset is so large, only 5GB of the dataset could be
loaded into RAM. Recall that we use the low memory machine by
default unless otherwise specified.

When k is small RandomShuffle was able to quickly return sam-
ples because scanning the portion of the data in main memory is
fast. But RandomShuffle suffers as k increases, and eventually it
starts reading from hard disk and its performance drops quickly.

In Figure 3(b), when k is small LS-tree is slightly faster than
RS-tree. This is because LS-tree first queries very small trees,
which can be searched very quickly. As k increases this advantage
is no longer present. Overall RS-tree responds the fastest.

We performed this same experiment using the high memory ma-
chines on the 4xOSM data set, allowing full use of the available
memory. We found the results of this experiment to be similar to the
results for GEO and OSM.
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7.3 Query cost: vary q
It is also interesting to study how q affects the performance of

the algorithms when k is fixed. We tested the algorithms when q
changes. Ten Qs are randomly chosen for each value of q, within a
relative error of 0.1%.

Figures 4(a) and 4(b) present the results on both data sets, where
k is set to 5000 and 10000 respectively.

For both datasets, RS-tree and LS-tree stay mostly constant when
q varies. This is expected because the most significant contributor
to the complexity of each of the algorithms is k. Even though they
are relatively constant RS-tree has less overhead than LS-tree, so it
is consistently faster in this experiment.

RandomShuffle becomes faster as q increases because fewer
elements must be scanned to find k matching elements. But it is still
much more expensive than RS-tree and LS-tree on both data sets.
RangeReport becomes very expensive when q is large, because all
elements in Q must be retrieved, regardless of the value of k.

We also performed a similar experiment where we varied q but
fixed k/q. The results are show in Figures 5(a) and 5(b). Once again,
RS-tree has the best performance on both data sets and has roughly
outperformed other methods by 1-2 orders of magnitude.

We ran a similar experiment on 4xOSM using the high memory
machine. The results of the experiments on this dataset is shown in
Figure 6. The results are similar to the results of the other figures. As
expected, RS-tree and LS-tree outperform the other methods, and
RS-tree has the best performance consistently which outperforms
the other methods by several orders of magnitude. Despite the
dataset containing over 8.8 billion elements, samples of the dataset
can be returned with extremely low latency using the RS-tree. Note
that because of the size of the data RandomShuffle has much worse
performance compared to other methods and was omitted from the
experiments on 4xOSM.

7.4 Query cost: vary s
Recall that the parameter s controls the size of the sample buffer

attached to each R-tree node. For an R-tree node stored on disk, it
is quite natural to choose an s = Θ(B) such that the sample buffer
has the same size as a disk block. For an R-tree node stored in



main memory, however, s could be potentially set to any constant.
In this set of experiments, we explore how s should be set for
the memory-resident nodes. We built 3 RS-tree’s with different
values of s. Meanwhile, we correspondingly change the number
of memory-resident layers such that the amount of memory space
used remains the same. This means that a larger s will lead to fewer
memory-resident layers of the R-tree. To clearly see different s
values’ impacts to the query cost and IO, we tested for a wider range
of query areas and a large number of samples in this set experiments.
In particular, we used the GEO data set, and we fixed the value of
k = 0.4 million and varied q from 0.4 million to 2 million.
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Figure 7: Vary q and sample buffer size, GEO, k = 0.4 million.

The results are shown in Figure 7. Overall, we see the value of s
does not have a significant impact on the query performance, and
different query sizes may benefit from different values of s. Larger
queries are better with smaller values of s, while smaller queries
prefer larger s. That said, we recommend a value of s that is the
same or slightly (1 to 16 times) larger than the fanout f . The default
s value for all other experiments is 256.

7.5 Update cost
Inserting and erasing elements were tested together. Ideally we

would perform each sample of inserting or deleting on a fresh data
structure, but this would take an unreasonable amount of time for
our data set. To circumvent this problem, we started with a pristine
structure. For each insertion experiment performed, we immediately
followed that timing experiment by erasing the recently inserted
elements. The erasing was timed and reported.

The experiment was setup similar to the query experiment setup.
Three data structures are tested, including RS-tree, LS-tree, and
R-tree, which is the underlying Hilbert R-tree without samples and
used by both RandomPath and RangeReport. As explained earlier,
RandomShuffle would use an B+tree to support efficient updates,
and its update performance is similar to our R-tree results (which is
an B+ tree over Hilbert values).

In the previous experiment, the few smallest trees of LS-tree are
loaded into memory, leaving the largest tree completely resident on
disk, which leads to significantly bad performance for updates, as the
largest tree is always the first one to visit while inserting or deleting
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Figure 8: Updates on GEO, q = 18 million.

elements. In this experiment, we compensate this by allocating
more memory for the largest trees (but this leads to worse query
performance). In practice, the user should balance the memory usage
when LS-tree is used, to trade off between query performance and
update performance. A fair choice is to allocate the same amount of
memory for the few largest trees and the few smallest ones.

For simplicity, we used the same set of Qs used in the query
experiments to test the performance of insertion and deletion. For
each Q and each data structure we did the following steps:

1. Choose 5000 elements in the region Q uniformly at random.
2. Insert all 5000 elements into the tree, recording the time and

I/O cost every 50 elements inserted.
3. Erase all 5000 elements from the tree which were just inserted,

recording the time and I/O cost every 50 elements inserted.
System cache is cleared before each set of experiments and re-

gions with similar values of q were averaged.
Figures 8(a) and 8(b) show the performance of the algorithm

when q is fixed to 18 million, using the GEO data set.
RS-tree is about twice slower than R-tree, which is expected

because sample blocks must be updated. LS-tree is slightly faster
than RS-tree in insertion, and slower in deletion. Indeed LS-tree
always needs to visit one extra tree to make sure that the element
does not exist in the following (smaller) trees.

Overall all methods are shown to have good scalability, the inser-
tion time appears linear and the deletion time appears sublinear.

The same experiment was repeated for various values of q, to ex-
plore how q may affect the performance when we randomly selected
insertions and deletions from q elements, we recorded the total cost
of 5000 insertions or deletions for each value q.

The results are presented in Figure 9(a) and 9(b). Again, every
point is the average of 10 runs with Qs that share the same value of
q (within 0.1% relative error).

0.0

0.1

0.2

0.3

0.4

0% 20% 40% 60% 80% 100%

tim
e

(s
)

q/N

RS-tree
R-tree

LS-tree

(a) 5000 insertions

0.0

0.1

0.2

0.3

0.4

0% 20% 40% 60% 80% 100%

tim
e

(s
)

q/N

RS-tree
R-tree

LS-tree

(b) 5000 deletions
Figure 9: Updates on GEO, vary q.

LS-tree is about twice slow as R-tree. RS-tree is slightly faster
than LS-tree for large values of q, but slower when q is small. The
reason is that when q is small new elements are concentrated into
a small subtree (or forest), tree nodes are more likely to be split
during insertions. In this case sample blocks are updated more often
by RS-tree, which incur many I/Os. Because the data is stored with
good locality, the additional I/Os does not impact RS-tree as much
as other algorithms.

Regarding data deletion, all 3 algorithms slowly turn slower as
q increases, as the elements are more likely to be scattered on the
disk. RS-tree is about twice as slow as R-tree, while LS-tree is in
between.

The difference between R-tree and RS-tree shows that the book-
keeping incurs relatively little penalty compared to the overall run
time and I/Os. It is a reasonable choice of twice slow update perfor-
mance, in exchange for significantly faster query performance.

Lastly, the same set of experiments were also carried out on the
OSM data set, and nearly identical trends have been observed, hence,



those results are omitted for brevity.

7.6 Estimating q
The size q of a query result may be estimated as a side effect of

online sampling, to evaluate the quality and the performance, we
compare the result with standard range counting queries on R-trees.

Five random queries with various values of q were chosen for
this test. For each query Q, the exact value of q is determined with
a range counting query, and the time used is measured as t. Next
we issue an online sampling query with Q, and terminate it when
10%× t time has been elapsed, meanwhile we estimate the size of
the query result using the method mentioned in Section 6.

q (million) Time (ms, 10%× t) Error (%)
1.96 41.49 0.03
3.85 19.60 0.007
7.85 36.94 0.0006
9.75 26.68 0.0007
17.68 32.12 0.03

Table 5: Estimating the size of query results.

Table 5 presents the time elapsed before we terminate the online
sampling queries, as well as the relative error of the estimation. We
can see q may be estimated quite accurately with a small amount
of time. Note that when q is large, the estimation could be faster
and more accurate, because when Q is decomposed in the tree,
most regions of Q may be covered by subtrees whose MBBs are
completely inside Q, and these subtrees do not contribute any error
in the estimation!

We believe the quality of the estimation is acceptable in practice,
and the exact value of q, when necessary, can always be determined
with range counting queries using more time.

7.7 From sampling to aggregation
We further did experiments on using the returned samples for

online aggregation. We used an extended data set of GEO where the
altitude is the attribute for aggregation. Specifically, we issued the
following query and computed the average altitude of the returned
sample points as time progresses.

Latitude 1.04–39.85
Longitude -39.27–180.00
Timestamp 1.55×108–3.97×108

q (query size) 4297219
average (altitude) 1801.67
σ (altitude) 4832.7

Table 6: The query

The results are shown in Figure 10, where the curves are the
estimates as time goes on. We also plot the 95% confidence interval
after every 80,000 samples are reported. From the figure, we see
LS-tree is slightly faster at reaching the first 80,000-sample point,
but RS-tree quickly catches up, and becomes faster later on. This
agrees with the earlier experimental results in Section 7.2. At about
100ms, the relative error of the estimate is already below 0.4%. On
the other hand, computing the exact average altitude for this query
takes about 3 seconds, i.e., 30 times slower.

We also see from the figure that, for the same sample size, the
confidence intervals of the two methods have similar length. This is
expected, since the length of the confidence interval directly depends
on σ2/k. As both methods return uniform samples from the same
query region, the distribution is the same, so is σ2. Thus, for the
same sample size k, the confidence intervals should have the same
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Figure 10: Spatial online aggregation: avg(altitude).

length. Of course, since σ2 is estimated from the sample, there could
be some small variations as the samples are randomly generated.

Other methods were again too slow compared to LS-tree and
RS-tree so their results are not plotted.

8. RELATED WORK
The concept of online aggregation was first proposed in the classic

work by Hellerstein et al. in [13], and has been revisited for different
operators (e.g., join [11], group-by [32]) for relational data models,
and computation models (e.g., MapReduce [30]). The standard ap-
proach for online aggregation is to produce online samples and build
estimators that improve accuracy gradually over time using more
and more samples [11–13, 30]. The translation from query accuracy
(especially for standard aggregations) and estimation confidence
to sample size is mostly well understood, see [11–13, 23, 30, 33]
and many other work in the literature on building various kinds of
estimators using random samples. Nevertheless, to the best of our
knowledge, online aggregation has not been formally studied before
for spatial and spatio-temporal databases.

Since the main technique for solving online aggregation is online
sampling, naturally, our work is closely related to online sampling
and sampling from a database in general. One of the earliest ideas
was the RandomPath algorithm proposed by Olken [26]. This idea
works for both B-tree in one dimension and R-tree in higher dimen-
sions [26–28]. However, as explained in Section 3 and confirmed in
our experiments, this method is too expensive for generating online
samples in large spatial databases. Joshi and Jermaine [20] proposed
the ACE tree that uses a binary tree (a k-d binary tree in higher di-
mensions) with samples stored in the leaf nodes. Samples in a query
range can be obtained by combining samples from different leaf
nodes. This design makes the structure inherently static, i.e., it does
not support insertion or deletion of points in the data set. Lastly, Hu
et al. [14] investigated the problem of producing samples for range
queries with a new constraint that samples must be independent with
respect to both intra-query and inter-queries. However, their result
is purely theoretical, and is too complicated to be implemented or
used in practice.

Our work is also related to producing random samples in an I/O-
efficient matter. Existing works in this category concentrate on
maintaining a large, disk-resident sample set over a continuous data
stream [9, 19, 24], which are clearly different from our study.

There is an increasing interest in integrating sampling as an
operator in a database management system; see recent efforts in
[1, 2, 15, 16, 22, 25, 35, 36]. Nevertheless, none of them has investi-
gated spatial and spatio-temporal online sampling and aggregation
in large spatial and spatio-temporal databases. Our novel indexing
structures are orthogonal to these efforts and can be implemented
in these systems to support interactive spatial and spatio-temporal
exploration through random samples.



The problem of finding samples from a collection of geographic
points for displaying on a map is described in [8]. Samples are taken
from an underlying data set such that the samples will be evenly
distributed when the sampled data is drawn on a map. This differs
from the problem solved in this paper, where we are concerned with
producing random samples for spatial range queries such that we
can perform statistical aggregations on the samples. Their definition
of spatial sampling has a different objective which is to produce a
better visual representation of the underlying data set.

Other than using random sampling, queries on spatial data can
also be processed quickly and approximately using techniques such
as data summaries, sketches, and signatures [5, 6, 34]. However,
these techniques do not support online aggregation, i.e., the accuracy
is fixed beforehand and will not improve as more time is spent.

Lastly, this work focuses on spatial range queries. Spatial kNN
and joins are important queries worth of further studying. These are
very difficult problems. In fact, even for natural joins on relational
data, the problem of drawing a random sample without evaluating
the join in full is already a difficult problem, with some negative re-
sults [7]. Further exploration of these problem represents interesting
future work of this study.

9. CONCLUSION
This paper investigates spatial online sampling and aggregation.

By designing novel indexing structures, we show that it is possible
to produce online random samples efficiently for large spatial and
spatio-temporal databases. Our designs are much more efficient
and scalable than existing methods. The new designs also support
dynamic updates efficiently. Using our novel indexing structures,
one can produce spatial online samples and use these online samples
to perform various spatial online aggregation and analytics. Our
work leads to a number of interesting and important future directions
to explore. The first challenge is how to ensure inter-query inde-
pendence, which is recently proposed in the concept of independent
range sampling (IRS), in spatial online sampling. Another challenge
is to build more sophisticated, complex spatial online analytics and
to support more types of spatial and spatio-temporal queries.
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