Tracking Distributed Data

Ke Yi HKUST

The Distributed Count-Down Problem

The Distributed Count-Down Problem

The Count-Down Problem

Naive solution: O(n) communication

Naive solution: O(n) communication

- "Safe zone" based approach:
 - Set threshold = n/k, safe when every local count < n/k

Naive solution: O(n) communication

"Safe zone" based approach:

- Set threshold = n/k, safe when every local count < n/k
- When one local count reaches n/k, broadcast to
 - Compute the current total count
 - Compute new leeway = n total count
 - Set new threshold = leeway / k

Naive solution: O(n) communication

"Safe zone" based approach:

- Set threshold = n/k, safe when every local count < n/k
- When one local count reaches n/k, broadcast to
 - Compute the current total count

The Count-Down Problem

The Count-Down Problem

The Count-Tracking Problem

Counters increment over time

The Count-Tracking Problem

Counters increment over time

Sends a message when n_i reaches a threshold

Relative ε -error for each n_i

Sends a message when n_i reaches a threshold

Communication is one-way

Deterministic Lower Bound

Theorem

Any deterministic protocol that solves the count-tracking problem must communicate $\Omega(k/\varepsilon \cdot \log n)$ messages, even with two-way commucation.

Deterministic Lower Bound

Theorem

Any deterministic protocol that solves the count-tracking problem must communicate $\Omega(k/\varepsilon \cdot \log n)$ messages, even with two-way commucation.

Deterministic Lower Bound

Theorem

Any deterministic protocol that solves the count-tracking problem must communicate $\Omega(k/\varepsilon \cdot \log n)$ messages, even with two-way commucation.

Sends *n_i* with probability *p* when a new item arrives

$$\hat{n}_i = \left\{ egin{array}{cc} ar{n}_i - 1 + 1/p, & ext{if } ar{n}_i ext{ exists;} \ 0, & ext{else.} \end{array}
ight.$$

$$E[\hat{n}_i] = n_i$$
, $Var[\hat{n}_i] = 1/p^2$

$$\hat{n}_{i} = \begin{cases} \bar{n}_{i} - 1 + 1/p, & \text{if } \bar{n}_{i} \text{ exists;} \\ 0, & \text{else.} \end{cases}$$
$$\mathsf{E}[\hat{n}_{i}] = n_{i}, \, \mathsf{Var}[\hat{n}_{i}] = 1/p^{2}$$
$$\hat{n} = \sum \hat{n}_{i}$$

$$\mathsf{E}[\hat{n}] = \sum \hat{n}_i = n$$
, $\mathsf{Var}[\hat{n}] = k/p^2$

Rounds

Chebyshev inequality

SD less than $\varepsilon n \to p = O(\sqrt{k}/\varepsilon n)$ constant probability of success (at any one time instance)

Rounds

Chebyshev inequality

SD less than $\varepsilon n \to p = O(\sqrt{k}/\varepsilon n)$ constant probability of success (at any one time instance)

- Track a 2-approximation n
 of n
 using the deterministic
 algorithm
 - Broadcast \bar{n} whenever \bar{n} doubles

• Set
$$p = \frac{\sqrt{k}}{2\overline{n}}$$

- Divide the tracking period into rounds
 - n changes by at most a constant factor in a round
 - *p* is fixed in a round

Communication Cost

- Communication cost
 - Tracking a 2-approximation: $O(k \log n)$
 - Number of messages in a round: $O(np) = O(\sqrt{k}/\varepsilon)$
 - Total: $O(k \log n + \sqrt{k}/\varepsilon \cdot \log n)$
 - Can be improved to $O(k \log n / \log(k\varepsilon^2) + \sqrt{k} / \varepsilon \cdot \log n)$

Communication Cost

- Communication cost
 - Tracking a 2-approximation: $O(k \log n)$
 - Number of messages in a round: $O(np) = O(\sqrt{k}/\varepsilon)$
 - Total: $O(k \log n + \sqrt{k}/\varepsilon \cdot \log n)$

• Can be improved to $O(k \log n / \log(k\varepsilon^2) + \sqrt{k} / \varepsilon \cdot \log n)$

- Lower bounds
 - Only allow one-way communication: $\Omega(k/\varepsilon \cdot \log n)$ (randomization doesn't help)

• Two-way communication: $\Omega(k + \sqrt{k}/\varepsilon \cdot \log n)$

Tight Bounds for Count-Tracking

- Upper bound in words
- Lower bound in number of messages

$$k < 1/\varepsilon^2$$
 $k > 1/\varepsilon^2$ $\Theta(\sqrt{k}/\varepsilon \cdot \log n)$ $\Theta\left(k \frac{\log n}{\log(k\varepsilon^2)}\right)$

[Huang, Yi, Zhang, PODS'12]

The Distributed Streaming Model

The Distributed Streaming Model

Communication model (One-shot model)

Communication model (One-shot model)

Data stream model

Communication model (One-shot model)

Data stream model

Communication model (One-shot model)

Data stream model

- The count-down problem
- Count-tracking
- Frequent items (heavy hitters)
- Random sampling
- Other problems

Estimate the frequency of every element with additive error εn .

Use the previous algorithm on each item *i*

- Maintain a count for each item at each site
- Space

Use the previous algorithm on each item *i*

Maintain a count for each item at each site

Space

Streaming algorithm (Misra-Gries) cost per site: $O(1/\varepsilon)$

- total: $O(k/\varepsilon)$
- improve to $O(\sqrt{k}/\varepsilon)$

Frequent Items: Algorithm

Idea: maintain only large enough counts

Frequent Items: Algorithm

Idea: maintain only large enough counts

Start to count i with probability p

Frequent Items: Algorithm

Idea: maintain only large enough counts

i: •• • •• •

Start to count i withUpdate the countprobability pwith probability p

Coordinator only know \bar{c}

Coordinator only know \bar{c}

$$\hat{f}_i = \begin{cases} \bar{c} - 1 + 2/p, & \text{if } \bar{c} > 0; \\ 0, & \text{else.} \end{cases}$$

Coordinator only know \overline{c}

$$\hat{f}_i = \begin{cases} \bar{c} - 1 + 2/p, & \text{if } \bar{c} > 0; \\ 0, & \text{else.} \end{cases}$$

Bias might be as large as $\varepsilon n/\sqrt{k}$

Coordinator only know \bar{c}

Coordinator only know \bar{c}

$$\hat{f}_i = \begin{cases} c-1+1/p, & \text{if } c > 0; \\ 0, & \text{else.} \end{cases}$$

Estimate c by \overline{c}

$$\hat{c} = \left\{ egin{array}{c} ar{c} - 1 + 1/p, & ext{if } ar{c} > 0; \\ 0, & ext{else.} \end{array}
ight.$$

Combined estimator

$$\hat{f}_i = \begin{cases} \bar{c} - 2 + 2/p, & \text{if } \bar{c} \ge 2; \\ 1/p, & \text{if } \bar{c} = 1; \\ 0, & \text{else.} \end{cases}$$

•
$$\mathsf{E}[\hat{f}_i] = f_i$$

• Var
$$[\hat{f}_i] \leq 2/p^2$$

•
$$\mathsf{E}[\hat{f}_i] = f_i$$

• Var
$$[\hat{f}_i] \leq 2/p^2$$

set $p = O(\frac{\sqrt{k}}{\varepsilon n})$ space: $O(\sqrt{k}/\varepsilon)$ space per site: $O(1/(\varepsilon \sqrt{k}))$ communication: same as before

- Communication lower bound still hold
- Space lower bound

- Communication lower bound still hold
- Space lower bound
 - Communication-space tradeoff

Theorem

Any randomized algorithm that solves the frequency tracking problem with communication C bits and uses M bits of space per site, we have $C \cdot M = \Omega(\log n/\varepsilon^2)$.

Theorem

Any randomized algorithm that solves the frequency tracking problem with communication C bits and uses M bits of space per site, we have $C \cdot M = \Omega(\log n/\varepsilon^2)$.

Communication cost: $O(\sqrt{k}/\varepsilon \cdot \log n)$ bits Space per site: $\Omega(1/(\varepsilon\sqrt{k}))$ bits

Communication Complexity

Theorem

The k-party communication complexity for the one-shot frequency estimation problem is $\Omega(\sqrt{k}/\varepsilon)$ bits.

[Woodruff, Zhang, STOC'12]

Communication Complexity

Theorem

The k-party communication complexity for the one-shot frequency estimation problem is $\Omega(\sqrt{k}/\varepsilon)$ bits.

Direct-Sum theorem

Solve ℓ instances of the frequency estimation problem simultaneously needs $\Omega(\ell \cdot \sqrt{k}/\varepsilon)$ bits of communication.

[Woodruff, Zhang, STOC'12]

Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M

Use \mathcal{A} to solve *tk*-party one-shot problem.

Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M

Use \mathcal{A} to solve *tk*-party one-shot problem.

Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M

Use \mathcal{A} to solve *tk*-party one-shot problem.

Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M

Use \mathcal{A} to solve *tk*-party one-shot problem.

Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M

Use \mathcal{A} to solve *tk*-party one-shot problem.

Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M

Use \mathcal{A} to solve *tk*-party one-shot problem.

Communication-Space Tradeoff

Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M

Use \mathcal{A} to solve *tk*-party one-shot problem.

Communication-Space Tradeoff

Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M

Use \mathcal{A} to solve *tk*-party one-shot problem.

- The count-down problem
- Count-tracking
- Frequent items (heavy hitters)
- Random sampling
- Other problems

Reservoir Sampling [Waterman '??; Vitter '85]

- Maintain a (uniform) sample (w/o replacement) of size s
 from a stream of n items
 - Every subset of size s has equal probability to be the sample

Reservoir Sampling [Waterman '??; Vitter '85]

- Maintain a (uniform) sample (w/o replacement) of size s
 from a stream of n items
 - Every subset of size s has equal probability to be the sample
- When the *i*-th item arrives
 - With probability s/i, use it to replace an item in the current sample chosen uniformly at ranfom
 - With probability 1 s/i, throw it away

Reservoir Sampling from Distributed Streams

- When k = 1, reservoir sampling has cost $\Theta(s \log n)$
- When k ≥ 2, reservoir sampling has cost O(n) because it's costly to track i

Reservoir Sampling from Distributed Streams

- When k = 1, reservoir sampling has cost $\Theta(s \log n)$
- When k ≥ 2, reservoir sampling has cost O(n) because it's costly to track i

Tracking i approximately? Sampling won't be uniform

Reservoir Sampling from Distributed Streams

- When k = 1, reservoir sampling has cost $\Theta(s \log n)$
- When k ≥ 2, reservoir sampling has cost O(n) because it's costly to track i

Conditioned upon a row having $\geq s$ active items, we can draw a sample from the active items

Conditioned upon a row having $\geq s$ active items, we can draw a sample from the active items

The coordinator could maintain a Bernoulli sample of size between s and O(s)

Sampling from Distributed Streams

- Initialize i = 0
- In round *i*:
 - Sites send in every item w.p. 2^{-i}

(This is a Bernoulli sample with prob. 2^{-i})

Sampling from Distributed Streams

- Initialize i = 0
- In round i:
 - Sites send in every item w.p. 2^{-i}

(This is a Bernoulli sample with prob. 2^{-i})

Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.

(The lower sample is a sample with prob. 2^{-i-1})

Sampling from Distributed Streams

- Initialize i = 0
- In round *i*:
 - Sites send in every item w.p. 2^{-i}

(This is a Bernoulli sample with prob. 2^{-i})

Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.

(The lower sample is a sample with prob. 2^{-i-1})

- When the lower sample reaches size s, the coordinator broadcasts to advance to round $i \leftarrow i + 1$
 - Discard the upper sample

Split the lower sample into a new lower sample and a higher sample

Sampling from Distributed Streams: Analysis

- Communication cost of round *i*: O(k + s)
 - Expect to receive O(s) sampled items before round ends
 - Broadcast to end round: O(k)

[Cormode, Muthukrishnan, Yi, Zhang, PODS'10, JACM'12] [Woodruff, Tirthapura, DISC'11]

Sampling from Distributed Streams: Analysis

- Communication cost of round *i*: O(k + s)
 - Expect to receive O(s) sampled items before round ends
 - Broadcast to end round: O(k)
- Number of rounds: $O(\log(n/s))$
 - In round *i*, need $\Theta(s)$ items being sampled to end round
 - Each item has prob. 2^{-i} to contribute: need $\Theta(2^i s)$ items

[Cormode, Muthukrishnan, Yi, Zhang, PODS'10, JACM'12] [Woodruff, Tirthapura, DISC'11]

Sampling from Distributed Streams: Analysis

- Communication cost of round *i*: O(k + s)
 - Expect to receive O(s) sampled items before round ends
 - Broadcast to end round: O(k)
- Number of rounds: $O(\log(n/s))$
 - In round *i*, need $\Theta(s)$ items being sampled to end round
 - Each item has prob. 2^{-i} to contribute: need $\Theta(2^i s)$ items
- Communication: $O((k + s) \log n)$
 - Can be improved to $O(k \log_{k/s} n + s \log n)$
 - A matching lower bound

[Cormode, Muthukrishnan, Yi, Zhang, PODS'10, JACM'12] [Woodruff, Tirthapura, DISC'11]

- The count-down problem
- Count-tracking
- Frequent items (heavy hitters)
- Random sampling
- Other problems

- F_2 : $\tilde{O}(k^2/\varepsilon^2 + k^{1.5}/\varepsilon^4)$ [Cormode, Muthukrishnan, Yi, SODA'08]
- F_2 : $\tilde{O}(k/\text{poly}(\varepsilon))$ [Woodruff, Zhang, STOC'12]

- F_2 : $\tilde{O}(k^2/\varepsilon^2 + k^{1.5}/\varepsilon^4)$ [Cormode, Muthukrishnan, Yi, SODA'08]
- F_2 : $\tilde{O}(k/\text{poly}(\varepsilon))$ [Woodruff, Zhang, STOC'12]
- F_2 : $\tilde{\Omega}(k/\varepsilon^2)$ [Woodruff, Zhang, STOC'12]

- F_2 : $\tilde{O}(k^2/\varepsilon^2 + k^{1.5}/\varepsilon^4)$ [Cormode, Muthukrishnan, Yi, SODA'08]
- F_2 : $\tilde{O}(k/\text{poly}(\varepsilon))$ [Woodruff, Zhang, STOC'12]
- F_2 : $\tilde{\Omega}(k/\varepsilon^2)$ [Woodruff, Zhang, STOC'12]
- $F_p, p > 1$: $\tilde{\Theta}(k^{p-1}/\text{poly}(\varepsilon))$ [Woodruff, Zhang, STOC'12]

- F_2 : $\tilde{O}(k^2/\varepsilon^2 + k^{1.5}/\varepsilon^4)$ [Cormode, Muthukrishnan, Yi, SODA'08]
- F_2 : $\tilde{O}(k/\text{poly}(\varepsilon))$ [Woodruff, Zhang, STOC'12]
- F_2 : $\tilde{\Omega}(k/\varepsilon^2)$ [Woodruff, Zhang, STOC'12]
- $F_p, p > 1$: $\tilde{\Theta}(k^{p-1}/\text{poly}(\varepsilon))$ [Woodruff, Zhang, STOC'12]
- F_0 (distinct count): $\tilde{\Theta}(k/\varepsilon^2)$ [Woodruff, Zhang, STOC'12]

- Entropy [Arackaparambil, Brody, Chakrabarti, ICALP'08]
- Heavy hitters and quantiles [Yi, Zhang, PODS'09]
 [Huang, Yi, Zhang, PODS'12]
- Sliding windows [Chan, Lam, Lee, Ting, STACS'10]
 [Cormode, Yi, SSDBM'12]

 Histograms, clustering, graph problems, geometric problems, ...

- Histograms, clustering, graph problems, geometric problems, ...
- Does it have to be streaming?
 - If we don't care about space ...

- Histograms, clustering, graph problems, geometric problems, ...
- Does it have to be streaming?
 - If we don't care about space ...
 - Even if we care about space... streaming lower bounds do not apply!

- Histograms, clustering, graph problems, geometric problems, ...
- Does it have to be streaming?
 - If we don't care about space ...
 - Even if we care about space... streaming lower bounds do not apply!
- How to model deletions?
 - Competitive analysis? [Yi, Zhang, SODA'09]

The Greater Picture: Distributed

- Motivated by database/networking applications
 - Adaptive filters [Olston, Jiang, Widom, SIGMOD'03]
 - A generic geometric approach [Scharfman et al. SIGMOD'06]
 - Prediction models [Cormode, Garofalakis, Muthukrishnan, Rastogi, SIGMOD'05]

network monitoring

sensor networks

cloud computing

environment monitoring

