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The Distributed Count-Down Problem

k sites
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The Distributed Count-Down Problem

k sitesAlert when n items have arrived k sites
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The Count-Down Problem

Naive solution: O(n) communication

[Cormode, Muthukrishnan, Yi, SODA’08]
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“Safe zone” based approach:
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The Count-Down Problem

Naive solution: O(n) communication

[Cormode, Muthukrishnan, Yi, SODA’08]

“Safe zone” based approach:

Set threshold = n/k, safe when every local count < n/k

When one local count reaches n/k , broadcast to

Compute the current total count

Compute new leeway = n − total count

Set new threshold = leeway / k

Analysis

# rounds: O(k log n)
cost per round: O(k)
total cost: O(k2 log n)
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The Count-Down Problem

n
2k

n
2k
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Round 1:

[Cormode, Muthukrishnan, Yi, SODA’08]

Set threshold = n
2k
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The Count-Down Problem

n
2k

n
2k

signal signal signal

signal

Round 1: after k signals: n
2 ≤ count < n

[Cormode, Muthukrishnan, Yi, SODA’08]

Set threshold = n
2k
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The Count-Down Problem
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The Count-Down Problem

n
4k

signal signal signal

signal

Round 2:

signal

signal
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signal

after another k signals: 3
4n ≤ count < n

[Cormode, Muthukrishnan, Yi, SODA’08]
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The Count-Down Problem

n
4k

signal signal signal

signal

Round 2:

signal

signal

signal

signal

after another k signals: 3
4n ≤ count < n

Analysis

# rounds: O(log n)
cost per round: O(k)
total cost: O(k log n)

[Cormode, Muthukrishnan, Yi, SODA’08]
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The Count-Tracking Problem

k sites

counter n1

counter n2

counter nk

Counters increment over time

counter n3
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The Count-Tracking Problem

k sites

Coordinator wants to
track n =

∑
ni

with relative ε-error

counter n1

counter n2

counter nk

Counters increment over time

counter n3
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Deterministic Algorithm

Every site uses a series of thresholds:
t0 = 1, t1 = 1 + ε, t2 = (1 + ε)2, . . .

Sends a message when ni reaches a threshold

t2

t1

t3
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Deterministic Algorithm

Every site uses a series of thresholds:
t0 = 1, t1 = 1 + ε, t2 = (1 + ε)2, . . .

Sends a message when ni reaches a threshold

t2

t1

ni
t3 Relative ε-error for each ni

Total cost:∑
i log1+ε ni = O(k/ε · log n)
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Deterministic Algorithm

Every site uses a series of thresholds:
t0 = 1, t1 = 1 + ε, t2 = (1 + ε)2, . . .

Sends a message when ni reaches a threshold

t2

t1

ni
t3 Relative ε-error for each ni

Total cost:∑
i log1+ε ni = O(k/ε · log n)

Communication is one-way
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Deterministic Lower Bound

[Yi, Zhang, PODS’09]

Theorem

Any deterministic protocol that solves the count-tracking
problem must communicate Ω(k/ε · log n) messages, even
with two-way commucation.
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Deterministic Lower Bound

[Yi, Zhang, PODS’09]

Theorem

Any deterministic protocol that solves the count-tracking
problem must communicate Ω(k/ε · log n) messages, even
with two-way commucation.

Σ triggering thresholds < εn
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Deterministic Lower Bound

[Yi, Zhang, PODS’09]

Theorem

Any deterministic protocol that solves the count-tracking
problem must communicate Ω(k/ε · log n) messages, even
with two-way commucation.

Σ triggering thresholds < εn

adversary always
triggers the lowest
threshold
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Randomized Algorithm

Sends ni with probability p
when a new item arrives
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Analysis

last sent value → n̄i

ni

ni − n̄i is a random variable
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Analysis

last sent value → n̄i

ni

ni − n̄i is a random variable

n̂i =

{
n̄i − 1 + 1/p, if n̄i exists;
0, else.
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n̂i =

{
n̄i − 1 + 1/p, if n̄i exists;
0, else.

Analysis

E[n̂i ] = ni , Var[n̂i ] = 1/p2

ni − n̄i is a random variable
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n̂i =

{
n̄i − 1 + 1/p, if n̄i exists;
0, else.

Analysis

E[n̂i ] = ni , Var[n̂i ] = 1/p2

E[n̂] =
∑

n̂i = n, Var[n̂] = k/p2

n̂ =
∑

n̂i

ni − n̄i is a random variable
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Rounds

Chebyshev inequality

SD less than εn→ p = O(
√
k/εn)

constant probability of success (at any one time instance)
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Rounds

Divide the tracking period into rounds

n changes by at most a constant factor in a round

p is fixed in a round

Chebyshev inequality

SD less than εn→ p = O(
√
k/εn)

constant probability of success (at any one time instance)

Track a 2-approximation n̄ of n using the deterministic
algorithm

Set p =
√
k

2n̄

Broadcast n̄ whenever n̄ doubles
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Communication Cost

Communication cost

Tracking a 2-approximation: O(k log n)

Number of messages in a round: O(np) = O(
√
k/ε)

Total: O(k log n +
√
k/ε · log n)

Can be improved to O(k log n/ log(kε2) +
√
k/ε · log n)
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Communication Cost

Communication cost

Tracking a 2-approximation: O(k log n)

Number of messages in a round: O(np) = O(
√
k/ε)

Total: O(k log n +
√
k/ε · log n)

Lower bounds

Only allow one-way communication: Ω(k/ε · log n)
(randomization doesn’t help)

Two-way communication: Ω(k +
√
k/ε · log n)

Can be improved to O(k log n/ log(kε2) +
√
k/ε · log n)
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Tight Bounds for Count-Tracking

Upper bound in words

Lower bound in number of messages

k < 1/ε2

Θ(
√
k/ε · log n)

k > 1/ε2

Θ

(
k

log n

log(kε2)

)

[Huang, Yi, Zhang, PODS’12]
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The Distributed Streaming Model
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A1(t)
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The Distributed Streaming Model

14212

2242 1 3

412 1 2

2223 3

k sitesCoordinator tries to compute
f (A1(t) ] A2(t) ] · · · ] Ak(t)) for all t

A1(t)

A2(t)

A3(t)
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Generalization of Two Models
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Generalization of Two Models

42

12
2

2

4
2

1

3 1

Communication model
(One-shot model)

1421 2

Data stream model

Goal

Communication cost
Space

Trivial problems in these
two models could be
highly nontrivial in the
combined model!
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Problems

The count-down problem

Frequent items (heavy hitters)

Random sampling

The count-down problem

Count-tracking

Other problems
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Frequent Items: Definition

1 32 4 5 6 7 8
|A| = n

heavy hitters

θn
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don’t care



16-3

Frequent Items: Definition

1 32 4 5 6 7 8
|A| = n

heavy hitters

(θ ± ε)n

don’t care



16-4

Frequent Items: Definition

1 32 4 5 6 7 8
|A| = n

heavy hitters

(θ ± ε)n

don’t care

Frequency estimation with F1 error

Estimate the frequency of every element
with additive error εn.
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Frequent Items

Use the previous algorithm on each item i

Maintain a count for each item at each site

Space



17-2

Frequent Items

Use the previous algorithm on each item i

Maintain a count for each item at each site

Streaming algorithm (Misra-Gries)

cost per site: O(1/ε)

• total: O(k/ε)

• improve to O(
√
k/ε)

Space
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Frequent Items: Algorithm

Idea: maintain only large enough counts
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Frequent Items: Algorithm

Idea: maintain only large enough counts

i :

Start to count i with
probability p
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Frequent Items: Algorithm

Idea: maintain only large enough counts

i :

Start to count i with
probability p

Update the count
with probability p
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Frequent Items: Analysis

c̄

Coordinator only know c̄
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Frequent Items: Analysis

c̄

Coordinator only know c̄

f̂i =

{
c̄ − 1 + 2/p, if c̄ > 0;
0, else.
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Frequent Items: Analysis

c̄

Coordinator only know c̄

f̂i =

{
c̄ − 1 + 2/p, if c̄ > 0;
0, else.

Bias might be as large as εn/
√
k
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Frequent Items: Analysis

c̄

Coordinator only know c̄

c
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Frequent Items: Analysis

c̄

Coordinator only know c̄

c

f̂i =

{
c − 1 + 1/p, if c > 0;
0, else.
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Frequent Items: Analysis

c̄

Estimate c by c̄

c

ĉ =

{
c̄ − 1 + 1/p, if c̄ > 0;
0, else.
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Frequent Items: Analysis

c̄

Combined estimator

c

f̂i =

 c̄ − 2 + 2/p, if c̄ ≥ 2;
1/p, if c̄ = 1;
0, else.
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Frequent Items: Analysis

E[f̂i ] = fi

Var[f̂i ] ≤ 2/p2
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Frequent Items: Analysis

E[f̂i ] = fi

Var[f̂i ] ≤ 2/p2

set p = O(
√
k

εn )

space: O(
√
k/ε)

space per site: O(1/(ε
√
k))

communication: same as before
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Frequent Items: Lower Bound

Communication lower bound still hold

Space lower bound
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Frequent Items: Lower Bound

Communication lower bound still hold

Space lower bound

Communication-space tradeoff
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Communication-Space Tradeoff

Theorem

Any randomized algorithm that solves the
frequency tracking problem with communication
C bits and uses M bits of space per site, we have
C ·M = Ω(log n/ε2).
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Communication-Space Tradeoff

Communication cost: O(
√
k/ε · log n) bits

Theorem

Any randomized algorithm that solves the
frequency tracking problem with communication
C bits and uses M bits of space per site, we have
C ·M = Ω(log n/ε2).

Space per site: Ω(1/(ε
√
k)) bits



26-1

Communication Complexity

Theorem

The k-party communication complexity for the
one-shot frequency estimation problem is
Ω(
√
k/ε) bits.

[Woodruff, Zhang, STOC’12]
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Communication Complexity

Theorem

The k-party communication complexity for the
one-shot frequency estimation problem is
Ω(
√
k/ε) bits.

Direct-Sum theorem

Solve ` instances of the frequency estimation
problem simultaneously needs Ω(` ·

√
k/ε) bits of

communication.

[Woodruff, Zhang, STOC’12]
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Communication-Space Tradeoff

Let A be a k-party tracking algorithm with
communication C and space M

Proof sketch

Use A to solve tk-party one-shot problem.
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Communication-Space Tradeoff

Let A be a k-party tracking algorithm with
communication C and space M

Proof sketch

Use A to solve tk-party one-shot problem.

1 2 k

t

M
A

M



27-7

Communication-Space Tradeoff

Let A be a k-party tracking algorithm with
communication C and space M

Proof sketch

Use A to solve tk-party one-shot problem.

1 2 k

t

M

M
A
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Communication-Space Tradeoff

Let A be a k-party tracking algorithm with
communication C and space M

Proof sketch

Use A to solve tk-party one-shot problem.

1 2 k

t

M

M
A

C + M · tk ≥ Ω(
√
kt
ε )
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Problems

The count-down problem

Frequent items (heavy hitters)

Random sampling

The count-down problem

Count-tracking

Other problems
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Reservoir Sampling [Waterman ’??; Vitter ’85]

Maintain a (uniform) sample (w/o replacement) of size s
from a stream of n items

Every subset of size s has equal probability to be the
sample
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Reservoir Sampling [Waterman ’??; Vitter ’85]

Maintain a (uniform) sample (w/o replacement) of size s
from a stream of n items

Every subset of size s has equal probability to be the
sample

When the i-th item arrives

With probability 1− s/i , throw it away

With probability s/i , use it to replace an item in the
current sample chosen uniformly at ranfom
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Reservoir Sampling from Distributed Streams

· · ·

S1

S2

S3

Sk

time

C

When k = 1, reservoir sampling has cost Θ(s log n)

When k ≥ 2, reservoir sampling has cost O(n) because it’s
costly to track i
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Reservoir Sampling from Distributed Streams

· · ·

S1

S2

S3

Sk

time

C

When k = 1, reservoir sampling has cost Θ(s log n)

When k ≥ 2, reservoir sampling has cost O(n) because it’s
costly to track i

Tracking i approximately?

Sampling won’t be uniform
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Reservoir Sampling from Distributed Streams

· · ·

S1

S2

S3

Sk

time

C

When k = 1, reservoir sampling has cost Θ(s log n)

When k ≥ 2, reservoir sampling has cost O(n) because it’s
costly to track i

Tracking i approximately?

Sampling won’t be uniform

Key observation:
We don’t have to know the
size of the population in
order to sample!
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Basic Idea: Binary Bernoulli Sampling
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0 1 1 1 1 10 0 0 0 0 0 0

0 0 0

1

11111

1 0 0

Basic Idea: Binary Bernoulli Sampling
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0 1 1 1 1 10 0 0 0 0 0 0

0 0 0

1

11111

1 0 0

Conditioned upon a row having ≥ s active items, we can
draw a sample from the active items

Basic Idea: Binary Bernoulli Sampling
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0 1 1 1 1 10 0 0 0 0 0 0

0 0 0

1

11111

1 0 0

Conditioned upon a row having ≥ s active items, we can
draw a sample from the active items

The coordinator could maintain a Bernoulli sample of size
between s and O(s)

Basic Idea: Binary Bernoulli Sampling
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· · ·

S1

S2

S3

Sk

C

Initialize i = 0
In round i :

Sites send in every item w.p. 2−i

(This is a Bernoulli sample with prob. 2−i )

Sampling from Distributed Streams
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· · ·

S1

S2

S3

Sk

C

Initialize i = 0
In round i :

Sites send in every item w.p. 2−i

(This is a Bernoulli sample with prob. 2−i )

Coordinator maintains a lower sample and
a higher sample: each received item goes
to either with equal prob.

(The lower sample is a sample with prob. 2−i−1)

Sampling from Distributed Streams
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· · ·

S1

S2

S3

Sk

C

Initialize i = 0
In round i :

Sites send in every item w.p. 2−i

(This is a Bernoulli sample with prob. 2−i )

Coordinator maintains a lower sample and
a higher sample: each received item goes
to either with equal prob.

(The lower sample is a sample with prob. 2−i−1)

When the lower sample reaches size s, the
coordinator broadcasts to advance to
round i ← i + 1

Discard the upper sample

Split the lower sample into a new lower
sample and a higher sample

Sampling from Distributed StreamsSampling from Distributed Streams
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Sampling from Distributed Streams: Analysis

Communication cost of round i : O(k + s)

Expect to receive O(s) sampled items before round ends

Broadcast to end round: O(k)

[Cormode, Muthukrishnan, Yi, Zhang, PODS’10, JACM’12]

[Woodruff, Tirthapura, DISC’11]
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Sampling from Distributed Streams: Analysis

Communication cost of round i : O(k + s)

Expect to receive O(s) sampled items before round ends

Broadcast to end round: O(k)

Number of rounds: O(log(n/s))

In round i , need Θ(s) items being sampled to end round

Each item has prob. 2−i to contribute: need Θ(2i s) items

[Cormode, Muthukrishnan, Yi, Zhang, PODS’10, JACM’12]

[Woodruff, Tirthapura, DISC’11]
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Sampling from Distributed Streams: Analysis

Communication cost of round i : O(k + s)

Expect to receive O(s) sampled items before round ends

Broadcast to end round: O(k)

Number of rounds: O(log(n/s))

In round i , need Θ(s) items being sampled to end round

Each item has prob. 2−i to contribute: need Θ(2i s) items

Communication: O((k + s) log n)

Can be improved to O(k logk/s n + s log n)

A matching lower bound

[Cormode, Muthukrishnan, Yi, Zhang, PODS’10, JACM’12]

[Woodruff, Tirthapura, DISC’11]
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Problems

The count-down problem

Frequent items (heavy hitters)

Random sampling

The count-down problem

Count-tracking

Other problems
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Frequency moments

Other Results on Distributed Tracking

F2: Õ(k2/ε2 + k1.5/ε4) [Cormode, Muthukrishnan, Yi,

SODA’08]

F2: Õ(k/poly(ε)) [Woodruff, Zhang, STOC’12]
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Frequency moments

Other Results on Distributed Tracking

F2: Õ(k2/ε2 + k1.5/ε4) [Cormode, Muthukrishnan, Yi,

SODA’08]

F2: Õ(k/poly(ε)) [Woodruff, Zhang, STOC’12]

F2: Ω̃(k/ε2) [Woodruff, Zhang, STOC’12]F2: Ω̃(k/ε2) [Woodruff, Zhang, STOC’12]
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Frequency moments

Other Results on Distributed Tracking

F2: Õ(k2/ε2 + k1.5/ε4) [Cormode, Muthukrishnan, Yi,

SODA’08]

F2: Õ(k/poly(ε)) [Woodruff, Zhang, STOC’12]

F2: Ω̃(k/ε2) [Woodruff, Zhang, STOC’12]F2: Ω̃(k/ε2) [Woodruff, Zhang, STOC’12]

Fp, p > 1: Θ̃(kp−1/poly(ε)) [Woodruff, Zhang, STOC’12]
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Frequency moments

Other Results on Distributed Tracking

F2: Õ(k2/ε2 + k1.5/ε4) [Cormode, Muthukrishnan, Yi,

SODA’08]

F2: Õ(k/poly(ε)) [Woodruff, Zhang, STOC’12]

F2: Ω̃(k/ε2) [Woodruff, Zhang, STOC’12]F2: Ω̃(k/ε2) [Woodruff, Zhang, STOC’12]

Fp, p > 1: Θ̃(kp−1/poly(ε)) [Woodruff, Zhang, STOC’12]

F0 (distinct count): Θ̃(k/ε2) [Woodruff, Zhang, STOC’12]



36-1

Entropy [Arackaparambil, Brody, Chakrabarti, ICALP’08]

Heavy hitters and quantiles [Yi, Zhang, PODS’09]

Sliding windows [Chan, Lam, Lee, Ting, STACS’10]

Other Results on Distributed Tracking

[Cormode, Yi, SSDBM’12]

[Huang, Yi, Zhang, PODS’12]
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Any streaming problem

Histograms, clustering, graph problems, geometric
problems, ...

Open Problems

Does it have to be streaming?

If we don’t care about space ...

Even if we care about space... streaming lower bounds
do not apply!

How to model deletions?

Competitive analysis? [Yi, Zhang, SODA’09]
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The Greater Picture: Distributed
Tracking/Monitoring

Adaptive filters [Olston, Jiang, Widom, SIGMOD’03]

A generic geometric approach [Scharfman et al. SIGMOD’06]

Prediction models [Cormode, Garofalakis, Muthukrishnan,

Rastogi, SIGMOD’05]

Motivated by database/networking applications

environment monitoring

network monitoring

sensor networks

cloud computing
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Thank you!


