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The Count-Down Problem

Naive solution: O(n) communication

[Cormode, Muthukrishnan, Yi, SODA'08]
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The Count-Down Problem

Naive solution: O(n) communication

“Safe zone" based approach:
m Set threshold = n/k, safe when every local count < n/k
= When one local count reaches n/k, broadcast to
m Compute the current total count
m Compute new leeway = n — total count

m Set new threshold = leeway / k

[Cormode, Muthukrishnan, Yi, SODA'08]
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The Count-Down Problem

Naive solution: O(n) communication

“Safe zone" based approach:
m Set threshold = n/k, safe when every local count < n/k
= When one local count reaches n/k, broadcast to
m Compute the current total count

m Set ney # rounds: O(k log n)
cost per round: O(k)

total cost: O(k? log n)

[Cormode, Muthukrishnan, Yi, SODA'08]
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The Count-Down Problem

Set threshold = 7, 3

Round 1:

—  signal

signal i s'gna] signal

[Cormode, Muthukrishnan, Yi, SODA'08]
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The Count-Down Problem

Set threshold = 7, B

Round 1: Hfter k signals: 5 < count < n

n
2

—  signal

signal i s'gna] signal

[Cormode, Muthukrishnan, Yi, SODA'08]
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The Count-Down Problem

Round 2:
ik
signal
signal i i

[Cormode, Muthukrishnan, Yi, SODA'08]
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The Count-Down Problem

Round 2:

4k
signal signal

signal

signal

[Cormode, Muthukrishnan, Yi, SODA'08]
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The Count-Down Problem

Round 2:
after another k signals: %n < count < n
_n
4k
signal signal

signal

signal

[Cormode, Muthukrishnan, Yi, SODA'08]
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The Count-Down Problem

Round 2:
after another k signals: 3n < count < n

signal # rounds: O(log n)
cost per round: O(k)

total cost: O(k log n)

W

signal

[Cormode, Muthukrishnan, Yi, SODA'08]
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The Count-Tracking Problem

—_k sites
counter nq |

counter no

counter nj

counter ny

Counters increment over time
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The Count-Tracking Problem

__ k sites

counter
counter no
Coordinator wants to
track n=> n;
with relative e-error
counter nj
counter ny

Counters increment over time
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Deterministic Algorithm

Every site uses a series of thresholds:
=1t =1+4+¢,1 :(1+8)2,...

Sends a message when n; reaches a threshold
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Sends a message when n; reaches a threshold
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Deterministic Algorithm

Every site uses a series of thresholds:
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Deterministic Algorithm

Every site uses a series of thresholds:
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Sends a message when n; reaches a threshold
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Deterministic Algorithm

Every site uses a series of thresholds:
=1t =1+4+¢,1 :(1+8)2,...

Sends a message when n; reaches a threshold

t3—— Relative s-error for each n;

P

Total cost:
T Xilogyy. i = O(k/s - log n)
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Deterministic Algorithm

Every site uses a series of thresholds:
=1t =1+4+¢,1 :(1+8)2,...

Sends a message when n; reaches a threshold

t3—— Relative s-error for each n;
—’/n,'
r——
, Total cost:
—
> logy, . ni = O(k/e - log n)

Communication is one-way
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Deterministic Lower Bound

Any deterministic protocol that solves the count-tracking
problem must communicate €2(k /e - log n) messages, even
with two-way commucation.

[Yi, Zhang, PODS'09]
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Deterministic Lower Bound

Any deterministic protocol that solves the count-tracking
problem must communicate €2(k /e - log n) messages, even
with two-way commucation.

> triggering thresholds < en

N

[Yi, Zhang, PODS'09]
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Deterministic Lower Bound

Any deterministic protocol that solves the count-tracking
problem must communicate €2(k /e - log n) messages, even
with two-way commucation.

> triggering thresholds < en

N

adversary always

triggers the lowest
threshold

[Yi, Zhang, PODS'09]
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Randomized Algorithm

Sends n; with probability p
!/when a new Item arrives
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n; — n; is a random variable

e

last sent value — n; ——
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n; — n; is a random variable

. ni—14+1/p, if n; exists;
n, =
0, else.

e

last sent value — n; ——
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n; — n; is a random variable

. ni—14+1/p, if n; exists;
n, =
0, else.

E[h,] = n;, Var[h,-] — ]./p2
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n; — n; is a random variable

. ni—14+1/p, if n; exists;
0, else.

E[h,] = n;, Var[h,-] — 1/,02

A=3h

E[A] = > A; = n, Var[A] = k/p?
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Rounds

Chebyshev inequality

SD less than en — p = O(Vk/en)
constant probability of success (at any one time instance)



Rounds

Chebyshev inequality

SD less than en — p = O(Vk/en)
constant probability of success (at any one time instance)

m Track a 2-approximation n of n using the deterministic

algorithm
m Broadcast n whenever n doubles
m Set p = \/_

m Divide the tracking period into rounds
m n changes by at most a constant factor in a round

m pis fixed in a round



Communication Cost

m Communication cost
= Tracking a 2-approximation: O(k log n)

® Number of messages in a round: O(np) = O(V'k/¢)
® Total: O(klogn+Vk/e - logn)
= Can be improved to O(k log n/log(ke?) 4+ vk /e - log n)
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Communication Cost

m Communication cost

= Tracking a 2-approximation: O(k log n)
= Number of messages in a round: O(np) = O(V k/¢)

®m Total: O(klogn+ vVk/e - logn)

= Can be improved to O(k log n/log(ke?) +v'k/¢ - log n)

m |ower bounds

= Only allow one-way communication: Q(k/e - log n)

(randomization doesn't help)

® Two-way communication: Q(k

11-2
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Tight Bounds for Count-Tracking

s Upper bound in words

® [ower bound in number of messages

©(Vk/e - log n) @<k og )

log(ke?)

[Huang, Yi, Zhang, PODS'12]
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The Distributed Streaming Model

k sites




The Distributed Streaming Model

Coordinator tries to compute k sites
f(AL(t) W Ax(t)W--- W A(t)) for all t
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Generalization of Two Models

Communication model
(One-shot model)
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Generalization of Two Models

Communication model Data stream model
(One-shot model)
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Generalization of Two Models

m Communication cost
m Space

Communication model Data stream model
(One-shot model)



Generalization of Two Models

Trivial problems in these
two models could be
highly nontrivial in the
combined model!

m Communication cost
m Space

Communication model Data stream model
(One-shot model)
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® Frequent items (heavy hitters)
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Frequent ltems: Definition

heavy hitters

On

12345678
Al =n
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Frequent ltems: Definition

heavy hitters

don't care

A\

((9 T 8)[‘)

12345678
Al =n
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Frequent ltems: Definition

heavy hitters

dontcare /
((9::8)[7 lIIIIII

12345678
Al =n

Frequency estimation with F; error

Estimate the frequency of every element
with additive error en.
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Frequent ltems

Use the previous algorithm on each item /

® Maintain a count for each item at each site

m Space
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Frequent ltems

Use the previous algorithm on each item /

® Maintain a count for each item at each site
m Space
Streaming algorithm (Misra-Gries)
cost per site: O(1/¢)
o total: O(k/e)
e improve to O(Vk/¢)
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Frequent ltems: Algorithm

ldea: maintain only large enough counts
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Frequent ltems: Algorithm

ldea: maintain only large enough counts

Start to count / with
probability p
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Frequent Items: Algorithm

ldea: maintain only large enough counts

EEEERY

Start to count / with  Update the count
probability p with probability p
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Frequent ltems: Analysis

Coordinator only know ¢
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Frequent ltems: Analysis

Coordinator only know ¢

- c—142/p, ifc>0;
f;,_
0, else.
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Frequent ltems: Analysis

Coordinator only know ¢

- c—142/p, ifc>0;
f;,_
0, else.

Bias might be as large as en/vk
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Frequent ltems: Analysis

Coordinator only know ¢
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Frequent ltems: Analysis

Coordinator only know ¢

- c—1+4+1/p, if c>0;
f;__
0, else.
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Frequent ltems: Analysis

Estimate c by ¢

. c—1+4+1/p, ifc>0;
C =
0, else.
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Frequent ltems: Analysis

Combined estimator

c—242/p, ifec>2;
0, else.

>

—_—
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Frequent ltems: Analysis

= Var[fi] < 2/p?
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Frequent ltems: Analysis

= Varlf;] < 2/p?

set p = O(g)
space: O(Vk/e)
space per site: O(1/(eVk))

communication: same as before
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Frequent ltems: Lower Bound

m Communication lower bound still hold

m Space lower bound
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Frequent ltems: Lower Bound

m Communication lower bound still hold

m Space lower bound

® Communication-space tradeoff

24-2



Communication-Space Tradeoff

Any randomized algorithm that solves the
frequency tracking problem with communication

C bits and uses M bits of space per site, we have
C-M=Q(logn/e?).
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Communication-Space Tradeoff

Any randomized algorithm that solves the
frequency tracking problem with communication

C bits and uses M bits of space per site, we have
C-M=Q(logn/e?).

Communication cost: O(vk/e - log n) bits
Space per site: Q(1/(ev'k)) bits
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Communication Complexity

The k-party communication complexity for the
one-shot frequency estimation problem is

Q(V'k/€) bits.

[Woodruff, Zhang, STOC'12]
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Communication Complexity

The k-party communication complexity for the
one-shot frequency estimation problem is

Q(V'k/€) bits.

Direct-Sum theorem

Solve ¢ instances of the frequency estimation
problem simultaneously needs Q(¢ - v k/¢) bits of

communication.

[Woodruff, Zhang, STOC'12]
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Communication-Space Tradeoff

Proof sketch

Let A be a k-party tracking algorithm with
communication C and space M

Use A to solve tk-party one-shot problem.
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Communication-Space Tradeoff

Proof sketch

Let A be a k-party tracking algorithm with
communication C and space M

Use A to solve tk-party one-shot problem.
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Communication-Space Tradeoff

Proof sketch

Let A be a k-party tracking algorithm with
communication C and space M

Use A to solve tk-party one-shot problem.
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Communication-Space Tradeoff

Proof sketch

Let A be a k-party tracking algorithm with
communication C and space M

Use A to solve tk-party one-shot problem.
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Communication-Space Tradeoff

Proof sketch

Let A be a k-party tracking algorithm with
communication C and space M

Use A to solve tk-party one-shot problem.

?ﬂi =

i
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Communication-Space Tradeoff

Proof sketch

Let A be a k-party tracking algorithm with
communication C and space M

Use A to solve tk-party one-shot problem.
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Communication-Space Tradeoff

Proof sketch

Let A be a k-party tracking algorithm with
communication C and space M

Use A to solve tk-party one-shot problem.

1 2
EM i ............................ - tk>Q(£)
My
O O

<
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® Random sampling
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Reservoir Sampling [Waterman ' ?7; Vitter '85]

= Maintain a (uniform) sample (w/o replacement) of size s
from a stream of n items

® Every subset of size s has equal probability to be the
sample
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Reservoir Sampling [Waterman ' ??; Vitter '85]

= Maintain a (uniform) sample (w/o replacement) of size s
from a stream of n items

® Every subset of size s has equal probability to be the
sample

® \WWhen the /-th item arrives

= With probability s/i, use it to replace an item in the
current sample chosen uniformly at ranfom

= With probability 1 — s//, throw it away

29-2



Reservoir Sampling from Distributed Streams

= When k =1, reservoir sampling has cost ©(s log n)

= When k > 2, reservoir sampling has cost O(n) because it's
costly to track i

S/ 0@ @ @

5 © 000 e

50 ®© 0 @

» time
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Reservoir Sampling from Distributed Streams

= When k =1, reservoir sampling has cost ©(s log n)

= When k > 2, reservoir sampling has cost O(n) because it's
costly to track i

S5 @@ @ @ Tracking /i approximately?

Sampling won't be uniform

5 © 000 e
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» time
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Reservoir Sampling from Distributed Streams

= When k =1, reservoir sampling has cost ©(s log n)

= When k > 2, reservoir sampling has cost O(n) because it's
costly to track i

S5 @@ @ @ Tracking /i approximately?

Sampling won't be uniform

Key observation:

We don’t have to know the
size of the population in
order to sample!

ck—{s|o ® °

5 © 000 e

50 ®© 0 @

» time
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Basic Idea: Binary Bernoulli Sampling

31-1



o]0
=
o

=

T
0p)
=

)

-

| -

O
A

=>

| -

S
=
A

5

O
O
O

)

5
A

o

X XX)

@X XX

31-2



Basic ldea: Binary Bernoulli Sampling

[ _ o0 O ® O ® O [ ® 0 o0

0 1 0 1 0 O 0 1 0 10 10
— 0 1 1 0 1 1 0

! 9 9

Conditioned upon a row having > s active items, we can
draw a sample from the active items
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Basic ldea: Binary Bernoulli Sampling

[ _ o0 O ® O ® O [ ® 0 o0

0 1 0 1 0 O 0 1 0 10 10
— 0 1 1 0 1 1 0

! 9 9

Conditioned upon a row having > s active items, we can
draw a sample from the active items

The coordinator could maintain a Bernoulli sample of size
between s and O(s)

31-4



Sampling from Distributed Streams

m Initialize 1 =0
® |In round r:

= Sites send in every item w.p. 2~/
Sk (This is a Bernoulli sample with prob. 2_i)
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Sampling from Distributed Streams

m Initialize 1 =0
® |In round r:

= Sites send in every item w.p. 2~/
Sk (This is a Bernoulli sample with prob. 2_i)

® Coordinator maintains a lower sample and
a higher sample: each received item goes
to either with equal prob.

C S3 (The lower sample is a sample with prob. 27/71)
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Sampling from Distributed Streams

m Initialize 1 =0
® |In round r:

= Sites send in every item w.p. 2~/
Sk (This is a Bernoulli sample with prob. 2_i)

® Coordinator maintains a lower sample and
a higher sample: each received item goes
to either with equal prob.

C Ss (The lower sample is a sample with prob. 27/~1)
® When the lower sample reaches size s, the
S, coordinator broadcasts to advance to
round / <+ i+ 1
51 Discard the upper sample

Split the lower sample into a new lower
sample and a higher sample
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Sampling from Distributed Streams: Analysis

® Communication cost of round i: O(k + s)
m Expect to receive O(s) sampled items before round ends
= Broadcast to end round: O(k)

[Cormode, Muthukrishnan, Yi, Zhang, PODS'10, JACM'12]
[Woodruff, Tirthapura, DISC'11]
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Sampling from Distributed Streams: Analysis

® Communication cost of round i: O(k + s)
m Expect to receive O(s) sampled items before round ends
= Broadcast to end round: O(k)

= Number of rounds: O(log(n/s))

= In round /, need O(s) items being sampled to end round

= Each item has prob. 27/ to contribute: need ©(2's) items

[Cormode, Muthukrishnan, Yi, Zhang, PODS'10, JACM'12]
[Woodruff, Tirthapura, DISC'11]
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Sampling from Distributed Streams: Analysis

® Communication cost of round i: O(k + s)
m Expect to receive O(s) sampled items before round ends
= Broadcast to end round: O(k)

= Number of rounds: O(log(n/s))

= In round /, need O(s) items being sampled to end round

= Each item has prob. 27/ to contribute: need ©(2's) items
= Communication: O((k + s) log n)
= Can be improved to O(klog, /s n+ slogn)

= A matching lower bound

[Cormode, Muthukrishnan, Yi, Zhang, PODS'10, JACM'12]
[Woodruff, Tirthapura, DISC'11]
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m Other problems
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Other Results on Distributed Tracking

m Frequency moments

" Fy é(k2/82 + k1’5/84) [Cormode, Muthukrishnan, Yi,
SODA'08]

" F,: O(k/poly(g)) [Woodruff, Zhang, STOC'12]
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Other Results on Distributed Tracking

m Frequency moments

" Fy é(k2/62 + k1’5/84) [Cormode, Muthukrishnan, Yi,
SODA'08]

" F,: O(k/poly(g)) [Woodruff, Zhang, STOC'12]
" Fy: Q(k/e?) [Woodruff, Zhang, STOC'12]

" F,,p>1: ©(kP~1/poly(e)) [Woodruff, Zhang, STOC'12]
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Other Results on Distributed Tracking

m Frequency moments

35-4

" Fy é(k2/82 + k1’5/84) [Cormode, Muthukrishnan, Yi,
SODA’08]

=" £,: O(k/poly(e)) [Woodruff, Zhang, STOC'12]
" Fy: Q(k/e?) [Woodruff, Zhang, STOC'12]
"F,,p>1: O (kP~ /poly(e)) [Woodruff, Zhang, STOC'12]

" fo (distinct count): ©(k/e?) [Woodruff, Zhang, STOC'12]



Other Results on Distributed Tracking

m Entropy [Arackaparambil, Brody, Chakrabarti, ICALP'08]

m Heavy hitters and quantiles [Yi, Zhang, PODS’09]
[Huang, Yi, Zhang, PODS'12]

m Sliding windows [Chan, Lam, Lee, Ting, STACS'10]

Cormode, Yi, SSDBM'12]
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Open Problems

m Any streaming problem

m Histograms, clustering, graph problems, geometric
problems, ...
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Open Problems

m Any streaming problem

m Histograms, clustering, graph problems, geometric
problems, ...

m Does it have to be streaming?

= If we don't care about space ...
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Open Problems

m Any streaming problem

m Histograms, clustering, graph problems, geometric
problems, ...

m Does it have to be streaming?
m If we don't care about space ...

m Even if we care about space... streaming lower bounds
do not apply!
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Open Problems

m Any streaming problem

m Histograms, clustering, graph problems, geometric
problems, ...

m Does it have to be streaming?
m If we don't care about space ...

m Even if we care about space... streaming lower bounds
do not apply!

s How to model deletions?

m Competitive analysis? [Yi, Zhang, SODA’'09]
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The Greater Picture: Distributed

\

= Motivated by database/networking applications
m Adaptive filters [Olston, Jiang, Widom, SIGMOD'03]
m A generic geometric approach [Scharfman et al. SIGMOD'06]

m Prediction models [Cormode, Garofalakis, Muthukrishnan,
Rastogi, SIGMOD'05]

.....
g L}

B . - ""- . '.-'.

environment monitoring cloud computing
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