
Efficient Maintenance of Materialized Top-k Views

Ke Yi, Hai Yu, Jun Yang
Department of Computer Science

Duke University
{yike,fishhai,junyang}@cs.duke.edu

Gangqiang Xia, Yuguo Chen
Institute of Statistics and Decision Sciences

Duke University
{xia,yuguo}@stat.duke.edu

Abstract

We tackle the problem of maintaining materialized top-
k views in this paper. Top-k queries, includingMIN and
MAXas important special cases, occur frequently in com-
mon database workloads. A top-k view can be materialized
to improve query performance, but in general it is not self-
maintainable unless it contains all tuples in the base table.
Deletions and updates on the base table may cause tuples
to leave the top-k view, resulting in expensive queries over
the base table to “refill” the view. In this paper, we pro-
pose an algorithm that reduces the frequency of refills by
maintaining a top-k′ view instead of a top-k view, where
k′ changes at runtime betweenk and somekmax ≥ k. We
show that in most practical cases, our algorithm can reduce
the expected amortized cost of refill queries toO(1) while
still keeping the view small. The optimal value ofkmax de-
pends on the update pattern and the costs of querying the
base table and updating the view. Compared with the sim-
ple approach of maintaining either the top-k view itself or a
copy of the base table, our algorithm can provide orders-of-
magnitude improvements in performance with appropriate
kmax values. We show how to choosekmax dynamically to
adapt to the actual system workload and performance at
runtime, without requiring accurate prior knowledge.

1. Introduction

Top-k queries have received much attention from the
database community in recent years [5, 9, 10, 3, 6]. An
effective way of improving the performance of expen-
sive queries is to maintain their results as materialized
views [13]. However, incremental maintenance of materi-
alized top-k views has been a relatively unexplored prob-
lem in the view maintenance literature. The main dif-
ficulty of this problem is that a top-k view is not self-
maintainable[12] with respect to deletions and updates
on the base table. That is, sometimes we must query the
base table in order to maintain the top-k view properly; the

view itself does not contain enough information required for
maintenance.

For example, consider a materialized view containing10
stocks with the highest price/earning ratios currently on the
market. Suppose one of these stocks plummets, and its
price/earning ratio drops below the current top10. After
this update, the view still contains the top9 stocks, but in
order to find the stock with the10-th ranked price/earning
ratio, we need to query the base table of all stocks. This
query, which we call arefill query, can be expensive in gen-
eral for a number of reasons,e.g., the base table may be
large, it may reside in a remote database, and the ranking
criterion may involve expensive user-defined functions.

To avoid expensive refill queries over the base table, we
can make a top-k view self-maintainable by augmenting it
with auxiliary data, a technique well studied in data ware-
housing [22, 1]. For example, we may keep the(k + 1)-th
ranked tuple as auxiliary data to help maintain a top-k view,
in the event that a tuple drops out of the topk. However,
since auxiliary data must be maintained as well, we need the
(k + 2)-th ranked tuple in order to maintain the(k + 1)-th,
the(k + 3)-th to maintain the(k + 2)-th, etc. In general, to
make a top-k view completely self-maintainable, we must
essentially keep a copy of the entire base table, or at least
an ordered index on the base table column used for ranking.

Now we are faced with a dilemma. One option is to
maintain the original top-k view, which may require fre-
quent costly refill queries. The other option is to maintain
an ordered index on the entire base table, which has high
storage and maintenance overhead but avoids refill queries
altogether. Neither option seems completely satisfactory.
Previous work on making views self-maintainable has of-
ten side-stepped the problem by not considering deletions
and updates for SQL aggregatesMIN andMAX, which are
special cases of top-k views withk = 1.

Fortunately, we have a middle-ground to explore be-
tween the two extremes, without ruling out deletions and
updates. This approach is based on two key observa-
tions. First, instead of requiring complete self-maintenance,
we try to achieveruntime self-maintenance[16] with high

1



probability. That is, rather than devoting lots of additional
resources to ensure that we never query the base table for
view maintenance, we can devote much fewer additional
resources and ensure that we only query the base table ex-
tremely rarely. The second observation is that a material-
ized view can have a dynamic definition. Instead of main-
taining a top-k view, we maintain a top-k′ view, wherek′

can change dynamically betweenk and somekmax ≥ k. We
start withk′ = kmax, i.e., a top-kmax view with more than
the required number of tuples. We increasek′ by one when
an insertion or an update causes a tuple to enter the current
top k′ (unlessk′ already equalskmax), and we decreasek′

by one when a deletion or an update causes a tuple to leave
the current topk′. We only query the base table whenk′

drops belowk. By starting withkmax instead ofk, we hope
to lower the refill frequency and hence the amortized cost
of view maintenance.

Beyond this conceptually simple idea, several interest-
ing and non-trivial questions remain to be answered. In-
tuitively, as we increasekmax, refill frequency decreases;
on the other hand, the view takes more space, updating the
view becomes more expensive, and more updates need to
be applied to the view. Given these trade-offs, how do we
choose right values ofkmax? What are the factors affecting
the optimalkmax value? Under what conditions can we ex-
pect to achieve low amortized view maintenance cost with
reasonably small values ofkmax? How do we choosekmax

without accurate prior knowledge of the workload?
This paper explores in detail the issues mentioned above.

Section 2 surveys related work. Section 3 describes our al-
gorithm and cost model. Section 4 explores the relation-
ship betweenkmax and the refill frequency using the ran-
dom walk model as a tool. Most importantly, we show that
in most practical cases, we can reduce the expected amor-
tized cost of refill queries toO(1) with reasonably small
kmax values. Section 5 considers several statistical mod-
els of base table updates and shows how to apply our an-
alytical results in Section 4 to these cases. Section 6 ex-
perimentally obtains the parameters of our cost model, and
demonstrates the effectiveness of our algorithm in realis-
tic scenarios. Section 7 proposes a procedure for choosing
kmax which adapts to the actual system workload and per-
formance at runtime.

2. Related Work

There is a large body of work on top-k queries [4, 5,
9, 10, 3, 7, 6], most of which focuses on how to evaluate
these queries efficiently in various contexts. Most related
to this paper is the work by Hristidiset al. [15], wherein
they propose materializing ranked views to speed up more
complex preference queries. Their work focuses on select-
ing ranked views to materialize and using them to answer

queries. They assume that ranked views are materialized in
their entirety. Nevertheless, it is possible to reduce storage
and maintenance costs by keeping top-k views instead of
whole ranked views. Therefore, their work is complemen-
tary to ours, and provides a good motivation for studying
efficient maintenance of top-k views.

Materialized view maintenance is a well-known and
well-studied problem, surveyed in [13]. The concept of self-
maintenance is introduced in [2, 12], and the concept of run-
time self-maintenance is introduced in [16]. The technique
of using auxiliary data to make views self-maintainable is
pioneered by [22], and has been successfully applied in
many settings [1, 23, 17]. To the best of our knowledge,
all prior work uses auxiliary data to achieve complete self-
maintenance; none has considered using auxiliary data to
increase the probability of runtime self-maintenance, which
is the one of the key observations in this paper.

Until recently, most papers that deal with SQLMIN and
MAXviews (which are special cases of top-k views), e.g.,
[11, 21, 1, 17, 24], cannot efficiently handle deletions or up-
dates to the base table. Recent work by Palpanaset al. [18]
proposes usingwork areasto maintainMIN andMAXviews.
Their approach has the same underlying idea as our algo-
rithm in Section 3, which we have developed independently.
Besides this basic idea, they do not consider how to choose
the size of the work area, while we make the following ad-
ditional contributions: (1) we develop a probabilistic model
for rigorous analysis of the algorithm; (2) we prove high-
probability results that establish the effectiveness of the al-
gorithm; and (3) we provide a procedure for choosingkmax

(or size of the work area in their terminology) which adapts
to the actual system workload and performance at runtime,
without requiring accurate prior knowledge.

3. The Algorithm

Suppose we are interested in the topk tuples from a base
tableR of sizeN . We assumek is a constant much smaller
thanN , since typical users are interested only in a small
subset ofR that is most “important,”e.g., the ten most pop-
ular songs or the100 most frequently accessed web sites.
Suppose that tuples inR are identified by a columnid and
ranked according to the value of a columnval . Tuples
with larger values are ranked higher. For simplicity, we as-
sume all values are distinct; in practice, ties can be broken
arbitrarily usingid values. Theval column can be ei-
ther stored explicitly inR or computed on the fly by some
user-defined function. We assume that there is no index on
R.val .

Our algorithm is conceptually very simple. We keep the
top k′ tuples (withid andval columns) in a materialized
view V , wherek′ can vary betweenk and somekmax ≥
k. Sincek ≤ k′, we can answer top-k queries using the

2



contents ofV .
We need to maintainV given the changes to the base ta-

bleR. To keep our analysis clean, we only consider updates
to R; that is, we assume that the identities of theN tuples
in R remain fixed while their values change over time. It is
straightforward to generalize our algorithm and analysis to
handle insertions and deletions onR as well.

Let vk′ be the value of the lowest ranked tuple currently
in V . We assume that an update toR has the form〈id , val〉,
whereval is the new value of the tuple identified byid . For
each update toR, we perform anupdate operationon V .
There are four cases to consider:

• The tuple identified byid is not inV , andval < vk′ .
This update has no effect onV . We call this update an
ignorable update.

• The tuple identified byid is in V , andval > vk′ . We
update the value of this tuple inV to val . We call this
update aneutral update(“neutral” in the sense that it
does not change the value ofk′).

• The tuple identified byid is not inV , andval > vk′ .
We insert〈id , val 〉 into V . We call this update agood
update(“good” in the sense that it increasesk′ by one).
If k′ exceedskmax, we delete the lowest ranked tuple
in V .

• The tuple identified byid is in V , andval < vk′ . We
delete the updated tuple fromV . We call this update a
bad update(“bad” in the sense that it decreasesk′ by
one). Ifk′ drops belowk, we perform arefill operation
as described below.

The refill operationqueries the base table and restores
the size of the view tokmax. This operation consists of the
following two steps:

• Evaluate therefill queryoverR, which returns all tu-
ples ranked betweenk andkmax. Note that at the time
of refill, if k > 1, V still contains the(k−1)-th ranked
tuple. We can use the value of this tuple,vk−1, to re-
fine the refill query as: “return the topkmax − k + 1
tuples among those whose values are less thanvk−1.”

• Insert the result of the refill query intoV .
Further optimization is possible. For example, instead of

waiting untilk′ drops belowk, we could refill the view more
“eagerly,”i.e., whenk′ is close to but still larger thank. This
approach would allow us to keep serving top-k queries from
the view while waiting for the refill query on the base table
to complete. Our analysis, however, will be based on the
basic version of the algorithm.

3.1. Cost Model

The amortized cost of our algorithm per base table up-
date is given by

C = Cupdate × (1 − fignore) + Crefill × frefill . (1)

The cost of updating the view in an update operation,
Cupdate , is O(log |V |), or O(log kmax), since we can im-
plementV using any data structure that functions as a pri-
ority queue, say, a heap or a balanced search tree, which
has anO(log |V |) lookup/insert/delete time. However, not
every base table update causes a view update. Suppose
fignore is the fraction of base table updates that are ig-
norable. The amortized cost of an update operation is
Cupdate × (1 − fignore).

The cost of a refill operation,Crefill , includes the follow-
ing three components:

• The cost of processing the refill query overR. If
kmax − k + 1 is small enough, we can evaluate the
refill query by making one pass overR while keeping
in memory the top tuples (among those whose values
are less thanvk−1) seen so far. In the worst case where
kmax − k + 1 is too large for memory, we can perform
an external-memory sort of allR tuples with values
less thanvk−1, and return the topkmax − k + 1 tu-
ples. In either case, we expect this cost to beO(N) for
practical memory sizes.

• The cost of retrieving thekmax − k + 1 result tuples
of the refill query. Depending on the actual database
and application setup, this cost may involve the cost of
binding result tuples out from the database to the ap-
plication, or the cost of transmitting them to a remote
application over the network. We expect this cost to be
O(kmax).

• The cost of inserting thekmax − k + 1 result tuples
into V . These tuples are already sorted and will be ap-
pended toV . For the data structures used to implement
V (as discussed for the case ofCupdate), the total cost
of appendingkmax − k + 1 tuples isO(kmax).

It is reasonable to assume thatCupdate � Crefill . There-
fore, to minimizeC, we focus on reducingfrefill , the fre-
quency of refill operations. Since the cost of a refill query
is O(N), if we can reducefrefill to 1/N , we will have re-
duced the amortized cost of refill queries toO(1), an attrac-
tive goal. Intuitively, we can decreasefrefill by increasing
kmax. However, a largerkmax also increasesCupdate and
Crefill and decreasesfignore , so the trade-off must be con-
sidered carefully. In Section 4, we develop a theoretical
model to study the effect ofkmax on frefill , and in Sec-
tions 5 and 6, we conduct simulations and experiments to
see howkmax affectsCupdate , fignore , Crefill , andfrefill in
practical scenarios.

This simple cost model of ours does not capture the inter-
action between concurrent queries and updates, nor the po-
tential savings of overlapping local execution with remote
execution and data transfer. Nevertheless, this model pro-
vides a good first-order estimate of the total cost of the al-
gorithm.

3



4. Analysis

4.1. The Random Walk Model

From the description of the algorithm in the last section,
we notice that the values ofk′ between two refill operations
can be modeled as a random walk on the one-dimensional
points{k−1, k, . . . , kmax}, wherekmax is the starting point
andk − 1 is an absorbing point at which the random walk
ends and a refill is needed. In order to use the standard nota-
tion of Markov chains, we map the one-dimensional points
to {0, 1, . . . , n}, making 0 as the starting point andn the
absorbing point, wheren = kmax − k + 1. We need to an-
alyze the probabilistic properties of therefill interval Z, or
the number of steps it takes for the random walk to go from
0 to n. The expected refill frequency used in (1) is given by
frefill = E[1/Z].

For the purpose of our analysis, we are mostly interested
in good and bad updates since they are the only updates that
change the size of the view. Suppose that the random walk
is currently at positioni. With a bad update, the random
walk moves toi+1; we assume that this move happens with
probabilitypi. With a good update, the random walk moves
to i−1; we assume that this move happens with probability
qi. Otherwise, the update is either ignorable or neutral, and
the random walk stays ati with probability1 − pi − qi.

In our random walk model, we assume that the choice at
each step is independent of all previous choices. This as-
sumption may not hold for arbitrary update workloads. In
Section 4.6, we show how to generalize our analytical re-
sults when this assumption is dropped, and in Section 5, we
show how to apply our generalized results to update work-
loads where the independence assumption does not hold.

4.2. Expected Refill Interval

The first step is to find the expectation ofZ, E[Z], which
is called thehitting timefrom 0 to n in the terminology of
Markov chains. Denote the hitting time fromi to n ashi.
By the properties of Markov chains, we have

hi = 1 +
n−1∑
j=0

pijhj,

wherepij is thetransition probabilityfrom i to j. The equa-
tion also can be written in a matrix form:h = b + Ph, or

(I − P)h = b, (2)

whereI is the n × n identity matrix, P = (pij), h =
(h0, . . . , hn−1)T , andb = (1, . . . , 1)T . Using the proba-
bilities of good and bad updates defined in Section 4.1, we
can writeP as follows:

2
666664

1 − p0 p0

q1 1 − p1 − q1 p1

. ..
qn−2 1 − pn−2 − qn−2 pn−2

qn−1 1 − pn−1 − qn−1

3
777775

,

where all unspecified entries are zeros.
To simplify calculation, we consider the special case of

p0 = p1 = · · · = pn−1 = p andq0 = q1 = · · · = qn−1 =
q, i.e., the probabilities of bad and good updates (p andq
respectively) remain constant as|V | changes. In general,
this assumption does not hold. However, as we will discuss
in Section 4.6, the results we derive for the case of constant
p andq can be generalized to the case of varyingp andq.
Therefore, we shall assume constantp andq in subsequent
analysis until Section 4.6.

Applying Gaussian Elimination to (2), we obtain the fol-
lowing lemma (see [25] for detailed derivation).

Lemma 1 (Expected refill interval) The expected hitting
time of the random walk fromi to n is given by

hi =

{
(n+i+1)(n−i)

2p , p = q;
(n−i)(1−t)−ti+1+tn

p(1−t)2 , p 6= q andt = q/p,

for i = 0, . . . , n − 1.

Please note thatE[Z] = h0. This lemma confirms our
intuition that the hitting time increases with bigger views.
In particular, whenp = q, it seems sufficient to choose
n = Θ(

√
N) so thatE[Z] = N , which means that we

perform a refill operation everyN updates on average. In
general, however, we cannot guarantee thatE[1/Z], the ex-
pected refill frequency, is1/N . It is conceivable that the
actual distribution ofZ is not centered at its mean value;
there may be a significant probability forZ to be much
smaller than its mean, causingE[1/Z] to be much bigger
than1/E[Z].

Unfortunately,E[1/Z] has no close formula. On the
other hand, given the transition matrix in (2), we can com-
puteE[1/Z] numerically. We present a numerical solver
for E[1/Z] in [25] and show that the computation con-
verges with exponential speed. However, the numerical
solver alone cannot provide any bound onE[1/Z] in gen-
eral. Next, we develop a series of high-probability results
which enable us to boundE[1/Z].

4.3. High-Probability Results Whenp = q

We first concentrate on the most interesting case where
p = q, i.e., the view shrinks and grows with equal probabil-
ity. We expect this case to be common: If the distribution
of the tuple values used for ranking is stationary, the rate

4



N n n/N lower bound upper bound
onPr[Z > N ] onE[N/Z]

100 30 30% 0.9556 1.1037
1000 100 10% 0.9730 1.2426
104 400 4% 0.9987 1.0322
105 1300 1.3% 0.9991 1.0650
106 4500 0.45% 0.9998 1.0355

Table 1. Theoretical bounds on Pr[Z > N ] and
E[N/Z] for practical values of N and n.

at which tuples enter the top-k′ view must be the same as
that at which tuples leave the top-k′ view. We would like to
provide a high-probability guarantee,i.e., Z = Ω(N) holds
with high probability. If so, the expected amortized cost of
refill queries,O(N)/Z, will be O(1). Our main result is the
following theorem (see Appendix A for the proof).

Theorem 1 Whenp = q, if n = N
1
2+ε, the refill interval

Z is greater thanN with high probability; specifically,

Pr[Z > N ] ≥ 1 − 4e−N2ε/2.

With this theorem, the following corollary comes naturally.

Corollary 1 Whenp = q, the expected amortized cost of
refill queries,O(N) × E[1/Z], is O(1), if n = N

1
2 +ε, for

any positive constantε.

Although the requirement ofn = N
1
2+ε is not as good

as our first impression thatn = Θ(
√

N), it is still good
enough to generate satisfying performance of our algorithm
in practice. Table 1 lists some practical values ofN and
n. For each pair ofN andn, we show the lower bound on
Pr[Z > N ] according to Theorem 1 and the upper bound
on E[N/Z] according to Corollary 1. We see that our al-
gorithm performs exponentially better asN goes up. For
example, for a base table with a million tuples, a view con-
taining only the top0.45% of all tuples is enough to provide
a refill interval longer than one million updates with prob-
ability 99.98%. Please note that the values ofPr[Z > N ]
andE[N/Z] shown in Table 1 are theoretical bounds; actual
performance should be even better.

4.4. High-Probability Result Whenp < q

Whenp < q, a base table update is more likely to grow
the view than to shrink it. Intuitively, we should expect a
long refill interval even for small views. Indeed, according
to Lemma 1,h0 is large because of thetn term in the numer-
ator, wheret = q/p > 1. As the following theorem shows,
we can use a logarithmic-size view to reduce the amortized
cost of refill queries toO(1) with high probability.

Theorem 2 Whenp < q, if n = c ln N , the refill interval
Z is greater thanN with high probability, i.e.,

Pr[Z > N ] > 1 − o(1),

for constantc big enough, depending only onp andq.

Please refer to the proof in Appendix B for the choice of
constantc. The next corollary follows naturally.

Corollary 2 Whenp < q, the expected amortized cost of
refill queries isO(1), if n = c ln N , for some constantc big
enough.

4.5. Whenp > q

Whenp > q, a base tuple update is more likely to shrink
the view than to grow it. According to Lemma 1,E[Z] is
on the order ofn, meaning that we would needn = N to
bring the expected refill interval up to the order ofN . Here,
increasing the size of the view still decreases the expected
refill frequency, but at a much slower rate than the cases of
p = q andp < q.

Nevertheless, we feel that the case ofp > q is unusual in
practice, because whenp > q, tuples are trying to “escape”
from the top-k list. Typically, people are more interested in
scenarios where tuples are “competing” with each other to
enter the top-k list. In such scenarios, we would havep = q
or p < q, where our algorithm is most effective.

4.6. Generalizations

So far, we have assumed that allpi andqi values in the
transition matrix are identical in order to keep our analysis
clean. In general,p and q can vary with the size of the
view. Intuitively, for a smaller view,p andq may be smaller,
because it is less likely for base table updates to affect the
view. In this subsection, we show how to generalize our
earlier results to a model with differentpi’s andqi’s.

We first study how changes in individualpi andqi af-
fect the overall hitting time of the random walk. Consider
a random walkW1. Suppose that at a particular positioni,
W1 moves toi + 1 with probabilitypi and moves toi − 1
with probabilityqi. Next, consider a second random walk
W2, whose transition probabilities are identical to those of
W1 except at positioni: W2 moves toi + 1 with probabil-
ity p′i and moves toi − 1 with probabilityq′i. Furthermore,
p′i + q′i ≥ pi + qi, andp′i/q′i ≥ pi/qi. We introduce the
following lemma, whose proof is given in [25].

Lemma 2 The hitting time of random walkW1 stochasti-
cally dominates that ofW2.

Using Lemma 2, we can generalize Theorem 1 and
Corollary 1 to a random walk model with differentpi’s

5



andqi’s. The condition ofp = q becomespi ≤ qi, for
i = 1, . . . , n− 1. Notice that we do not need this condition
for position0. In fact, this condition can be dropped for any
constant number of positions; we only need to change the
value ofn to N

1
2+ε +c′, wherec′ is the number of positions

where this condition does not hold. A similar generalization
can be made to Theorem 2 and Corollary 2. In this case, the
condition under which Theorem 2 and Corollary 2 are ap-
plicable isδ ·pi < qi, for i = 1, . . . , n−1, whereδ > 1 is a
constant. Again, we can drop this condition forc′ positions
and change the value ofn accordingly toc ln N + c′.

Throughout our analysis, we have also assumed a memo-
ryless random walk model in which the choice at each step
is independent of all previous choices. Dropping this as-
sumption requires replacing the conditions onp and q in
Theorems 1 and 2 and Corollary 1 and 2 with more gen-
eral ones. Consider a random walkW with memory on
{0, 1, . . . , n}. We say thatW is origin-tendingif, regard-
less of the previous steps taken, the probability ofW mov-
ing from i to i − 1 is always no less than that of moving
from i to i + 1, wherei is the current position ofW and
0 < i < n. Theorem 1 and Corollary 1 are applicable un-
der the new condition “the random walk is origin-tending.”
We say thatW is strictly origin-tendingif, regardless of the
previous steps taken, the probability ofW moving fromi to
i − 1 is always no less thanδ times that of moving fromi
to i + 1, whereδ > 1 is a constant. Theorem 2 and Corol-
lary 2 are applicable under the new condition “the random
walk is strictly origin-tending.” We provide proofs of these
generalized theorems and corollaries in [25]. In Section 5,
we will see some examples that require the application of
these generalized theorems and corollaries.

5. Case Studies of Update Workloads

In Section 4, we have concluded that our algorithm is
most effective when the random walk is origin-tending. In
this section, we study several statistical models of update
workloads. For most of the workloads we consider, the ran-
dom walk is origin-tending. We also perform simulations
to measure the transition probabilities of the random walk
model as well as the fraction of ignorable updates, which
will be used in Section 6.4 in evaluating the effectiveness of
our algorithm.

Case 1: Cumulative Total Sales Suppose we are inter-
ested in the topk all-time best-selling books in a bookstore.
The vast majority of the transactions are purchases that in-
crease the cumulative total sales figures of the books pur-
chased. Transactions that decrease the sales figures,e.g.,
returns or cancelled orders, are very rare. Under this work-
load, the probability of a bad update is almost nil and is
certainly smaller than the probability of a good update.

Case 2: Random Up-and-Downs Next, we consider a
case where the values in the base table increase and de-
crease equally likely. Suppose each item starts with some
initial value drawn from a symmetric unimodal distribution
(e.g., normal distribution) with meanµ. In each time step
t, an item is chosen uniformly at random to be modified by
Xt, whereXt follows some symmetric unimodal distribu-
tion with mean0. We assume the choice ofXt is indepen-
dent of the choices made in earlier time steps. LetSt be the
value of the chosen item at the end of time stept andSt−1

be the value of this item at the end of the previous time step;
St = St−1 +Xt. It is easy to see thatSt−1 andSt also have
symmetric unimodal distributions with meanµ. This model
can be used reasonably to describe many up-and-down pro-
cesses,e.g., stock prices, fortunes of gamblers,etc.

Like in Case 1, the random walk that models howk′

changes is not memoryless, because the probabilities for an
item to enter and leave the top-k′ list in time stept depend
on the actual values of the items beforet, which in turn
depend on the history of previous updates. Fortunately, as
discussed in Section 4.6, we still know that our algorithm
is effective as long as we can show that the random walk is
origin-tending.

Supposevk′ is the value of the lowest ranked item in the
top-k′ view at the beginning of time stept. Let qt denote
the probability of a good update at timet, andpt denote the
probability of a bad update at timet. Suppose the probabil-
ity density functions ofSt−1 andXt arefS(s) andfX(x),
respectively. We have

qt = Pr[St−1 < vk′ , St−1 + Xt ≥ vk′ ]

=
∫ ∞

0

∫ vk′

vk′−x

fS(s) fX(x) ds dx,

pt = Pr[St−1 ≥ vk′ , St−1 + Xt < vk′ ]

=
∫ 0

−∞

∫ vk′−x

vk′
fS(s) fX(x) ds dx

=
∫ ∞

0

∫ vk′+x

vk′
fS(s) fX(x) ds dx

(sinceXt is symmetrically distributed around0).

Because the distribution ofSt−1 is symmetric aboutµ,
vk′ > µ whenkmax is small. Furthermore, the distribu-
tion must be decreasing afterµ, because it is also unimodal.
Therefore, for anyx > 0,∫ vk′

vk′−x

fS(s) ds >

∫ vk′+x

vk′
fS(s) ds,

which leads topt < qt. Therefore, the random walk is
origin-tending and we may choosekmax = N

1
2+ε.

Case 3: Total Sales in a Moving Window Finally, we
consider a more complicated model involving a moving

6



time window. Suppose we are interested in ranking books
by their total sales during the lastw time steps. For each
book b, let Xb

t be the number of copies ofb sold during
time stept. At the end of the time stept, we update the
total sales to be(Xb

t−w+1 + · · · + Xb
t−1 + Xb

t ). Suppose
that for eachb, all Xb

i ’s are independently and identically
distributed (i.i.d.). Let vk′ be the total sales of the lowest
ranked book in the top-k′ view at the beginning of time step
t. We have

qb
t = Pr[Xb

t−w + · · · + Xb
t−1 < vk′ , Xb

t−w+1 + · · · + Xb
t ≥ vk′ ],

pb
t = Pr[Xb

t−w + · · · + Xb
t−1 ≥ vk′ , Xb

t−w+1 + · · · + Xb
t < vk′ ],

whereqb
t (pb

t) denotes the probability that the update on
b at the end of time stept is good (bad). LetS =∑t−1

i=t−w+1 Xb
i . SinceXb

i ’s arei.i.d, we have

qb
t = Pr[Xb

t−w + S < vk′ , S + Xb
t ≥ vk′ ]

= Pr[Xb
t + S < vk′ , S + Xb

t−w ≥ vk′ ]

= Pr[Xb
t−w + S ≥ vk′ , S + Xb

t < vk′ ] = pb
t .

Therefore, the random walk is origin-tending, and we may
choosekmax = N

1
2+ε.

In addition to the theoretical analysis above, we conduct
two simulations of this update workload in order to mea-
sure the transition probabilities of the random walk model
and the fraction of ignorable updates. The actual values of
these parameters will be used in Section 6.4 to evaluate the
effectiveness of our algorithm.

In the first simulation, the number of copies sold for each
book in each time step follows the same Poisson distribution
with mean50. In the second simulation, for each book, we
use a Poisson distribution with a different mean; further-
more, these mean values form a Zipf distribution. In both
simulations, we use a base table of1000 books and vary the
size of the view from1 to 1000.

Results from the two simulations are shown in Figures 1
and 2 respectively. Both figures plot the probabilities of
good, bad, and ignorable updates observed under different
view sizes. We make the following observations from the
simulation results: (1) the probabilities of good and bad up-
dates are equal and typically small; (2) they increase with
the size of the view initially, but once the view becomes
large enough, they begin to decrease; (3) the probability of
ignorable updates decreases from about1 to 0 as the size
of the view increases from1 to the size of the base table.
The first observation confirms the fact that the random walk
is origin-tending. The last observation implies that increas-
ing the view size has the negative effect of increasing the
number of base table updates to be processed.

Summary For the cases considered in this section, the
random walk is always origin-tending, although it may or

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

| V |

P
ro

ba
bi

lit
y

good updates
bad updates

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

| V |

P
ro

ba
bi

lit
y

ignorable updates

Figure 1. Results from the first simulation.

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

0.025

| V |

P
ro

ba
bi

lit
y

good updates
bad updates

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

| V |

P
ro

ba
bi

lit
y

ignorable updates

Figure 2. Results from the second simulation.

may not be memoryless. Admittedly, the real world situa-
tions are far more complicated to model accurately. How-
ever, from these simple case studies, we have reasonable
confidence that an origin-tending random walk approxi-
mates many practical update workloads well, for which our
algorithm provides good performance.

6. Experiments

We have conducted three sets of experiments in order to
validate our discussion on the cost model in Section 3 and to
obtain realistic values of the model parameters. The first set
of experiments measures the performance of refill queries
in a commercial database system; the second set of exper-
iments measures the performance of updating top-k views
managed by a commercial database system; the last set of
experiments measures the performance of updating top-k
views managed directly by an application. At the end of
this section, we evaluate the effectiveness of our algorithm
using realistic values of the model parameters.

6.1. Refill Queries

We conduct our experiments on a Windows 2000 server
with a1.4GHz Pentium 4 processor and1GB of RAM, run-
ning the latest version of a commercial database system
from a major vendor. We set the size of database buffer
pool at500MB, and the size of the sort heap at200MB.

We create a base tableR with integer id and val
columns, together with other columns of mixed data types,

7



for a total size of roughly160 bytes per tuple. To popu-
lateR, we generateid values sequentially in increment of
1, andval values randomly from the interval[1, 230]. Our
experiments do not cover situations whereval is computed
on the fly; we expect the costs of refill queries to be higher
in such cases. There is a primary B+-tree index onR.id
and no index onR.val .

The refill query is evaluated overR and returns theid
andval values for tuples ranked betweenk andkmax. Sup-
pose that the(k − 1)-th (lowest) ranked tuple in the view at
the time of refill has valuevk−1. The refill query is shown
below in extended SQL syntax:

SELECT id, val FROM R WHERE val < vk−1

ORDER BY val DESC
FETCH FIRST kmax − k + 1 ROWS ONLY
OPTIMIZED FOR kmax − k + 1 ROWS;

For simplicity, the above query does not consider ties, al-
though we do handle them in our experiments using a
slightly more complicatedWHEREcondition.

We vary the following parameters in our experiments:
(1)N , or |R|, the size of the base table, from105 to 3×106;
(2) k, which indirectly determinesvk−1, from 10 to 103;
and (3)kmax, from 10 to 104. The choice of parameter
values are constrained byk ≤ kmax ≤ N . We measure the
total elapsed time of running the refill query, including the
time to write thekmax − k + 1 output rows to a log file.

A total of 600 result data points are shown in Figure 3.
For each value of|R|, we plot all running times collected
for differentk andkmax values, as well as the average, min-
imum, and maximum running times. We find that the cost
of refill query is roughly linear in the size of the base ta-
ble, confirming theO(N) bound in Section 3.1. For this
particular setup, this cost is roughly29.5 × |R| µsec.

The cost of refill queries may depend onkmax−k+1, the
size of the output. Indeed, from the output of the database
optimizer, we find that the optimized execution plan in-
cludes a special sort operator that produces only the top
kmax − k + 1 tuples. However, from Figure 3, we see that
the effects ofk andkmax are negligible compared with that
of N .

We also have considered the case of a secondary B+-
tree index onR.val , which is applicable so long asval
is not computed on the fly. The downside of this index is
the additional overhead in processing base table updates.
However, since this index effectively orders allR tuples, we
would expect the refill queries to run significantly faster, at
least for small values ofkmax−k+1 (large values may result
in excessive random disk I/O’s ifid values are not stored
directly in the index). Unfortunately, we are unsuccessful
at “hinting” our database optimizer to pick the index plan
(even whenk = kmax). On the other hand, a secondary
B+-tree index onR.val is in essence a self-maintainable

0 0.5 1 1.5 2 2.5 3 3.5

x 10
6

0

1

2

3

4

5

6

7

8

9

10
x 10

4

| R |

ru
nn

in
g 

tim
e 

(m
se

c)

Figure 3. Refill queries.

top-k view with k = N managed by the same database.
Hence, the update performance results for a top-k view with
k = N (Section 6.2) still provide us with some information
to evaluate the trade-offs of using a secondary index; we
shall come back to this discussion in Section 6.4.

6.2. Database View Updates

For the following experiments, we assume that the mate-
rialized viewV is managed by a commercial database sys-
tem (possibly remote and not necessarily the same as the
one managing the base table). We use the same setup as
in Section 6.1. We vary|V |, the size of the view, from2
to 106. There are a primary B+-tree index onV .id and a
secondary B+-tree index onV .val . The second index does
increase the update cost, but we feel that it is more realistic
to have this index for allowing fast accesses to the sorted
top-k list.

For eachV , we generate40 random update streams.
Each update stream includes a mix of1000 deletions and
1000 insertions. Each deletion removes a random tuple
from V by id ; each insertion adds a tuple toV with ran-
domly generatedid andval values. Deletions and inser-
tions alternate in the update stream, keeping|V | constant
during an experiment. For each update stream, we measure
the average running time of a pair of deletion and insertion
and take it to be the view update cost. The results are shown
in Figure 4. For each value of|V |, we plot all view update
costs measured from40 random update streams, as well as
the average, minimum, and maximum costs.

Because of the B+-tree indexes onV , we expect the up-
date cost to be logarithmic in|V |. Interestingly, the update
cost turns out to be a step function according to Figure 4.
Several factors may have contributed to this phenomenon,
including poor locality in the randomly generated update
streams and a large branching factor of database B+-trees.
Because of poor locality, lower-level pages of the B+-tree
tend not to stay in the database buffer pool; thus, the up-

8



1500

2000

2500

3000

3500

4000

4500

5000

5500

              | V |

ru
nn

in
g 

tim
e 

(µ
se

c)

10−1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7

Figure 4. Database
view updates.

2

2.5

3

3.5

4

4.5

5

| V |

ru
nn

in
g 

tim
e 

(µ
se

c)

100 101 102 103 104 105 106 107

Figure 5. Applica-
tion view updates.

date cost roughly corresponds to the number of levels in the
B+-tree. Because of the large branching factor, the num-
ber of levels in the B+-tree increases extremely slowly with
|V | and stays constant over wide ranges of|V |. Given that
the range of|V | is small in practice, we observe only two
“steps” in Figure 4.

6.3. Application View Updates

For the following set of experiments, we assume thatV
is maintained in memory by an application program that
specializes in serving requests for top-k tuples. We believe
this scenario is common in practice because: (1)V is typ-
ically small enough to fit in application memory; (2) the
operations onV are simple and frequent, so the applica-
tion can implement them without the overhead of using a
database system; and (3) we are not worried about losing
the data inV in case of failures, sinceV always can be re-
computed fromR.

We conduct our experiments on a Sun Blade 100 work-
station with a500MHz UltraSPARC-IIe processor,256KB
of level-2 cache, and512MB of RAM. The application is
written in C and compiled withgcc using-O3 option. We
implementV using two memory-resident data structures.
An implicit binary heap (implemented as an array) stores
the (id , val ) pairs inV , with val being the search key. A
hash table supports efficient lookup of a binary heap node
by id . Both the binary heap and the hash table have size
on the order of|V |. Alternatives to the binary heap would
be balanced search trees such as the red-black tree, but they
may be less efficient than the binary heap because there is
no need to maintain a complete ordering of all|V | tuples.

For eachV , we generate10 random update streams, each
consisting of107 deletions and107 insertions mixing to-
gether. In Figure 5, we plot, for each value of|V |, all update
costs measured from10 random update streams, as well as
the average, minimum, and maximum costs. Again, the up-
date cost turns out to be step function. We attribute this
phenomenon to the uniform random distribution of gener-
ated updates and the effect of caching. Because updates are
generated uniformly, a large portion of them access rela-
tively few heap nodes, bringing down the expected cost of a

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

 k
max

C
 (

µs
ec

)

scenario 1: local db view
scenario 2: remote db view
scenario 3: local app view
scenario 4: remote app view

Figure 6. Expected maintenance cost.

heap update to a constant [8, 20]. When|V | is small, most
accesses result in cache hits. Once|V | grows beyond a cer-
tain point, most accesses result in cache misses, because of
the lack of locality in randomly generated update streams.

6.4. Effectiveness of the Algorithm

In this subsection, we evaluate the effectiveness of our
algorithm in several scenarios, using the values of model
parameters measured in previous subsections. We assume
that |R| = 106 and k = 100, i.e., we are interested in
maintaining a top-100 view from a base table of one mil-
lion tuples. In Figure 6, we show the expected amortized
maintenance cost as a function ofkmax, the size of the view
that our algorithm starts with. Four curves are shown for
the four scenarios we consider: (1) the view is maintained
by the same database as the base table; (2) the view is main-
tained by a remote database; (3) the view is maintained by a
local application on the database server with the base table;
(4) the view is maintained by a remote application. For sce-
narios (2) and (4), we assume that the network bandwidth
is 500K bits/sec and the latency is masked. Costs of refill
queries and view updates are taken from Figures 3, 4, and 5.
The update workload is the one used by the first simulation
of Case 3 in Section 5; probabilities of good, bad, and ig-
norable updates are extrapolated from Figure 1.

From Figure 6, we see that all four curves exhibit similar
trends. Whenkmax = k, the expected maintenance cost is
very high. Intuitively, since we simply maintain the origi-
nal top-100 view, every bad update results in an expensive
refill query. Initially, askmax increases, the expected main-
tenance cost drops rapidly, because a biggerkmax dramati-
cally reduces the expected refill frequency. However, once
the refill frequency is low enough, the cost of updating the
view begins to dominate; increasingkmax at this point not
only drives up the cost of an update operation, but also re-
quires more updates to be propagated and applied because
fewer updates are ignorable. In the extreme case where
kmax = |R|, the view becomes a copy of the base table

9



with id andval columns. In this case, the refill frequency
is 0 because the copy is self-maintainable, but the overhead
of maintaining the copy and the high memory requirement
make this approach unattractive. Since a secondary index
onR.val is essentially a view with all|R| tuples, Figure 6
also shows that it might not be a good idea to create this
index for the sole purpose of computing top-k queries or
maintaining top-k views if k is small. In summary, Fig-
ure 6 clearly illustrates the importance of choosing appro-
priatekmax. Proper choice ofkmax (in this case, on the or-
der of

√
N ) can bring orders of magnitude of performance

improvement over the simple approaches of choosingkmax

to bek or N .
Comparing the four curves in Figure 6, we see that man-

aging the top-k′ view in the application is faster than man-
aging it in a database. Also, managing the view locally
is faster than managing it remotely across the network (al-
though the difference is minuscule on the logarithmic scale
for a database view). In general, other conditions being
equal, we should choose a biggerkmax if the costs of trans-
mitting and applying updates are lower.

7. Choosingkmax Adaptively

So far, much of our analysis requires knowing the rela-
tionship between the probabilities of good and bad updates.
In many practical situations, however, the update pattern is
not known in advance and may change at runtime; exact val-
ues of the transition probabilities for different view sizes are
difficult to measure. In this section, we propose an adaptive
algorithm that does not require any prior knowledge of the
transition probabilities; instead,kmax is chosen at runtime
and adjusted dynamically for changing workloads.

The basic idea behind this algorithm is to try to con-
trol the refill intervalZ around some target value ofZ0 =
C∗

refill/C∗
update , whereC∗

refill is the observed cost of a refill
query, andC∗

update is the observed cost of processing a base
table update. Intuitively, with an expect refill frequency of
1/Z0, neither the refill operation nor the update operation is
a bottleneck. Typically,Z0 is on the order ofΘ(N), which
means that the amortized cost of refill queries is down to
O(1). The algorithm maintains statistics of the observed
costsC∗

refill andC∗
update , and counts the number of base ta-

ble updates since the last refill operation. If this number is
less thanZ0/α, kmax is increased; if it is greater thanαZ0,
kmax is decreased. Here,α is a constant parameter used
to fine-tune the algorithm; we have chosenα = 2, which
works well in practice. The details are shown in Figure 7.

We have conducted some simulations forN = 10000
andk = 10, using the cost parameters measured in Sec-
tion 6. In order to keep the running time of our simulations
manageable, we use relatively high values forp andq, the
probabilities of bad and good updates. Figure 8 shows how

• Tunable parameters:

◦ α = 2 specifies the acceptable distance from the “op-
timal” hitting time.

◦ β = 0.5 limits how muchkmax can increase at a time.

◦ γ = 0.5 limits how muchkmax can decrease at a time.

• At initialization time:

◦ kmax ← N0.6, an initial guess based on Theorem 1.

◦ kmin ← kmax; kmin tracks the smallest|V | value
since the last refill operation.

◦ Initialize V with the top-kmax tuples; use the running
time as an initial estimate ofC∗

refill .

◦ T ← 0; T records the number of base table updates
since the last refill operation.

• At runtime, for each base table update:

◦ Process the update; use the running time to update
C∗

update .

◦ T ← T + 1; kmin ← min{kmin, |V |}.
◦ Z0 ← C∗

refill/C∗
update .

◦ If refill is needed for this update, then:

− If T < Z0/α, increasekmax: kmax ←
min{Z0/α

T
× kmax, (1 + β) × kmax}.

− Refill V to kmax tuples; use the running time to
updateC∗

refill .

− T ← 0; kmin ← kmax.

◦ If T > αZ0, then:

− Decreasekmax: kmax ← kmax − γ(kmin − k).

− ReduceV to kmax tuples, i.e., delete tuples
ranked(kmax + 1)-th or lower.

− kmin ← kmin − γ(kmin − k).

− T ← (1− γ)× αZ0.

Figure 7. Choosing kmax adaptively.

the adaptive algorithm chooseskmax over time for two sim-
ulations. For the first simulation, the random walk is origin-
tending (p = q = 0.4); for the second simulation, the ran-
dom walk is strictly origin-tending (p = 0.3 andq = 0.4).
The adaptive algorithm starts with the samekmax for both
simulations, but over time,kmax takes on different values
that are appropriate for respective workloads. From Fig-
ure 8, we see thatkmax quickly converges to a fairly small
range of values for each simulation. However, there are still
small fluctuations inkmax over time. We attribute this phe-
nomenon to the variance in hitting time. Occasionally, a
very short (or long) run may causekmax to go down (or up).
Thus, in addition toα, our algorithm provides two tunable
parametersβ andγ, which guard against large increases and
decreases inkmax, respectively. In effect,kmax stays within
a small range in which the expected performance of view
maintenance is equally good, so small fluctuations inkmax

do not matter in practice.

10



0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

number of base table upates

k m
ax

p = 0.4, q = 0.4
p = 0.3, q = 0.4

Figure 8. Behavior of the adaptive algorithm.

8. Conclusion and Future Work

In this paper, we propose a probabilistic approach to
tackle the problem of maintaining materialized top-k views.
Rather than trying to achieve complete self-maintenance,
we try to achieve runtime self-maintenance with high prob-
ability by maintaining a dynamic top-k′ view wherek′ ≥ k.
For cases wherep = q or p < q, we show that even a little
extra investment ink′ can dramatically reduce the amor-
tized maintenance cost per update with high probability.

One of the remaining open problems is whether there
exists a “good” algorithm for maintaining the top-k view
whenp > q. Here, we define a “good” algorithm to be one
that requires only sub-linear space in order to provide an
expected refill frequency of1/N or better. We suspect that
no such algorithm exists ifp > q.

In this paper, we have only experimented with simulated
update workloads; we plan to conduct more experiments
with real data in the near future. Another direction that
we are currently pursuing is generalizing the technique of
achieving high-probability runtime self-maintenance with
auxiliary data to other types of views such as joins.

Finally, we would like to thank Jeff Vitter, John Reif, and
Zhihui Wang for their careful readings of our earlier drafts
and helpful discussions.

References

[1] M. O. Akinde, O. G. Jensen, and M. H. B¨ohlen. Minimizing
detail data in data warehouses. InProc. of the 1998 Intl.
Conf. on Extending Database Technology, 1998.

[2] J. A. Blakeley, N. Coburn, and P.-Å. Larson. Updating
derived relations: Detecting irrelevant and autonomously
computable updates.ACM Trans. on Database Systems,
14(3):369–400, Sept. 1989.

[3] N. Bruno, L. Gravano, and S. Chaudhuri. Top-k selection
queries over relational databases: Mapping strategies and
performance evaluation.ACM Trans. on Database Systems,
2002.

[4] M. J. Carey and D. Kossmann. On saying “enough already!”
in SQL. InProc. of the 1997 ACM SIGMOD Intl. Conf. on
Management of Data, Tucson, Arizona, 1997.

[5] M. J. Carey and D. Kossmann. Reducing the braking dis-
tance of an SQL query engine. InProc. of the 1998 Intl.
Conf. on Very Large Data Bases, pages 158–169, New York
City, New York, Aug. 1998.

[6] K. C.-C. Chang and S.-W. Hwang. Minimal probing: Sup-
porting expensive predicates for top-k queries. InProc. of
the 2002 ACM SIGMOD Intl. Conf. on Management of Data,
2002.

[7] C.-M. Chen and Y. Ling. A sampling-based estimator for
top-k query. InProc. of the 2002 Intl. Conf. on Data Engi-
neering, 2002.

[8] E.-E. Doberkat. Inserting a new element into a heap.BIT,
21(3):255–269, 1981.

[9] D. Donjerkovic and R. Ramakrishnan. Probabilistic opti-
mization of top n queries. InProc. of the 1999 Intl. Conf. on
Very Large Data Bases, pages 411–422, Edinburgh, Scot-
land, Sept. 1999.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation al-
gorithms for middleware. InProc. of the 2001 ACM Symp.
on Principles of Database Systems, 2001.

[11] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query
processing in data warehousing environments. InProc. of
the 1995 Intl. Conf. on Very Large Data Bases, 1995.

[12] A. Gupta, H. V. Jagadish, and I. S. Mumick. Data integra-
tion using self-maintainable views. InProc. of the 1996 Intl.
Conf. on Extending Database Technology, Mar. 1996.

[13] A. Gupta and I. S. Mumick, editors.Materialized Views:
Techniques, Implementations and Applications. MIT Press,
June 1999.

[14] W. Hoeffding. Probability inequalities for sums of bounded
random variables.Journal of the American Statistical Asso-
ciation, 58(301):13–30, Mar. 1963.

[15] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER:
A system for the efficient execution of multi-parametric
ranked queries. InProc. of the 2001 ACM SIGMOD Intl.
Conf. on Management of Data, 2001.

[16] N. Huyn. Multiple-view self-maintenance in data warehous-
ing environments. InProc. of the 1997 Intl. Conf. on Very
Large Data Bases, pages 26–35, Athens, Greece, 1997.

[17] M. K. Mohania and Y. Kambayashi. Making aggregate
views self-maintainable. Data Knowledge Engineering,
32(1):87–109, 2000.

[18] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh. In-
cremental maintenance for non-distributive aggregate func-
tions. InProc. of the 2002 Intl. Conf. on Very Large Data
Bases, Aug. 2002.

[19] V. V. Petrov. Sums of Independent Random Variables.
Springer-Verlag, 1975.

[20] T. Porter and I. Simon. Random insertion into a priority
queue structure.IEEE Trans. on Software Engineering, SE-
1, 3:292–298, 1975.

[21] D. Quass. Maintenance expressions for views with aggrega-
tion. In Proc. of the 1996 ACM Workshop on Materialized
Views: Techniques and Applications, June 1996.

11



[22] D. Quass, A. Gupta, I. S. Mumick, and J. Widom. Making
views self-maintainable for data warehousing. InProc. of
the 1996 Intl. Conf. on Parallel and Distributed Information
Systems, pages 158–169, Dec. 1996.

[23] J. Yang and J. Widom. Temporal view self-maintenance in a
warehousing environment. InProc. of the 2000 Intl. Conf. on
Extending Database Technology, pages 395–412, Konstanz,
Germany, Mar. 2000.

[24] J. Yang and J. Widom. Incremental computation and main-
tenance of temporal aggregates. InProc. of the 2001 Intl.
Conf. on Data Engineering, Heidelberg, Germany, 2001.

[25] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient main-
tenance of materialized top-k views. Technical report, De-
partment of Computer Science, Duke University, June 2002.
http://www.cs.duke.edu/˜junyang/papers/
yyyxc-topk.ps .

A. Proof of Theorem 1

Lemma 3 (Hoeffding, 1963 [14]) If X1, X2, . . . are indepen-
dent and bounded asai ≤ Xi ≤ bi, then for anyt > 0, the partial
sumsSn =

Pn
i=1 Xi have the following probability inequality:

Pr[Sn − nµ ≥ nt] ≤ exp

�
− 2n2t2Pn

i=1(bi − ai)2

�
,

whereµ = E[Xi].

Lemma 4 (Petrov, 1975 [19]) If X1, X2, . . . are symmetrically
distributed and independent, then

Pr

�
max

1≤k≤n
|Sk| ≥ x

�
≤ 2Pr[|Sn| ≥ x].

At position0, the random walk moves to1 with probabilityp
and stays at0 with probability1− p. We first modify the random
walk by changing these two probabilities at position0 to 2p and
1− 2p respectively. We call this modified random walkW ′. Ac-
cording to Lemma 2, the hitting time ofW ′ is stochastically dom-
inated byZ. We can further extendW ′ to a random walkW ′′ on
{. . . ,−n, . . . ,−1, 0, 1, . . . , n, . . . }, where0 is the starting point,
and all transition probabilities arep. It is easy to see thatW ′′ sim-
ply “mirrors” W ′, so the hitting times ofW ′ andW ′′ should be
identically distributed. We will bound the probability thatZ′′, the
hitting time from 0 to either−n or n of W ′′, is greater thanN .

Let X1, X2, . . . be the steps taken byW ′′, which can be−1,
0 or 1. These random variables are independent. Then

Pr[Z′′ ≤ N ] = Pr[ max
1≤k≤N

|Sk| ≥ n]

≤ 2Pr[|SN | ≥ n] (Lemma 4)

= 4Pr[SN ≥ n]

≤ 4 exp(− 2n2

N · 22
) (Lemma 3)

= 4e−N2ε/2.

SincePr[Z′′ ≤ N ] ≥ Pr[Z ≤ N ], the theorem follows.

B. Proof of Theorem 2

We will only consider the case whenp+q = 1. If p+q < 1, we
can normalizep andq so thatp + q = 1; by Lemma 2, the hitting
time of the normalized random walk is stochastically dominated
by that of the original.

We now bound the probability ofZ ≤ N . For any instance
of this random walk, the last phase of the walk must be one that
moves from0 to n with no stays (at0). LetX be the length of this
phase. Clearly,X ≥ n. We havePr[Z ≤ N ] ≤ Pr[X ≤ N ] =PN

i=n Pr[X = i].
If the last phase of the random walk takesi steps to move from

0 to n with no stays, there must be(i + n)/2 steps moving right
(“+1”) and (i − n)/2 steps moving left (“−1”). (If (i + n)/2 is
not an integer,Pr[X = i] = 0.) This condition is necessary for
X = i. By Chernoff’s bound,

Pr[X = i] ≤ Pr[number of “−1” steps=
i− n

2
]

≤ Pr[number of “−1” steps≤ i− n

2
]

≤ exp

 
− qi

2

 
qi− i−n

2

qi

!2!

= exp

 
− qi

2

�
1− 1

2q
+

n

2qi

�2
!

< exp

 
− q

2

�
1− 1

2q

�2

i

!
.

Let c1 = q
2
(1− 1

2q
)2. Sinceq > 1

2
, c1 is a positive constant. Then

Pr[X = i] < e−c1n = e−c1c ln N = N−c1c and
PN

i=n Pr[X =
i] < N · N−c1c = N1−c1c. Thus, as long as we choosec such
thatc > 1/c1 = 1/( q

2
(1− 1

2q
)2), the refill interval is greater than

N with probability1− o(1).

12


