
I/O-Efficient Batched Union-Find
and Its Applications to Terrain Analysis∗

Pankaj K. Agarwal1 Lars Arge2,1 Ke Yi1
1Department of Computer Science, Duke University, Durham, NC 27708, USA.

{pankaj,large,yike}@cs.duke.edu
2Department of Computer Science, University of Aarhus, Aarhus, Denmark.

large@daimi.au.dk

ABSTRACT
Despite extensive study over the last four decades and numerous
applications, no I/O-efficient algorithm is known for the union-find
problem. In this paper we present an I/O-efficient algorithm for
the batched (off-line) version of the union-find problem. Given any
sequence of N union and find operations, where each union oper-
ation joins two distinct sets, our algorithm uses O(SORT(N)) =
O(N

B
logM/B

N
B

) I/Os, where M is the memory size and B is the
disk block size. This bound is asymptotically optimal in the worst
case. If there are union operations that join a set with itself, our
algorithm uses O(SORT(N) + MST(N)) I/Os, where MST(N) is
the number of I/Os needed to compute the minimum spanning tree
of a graph with N edges. We also describe a simple and practical
O(SORT(N) log(N

M
))-I/O algorithm for this problem, which we

have implemented.
We are interested in the union-find problem because of its appli-

cations in terrain analysis. A terrain can be abstracted as a height
function defined over R

2, and many problems that deal with such
functions require a union-find data structure. With the emergence
of modern mapping technologies, huge amount of elevation data is
being generated that is too large to fit in memory, thus I/O-efficient
algorithms are needed to process this data efficiently. In this paper,
we study two terrain analysis problems that benefit from a union-
find data structure: (i) computing topological persistence and (ii)
constructing the contour tree. We give the first O(SORT(N))-I/O
algorithms for these two problems, assuming that the input terrain
is represented as a triangular mesh with N vertices.

Finally, we report some preliminary experimental results, show-
ing that our algorithms give order-of-magnitude improvement over
previous methods on large data sets that do not fit in memory.
∗Work on this paper is supported by ARO grant W911NF-04-1-
0278. Pankaj K. Agarwal and Ke Yi are also supported by NSF
under grants CCR-00-86013, EIA-01-31905, CCR-02-04118, and
DEB-04-25465, by ARO grant DAAD19-03-1-0352, and by a grant
from the U.S.–Israel Binational Science Foundation. Lars Arge is
also supported by an Ole Rømer Scholarship from the Danish Na-
tional Science Research Council.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’06, June 5–7, 2006, Sedona, Arizona, USA.
Copyright 2006 ACM 1-59593-340-9/06/0006 ...$5.00.

Categories and Subject Descriptors: F.2.2 [Theory of Computa-
tion]: Nonnumerical Algorithms and Problems.
General Terms: Algorithms, Experimentation.
Keywords: Union-find, terrain analysis, contour trees, I/O-efficient
algorithms.

1. INTRODUCTION
The union-find problem asks for maintaining a partition of a set

U = {x1, x2, . . . } (the universe) and a representative element of
each set in this partition under a sequence Σ of UNION(xi, xj) and
FIND(xi) operations: UNION(xi, xj) joins the set containing xi

and the set containing xj , and provides a new representative ele-
ment for the new set; FIND(xi) returns the representative element
of the set containing xi. In the on-line version of the problem, Σ is
given one operation at a time, whereas in the batched (or off-line)
version, the entire sequence Σ is known in advance. The union-find
problem is a fundamental algorithmic problem because of its appli-
cations in numerous problems across different domains, from pro-
gramming languages to graph and geometric algorithms, and from
computational topology to computational biology. In many of these
algorithms only the batched version of the problem is required; see
[11, 13, 16, 20] for a sample of applications.

The main motivation for our study of the union-find problem
arises from terrain modeling and analysis. A terrain can be ab-
stracted as a height function defined over R

2, and there is a rich
literature on the study of such functions. We are interested in two
broad problems in terrain analysis, namely flow and contour line
analysis. A key step in the flow analysis of a terrain is to mod-
ify the height function so that “small” depressions on the terrain
(sinks) disappear. We use the notion of topological persistence, in-
troduced in [16], to address this problem. In the contour-line analy-
sis, the notion of contour tree is critical [11, 29, 34]. Most existing
topological persistence and contour tree algorithms rely on efficient
data structures for the batched union-find problem.

With the emergence of high-resolution terrain-mapping technolo-
gies, huge amount of data is being generated that is too large to fit
in memory and has to reside on disks. Existing algorithms cannot
handle such massive data sets, mainly because they optimize CPU
running time while optimizing disk access is much more important.
Motivated by these factors we propose efficient algorithms for the
batched union-find problem in the I/O-model [3] (also known as the
external memory model), and use them to develop I/O-efficient al-
gorithms for computing topological persistence and contour trees.

Related results. In the I/O model, the machine consists of an infinite-
size external memory (disk) and a main memory of size M . A

block of B consecutive elements can be transferred between main
memory and disk in one I/O operation (or simply I/O). Computa-
tion can only occur on elements in main memory, and the complex-
ity of an algorithm is measured in terms of the number of I/Os it
uses to solve a problem. Many fundamental problems have been
solved in the I/O model. For example, sorting N elements takes
SORT(N) = Θ(N

B
logM/B

N
B

) I/Os, and permuting N elements
takes PERM(N) = Θ(min{N, SORT(N)}) I/Os. Please refer to
the surveys by Vitter [35] and Arge [4] for other results, including
I/O-efficient algorithms for various geometric and graph problems.

The study of the union-find problem (in internal memory com-
putation models) started early in the sixties [21] and continues even
today. Tarjan [30] proved that an on-line sequence of N union and
find operations can be performed in time O(Nα(N)), where α(N)
is the inverse Ackermann function. This bound is tight in the worst
case [19, 31]. A simpler proof of the upper bound and various gen-
eralizations have been proposed in [28, 32]. The batched version
of the problem has a lower bound of Ω(Nα(N)) in the pointer-
machine model [31], but it can be solved in linear time in the RAM
model [20]. However, despite of its importance, no I/O-efficient al-
gorithms have been developed for the union-find problem. Note
that the naı̈ve use of the RAM algorithms in the I/O model re-
sults in O(Nα(N)) and O(N) I/O-algorithms, in the on-line and
batched case, respectively. For realistic values of N , B, and M ,
SORT(N) � N , and the difference in running time between an
algorithm performing N I/Os and one performing SORT(N) I/Os
can be very significant.

Topological persistence (see Section 4 and [15, 16] for its defini-
tion) of a height function is a measure of its topological attributes.
Over the last few years, it has been successfully applied to a variety
of problems, including topological simplification [15, 16], identify-
ing features on a surface [2], and removing topological noises [10];
see also [36]. Efficient algorithms for computing persistence in in-
ternal memory are developed in [15, 16]. The efficient algorithms
for computing the topological persistence of a two-dimensional
height function rely on a union-find data structure, so no I/O-efficient
algorithm is known for this problem.

Contour trees are widely used to represent the topological changes
in the contours of a height function (see Section 5 and [11, 29, 34]
for a formal definition). Van Kreveld et al. [34] gave an O(N log N)-
time algorithm for constructing the contour tree of a piecewise-
linear height function on R

2, represented by a mesh with N ver-
tices. The algorithm was later extended to 3D by Tarasov and Vya-
lyi [29], and to arbitrary dimensions by Carr et al. [11]. The last
two algorithms rely on a union-find data structure. No I/O-efficient
algorithm is known for computing contour trees even in two dimen-
sions.
Our results. Our main result is the first I/O-efficient algorithms
for the batched union-find problem. In Section 2, we present an
algorithm that uses O(SORT(N)) I/Os on a sequence of N union
and find operations, provided that none of the union operations is
redundant, that is, for each UNION(xi, xj), xi and xj are in dif-
ferent sets. This is optimal in the worst case since there is a sim-
ple O(N/B)-I/O reduction from permutation1. An interesting fea-
ture of our algorithm is that it reduces the problem to two geomet-
ric problems. If redundant union operations are allowed, we de-
scribe an algorithm that uses O(SORT(N)+ MST(N)) I/Os, where
MST(N) is the number of I/Os needed to compute the minimum
spanning tree of a graph with N edges. Currently the best bound
1If N < SORT(N), which is true only for extremely large inputs,
there is a gap between O(SORT(N)) and Ω(PERM(N)). However,
in this case we can obtain an O(PERM(N)) = O(N)-I/O algorithm
by simply using the O(N) RAM algorithm of [20].

for MST(N) is O(SORT(N) log log B) I/Os [5] by a deterministic
algorithm or expected O(SORT(N)) I/Os by a randomized algo-
rithm [12].

We develop the first I/O-efficient algorithms for topological per-
sistence and contour trees using our union-find algorithm. In Sec-
tion 4, we describe an O(SORT(N))-I/O algorithm for computing
topological persistence of a terrain represented as a triangular mesh
with N vertices. The algorithm is obtained by simply plugging our
union-find algorithm to the previous internal memory algorithm of
[15, 16]. In Section 5, we describe an O(SORT(N))-I/O algorithm
for computing the contour tree of a terrain represented as a triangu-
lar mesh with N vertices. For this problem it is not enough to just
apply our union-find algorithm to the previous internal memory al-
gorithms. We prove a property of contour trees (cf. Lemma 6),
which is interesting in its own right. Using this property, we reduce
the problem to a geometric problem and design an I/O-efficient
algorithm for this problem. As in [11], our algorithm extends to
higher dimensions.

While theoretically I/O-efficient, our O(SORT(N) + MST(N))-
I/O algorithms for the batched union-find problem are probably too
complicated to be of practical interests, therefore in Section 3 we
present a simple divide-and-conquer algorithm that uses O(SORT(N)·
log(N

M
)) I/Os. It does not have to invoke an MST algorithm to

handle redundant union operations. We have implemented this al-
gorithm, and present a few preliminary empirical results in Sec-
tion 6. These experiments show that our algorithm gives order-of-
magnitude improvement over previous methods on large data sets.
We also apply our techniques to the so-called flooding problem [6],
a key step in flow analysis on terrains.

2. I/O-OPTIMAL BATCHED UNION-FIND
Let U = {x1, x2, . . . } be the universe of elements, and let

Σ = 〈σ1, σ2, . . . , σN 〉 be a sequence of union and find operations.
Let the index of the operation σt denote its time stamp. Assume
without loss of generality that each element in U has been used
in at least one operation of Σ. In this section we describe an I/O-
efficient algorithm for the batched union-find problem, assuming
that all union operations in Σ are non-redundant. At the end of the
section we discuss how to handle redundant union operations.

Our algorithm consists of two stages. In the first stage, we com-
pute a total ordering on the elements of U so that as Σ is performed,
each set consists of a contiguous sequence of elements in this or-
dering and each union operation joins two adjacent sets. More pre-
cisely, if sets A and B are joined together by any union operation
in Σ, then there exist some xi ∈ A and xj ∈ B such that xi

and xj are adjacent in this ordering. We call this special case the
interval union-find problem. In the second stage, we solve an in-
stance of the batched interval union-find problem. We formulate
each of these two subproblems as a geometric problem and present
an O(SORT(N))-I/O algorithm for each of them. We also note that
the assumption on non-redundant union operations is needed only
in the first stage.

From union-find to interval union-find. Given a sequence Σ, let
the union graph G(Σ) be a weighted undirected graph whose ver-
tices are the elements of U . There is an edge e between xi and xj

with weight ω(e) = t for each UNION(xi, xj) operation with time
stamp t. If all union operations are non-redundant, G(Σ) is a for-
est. For simplicity we assume it to be a tree; otherwise, we connect
them by edges of weight ∞. We pick an arbitrary node of G(Σ) as
its root and call this rooted tree the union tree, denoted by T . As a
convention, when we refer to an edge (u, v) in a rooted tree, u is
always the parent of v.

4

9

3

5
6

2
1

8
7

2

938

4 5
1

76

(a) (c)(b)

r

2

6

7
4

1 8 5

9

3

Figure 1: (a) The union tree T , with weights (time stamps) associated with each edge. The dashed lines show the Euler tour. (b) A
horizontal segment is built for each edge e of T , with ω(e) as its y-coordinate and the positions of e in the Euler tour as its left and
right x-coordinates. (c) The equivalent union tree T ′ after transformation.

A union tree T ′ on the same set of nodes as T is equivalent to
T if for any t, the connected components of the forest formed by
the edges of T and T ′ with weight at most t are the same. In order
to reduce the union-find problem to the interval union-find prob-
lem, we first transform T into an equivalent union tree T ′, with the
property that the weights along any leaf-to-root path are increas-
ing. Then we show how a certain in-order traversal of T ′ defines
an ordering of the elements of U that results in Σ being an interval
union-find instance.

Transforming T to T ′. We transform T into T ′ by repeatedly
applying the following “short-cut” operation, which simulates the
path compression technique: For any w ∈ T , let v be w’s parent
and u be v’s parent. If ω(u, v) < ω(v, w), we promote w to be a
child of u, by removing the edge (v, w) and adding the edge (u, w)
with ω(u, w) = ω(v, w). It is easy to see that the new tree resulted
after this operation is equivalent to the old tree, since at the time
UNION(v, w) is issued, u and v are already in the same set. When
this procedure stops, we obtain a tree T ′ in which the weights along
any leaf-to-root path are increasing.

In order to perform all these short-cut operations efficiently, for
each node v, we need to find its ancestor in T that becomes the
parent of v in T ′. We cast this problem in a geometric setting.
We construct an Euler tour on T , which starts and ends at r and
traverses every edge of T exactly twice, once in each direction
(see Figure 1(a)). Such a tour can be constructed in O(SORT(N))
I/Os [12]. For each edge e ∈ T , we map it to a horizontal line
segment whose y-coordinate is ω(e), and whose left (resp. right)
x-coordinate is the position (index) where e appears for the first
(resp. second) time in the Euler tour. Note that the x-spans of these
segments are nested. Refer to Figure 1(a) and (b). These segments
can be easily constructed in O(SORT(N)) I/Os given the Euler tour.

Abusing the notation, we also use e to denote the segment that
corresponds to the edge e ∈ T . Let E be this set of segments.
Let γ(e) be the shortest segment in E that lies above e and whose
x-projection contains that of e. We claim that if e = (u, v) and
γ(e) = (w, z), then (z, v) is an edge of T ′, i.e., z is the parent of
v in T ′. Indeed, the second condition (γ(e) above e) ensures that
v cannot be shortcut to w, and the first condition (γ(e) being the
shortest) and the third condition (the x-projection of γ(e) contain-
ing that of e) ensure that z is the lowest ancestor of v that satisfies
the second condition. If γ(e) does not exist for some e = (u, v),
we know that v must be a child of the root r. Refer to Figure 1(c).

Thus it suffices to compute γ(e) for each e. We next observe

that since the segments in E are nested, the x-span of a segment e
contains that of another segment e′ if and only if the x-span of e
contains the x-coordinate of the left endpoint of e′. Let P be the
set of left endpoints of the segments in E. For a point p ∈ P and a
subset X ⊆ E, let γ(p, X) denote the shortest segment of X that
is above p and whose x-span contains the x-coordinate of p. The
problem now reduces to computing γ(p, E) for each p ∈ P . We
use the distribution sweeping technique [22] to solve this problem.
We first sort E and P by y-coordinates. We then divide the plane
into m = M/B vertical slabs L1, . . . , Lm, each of which contains
roughly the same number of segment endpoints of E. Let Pi =
P ∩ Li, let Ei be the set of segments with at least one endpoint
inside Li, and E∗

i the set of segments that completely span Li.
Note that for any point p ∈ Pi, γ(p, E) is the shorter segment
of γ(p, Ei) and γ(p,E∗

i). We compute the sets Ei, Pi, and the
segment γ(p,E∗

i) for each p ∈ Pi, by a sweep-line algorithm, and
compute γ(p, Ei) for each p ∈ Pi and for 1 ≤ i ≤ m recursively.
We sweep the plane in the (−y)-direction starting from y = ∞.
For each slab Li, we maintain in memory the shortest segment λi

among the segments swept so far that completely span Li. When
the sweep line reaches a point p ∈ P , we determine the slab Li that
contains p, set γ(p, E∗

i) to λi, and add p to Pi. When the sweep
line reaches a segment e of E, we add e to Ei if Li contains at
least one of the endpoints of e, and update λj if e spans Lj and
e is shorter than λj . We recursively solve the problem for each
(Ei, Pi). The sweep can be implemented by a scan of P and E.
Since the depth of recursion is O(logM/B

N
B

), the overall cost is
O(SORT(N)) I/Os.

Traversing T ′. To obtain an ordering of the elements of U that
results in Σ being an interval union-find instance, we perform a
weight-guided, in-order traversal on T ′ starting from the root. When
we reach a node u of T ′ with children u1, . . . , uk where w(u, u1) <
· · · < w(u, uk), first we recursively visit the subtree rooted at
u1, then visit u, and then recursively visit the subtrees rooted at
u2, . . . , uk. To perform this traversal I/O-efficiently we first order
each node’s children in weight order, then compute an Euler tour.
In the tour a leaf of T ′ appears once, and an internal node with k
children appears k + 1 times. It is easy to verify that, for any inter-
nal node u, if we delete all of u’s appearances but the second from
the tour, then the desired order is obtained. To do so we first asso-
ciate with each appearance of u with a node id and its position in
the Euler tour, then sort them by the node id, and finally do a scan
to remove all but the second appearance of each internal node.

LEMMA 1. We can convert a sequence of N union and find op-
erations without redundant union operations into an instance of the
batched interval union-find problem in O(SORT(N)) I/Os.

PROOF. It only remains to show that this ordering indeed pro-
duces an instance of the interval union-find problem. Let u be any
node of T ′, and let u1, . . . , uk be u’s children where w(u, u1) <
· · · < w(u, uk). For any 1 ≤ i ≤ k, when the union operation
corresponding to (u, ui) is to be performed, in the sequence Σ, all
union operations corresponding to the whole subtree of ui must
have already been performed, since they have smaller weights than
ω(u, ui). If i = 1, then u must have not been joined with any other
node at the time. So the union operation corresponding to the edge
(u, u1) joins u1’s subtree and the singleton set {u}, which is im-
mediately after u1’s subtree in the ordering. If i ≥ 2, then all the
subtrees of u1, . . . , ui−1 must have been joined together with u,
and ui’s subtree is immediately after these subtrees in the ordering,
so the union operation corresponding to the edge (u, ui) also joins
adjacent sets.

Solving interval union-find. We solve the interval union-find prob-
lem by formulating it as another geometric problem. Let x1 <
x2 < · · · be the sequence of ordered elements of U . For each
union operation σt = UNION(xi, xj) in Σ, we create a horizon-
tal line segment with y-coordinate t, x-coordinate xi, and right
x-coordinate xj . For each find operation σt = FIND(xi) in Σ,
we create a query point (xi, t). For σt = FIND(xi) we return
the smallest element of the set as its representative at time t that
contains xi. For each query point q, consider the union of the
x-projections of all the segments lower than q. Each interval in
the union corresponds to a set at time t (when FIND(xi) was per-
formed), so we need to return the left endpoint of the interval that
contains xi.

We solve this geometric problem by solving a series of batched
orthogonal ray-shooting problems, in which we are given a set of
horizontal segments and a set of query points, the goal is to find
the first segment hit by a vertical ray shooting upwards from each
query point. This is a special case of the endpoint dominance prob-
lem [8] and can be solved in O(SORT(N)) I/Os. First, from the left
endpoint of each segment e we shoot a ray downwards, and collect
all the segments whose rays do not hit any other segments. Second,
from the left endpoints of these segments we shoot upwards. These
rays stop at the first horizontal segments they hit, or go to infinity.
Let V be the resulting set of vertical segments. See Figure 2 where
these rays are drawn as dashed lines. Finally, from each query point
q = (xi, t), we shoot a ray downwards and hit a horizontal seg-
ment. If the ray does not hit any segment we simply return xi as
the answer to q; otherwise, we shoot a ray leftward from q and find
the first segment of V hit by the ray. Then the x-coordinate of this
vertical segment is returned as the answer to q. It is not difficult
to verify that we indeed return the correct representative element
for each query point. The whole query answering process is four
instances of the batched orthogonal ray-shooting problem, thus can
be completed in O(SORT(N)) I/Os.

LEMMA 2. Given a sequence of N union and find operations
possibly with redundant union operations, the batched interval union-
find problem can be solved in O(SORT(N)) I/Os.

Combining Lemmas 1 and 2, we obtain the main result.

THEOREM 1. Given a sequence of N union and find operations
with no redundant union operations, the batched union-find prob-
lem can be solved in O(SORT(N)) I/Os.

(xi1 , t1)

(xi4 , t4)

(xi2 , t2)

(xi3 , t3)

Figure 2: Answering find queries σt = FIND(xi). If no segment
lies below a left endpoint, it is connected to the segment lying
immediately above it by a dashed vertical line.

REMARK 1. In some applications, certain elements are required
to be the representative elements of the sets returned by the find
operations. For example, each element may be weighted, and the
minimum-weight element of a set is required to be the representa-
tive of the set (see Section 4 and 5). Our algorithm as described
above may pick arbitrary elements as the representatives, but such
a requirement can be satisfied by running our algorithm twice, fol-
lowed by a post-processing step in O(SORT(N)) I/Os: We first
answer all the find queries by returning the minimum element in
the ordering produced by our reduction from union-find to interval
union-find; then by solving the internal union-find problem sym-
metrically we can also return the maximum elements in the same
ordering. Now we have both the minimum and maximum elements
of the set for each find query, returning the minimum-weight el-
ement in the set becomes a range-minimum query. Again, this
batched range-minimum problem can be solved in O(SORT(N))
I/Os using distribution sweeping [22].

REMARK 2. We can prove the Ω(PERM(N))-I/O lower bound
by a simple reduction from permutation. The idea is to build a
sequence of union and find operations such that the results to the
find queries exactly form the desired permutation. We omit the
details from this abstract.

Handling non-redundant union operations. So far we have as-
sumed that there are no redundant union operations in Σ. If this as-
sumption does not hold, G(Σ) contains cycles. Then we first com-
pute the MST (minimum spanning forest in general) on the union
graph G(Σ), and delete all edges that are not in the MST. From
Kruskal’s algorithm [13] we know that only the union operations
corresponding to the MST edges of G(Σ) are non-redundant. For a
general graph with N edges, computing the MST takes O(SORT(N)·
log log B) I/Os deterministically [5] or expected O(SORT(N)) I/Os
by a randomized algorithm [12]; if the graph is planar, computing
the MST takes deterministic O(SORT(N)) I/Os [12]. So we have
the following.

THEOREM 2. Given a sequence Σ of N union and find opera-
tions possibly with redundant union operations, the batched union-
find problem can be solved in by a deterministic algorithm with
O(SORT(N) log log B) I/Os or a randomized algorithm with ex-
pected O(SORT(N)) I/Os. If the union graph of Σ is planar, the
bound is deterministic O(SORT(N)) I/Os.

Semi-on-line union-find. The semi-on-line union-find problem is
a variant of the union-find problem in which all the union opera-
tions are given in advance, but the find queries appear in an on-line

fashion. Suppose we are given a sequence of union operations, each
with a time stamp. A FIND(x, t) query asks for the representative
of the set containing a query element x at a specific time t, and
we want to build a data structure that supports these queries in an
on-line fashion. A structure that allows queries in the past is also
called a multiversion or partially persistent structure [9], and it is
useful in situations where one is not only interested in the data in
their latest version, but also their development over time.

We can solve the semi-on-line version by combining our algo-
rithm and the persistent B-tree [9]. Observe that in our batched
union-find algorithm, we in fact have not used the information of
the find queries until the very last two steps, when we shoot a ray
downwards from the query point, and then shoot to the left. Such
orthogonal ray-shooting queries can be handled by a persistent B-
tree [9] in worst-case O(logB N) I/Os per query. Thus to solve the
semi-on-line union-find problem, we can run our batched union-
find algorithm until we have generated those horizontal and verti-
cal segments of Figure 2, and then build two persistent B-trees on
these segments, respectively. Since a persistent B-tree takes linear
space and can be constructed in O(SORT(N)) I/Os [33], we have
the following.

THEOREM 3. With O(SORT(N)) I/Os, we can build a linear-
size data structure for the semi-on-line union-find problem such
that a find query at any specific time can be answered in O(logB N)
I/Os.

3. A SIMPLER BATCHED UNION-FIND
ALGORITHM

In this section we present a simple divide-and-conquer algorithm
that bypasses the need of an MST algorithm. It uses O(SORT(N) ·
log(N

M
)) I/Os, but has a much smaller hidden constant, and can be

easily implemented. The input to a recursive call is a sequence Σ of
union and find operations. The recursive call outputs the answers of
all FIND(xi) queries in Σ and returns a set R of (x, %(x)) pairs, one
for each element x involved in any operation in Σ, where %(x) is
the representative of the set containing x after all union operations
in Σ are performed. The basic idea behind a recursive call, outlined
in Algorithm 1, is the following. If Σ fits in main memory, we
use an internal memory algorithm; otherwise we split Σ into two
halves Σ1 and Σ2 . We solve Σ1 recursively. Before solving Σ2

recursively, we use the element-representative set R1, returned by
the recursive call for Σ1, to pass on “information” to Σ2 about how
the sets are joined in Σ1. We do so by replacing each element
x involved in any operation in Σ2 with %(x) if (x, %(x)) ∈ R1

(line (a)). When the second recursive call on Σ2 finishes, we need
to return the complete and correct element-representative set to the
upper level calls. All element-representative pairs in R2 are correct,
but some in R1 might get updated. We update each (x, %(x)) ∈
R1 with (x, ρ(y)), if there exists some (y, %(y)) ∈ R2 such that
%(x) = y (line (b)). Finally we return the union of R1 and R2.
Both line (a) and (b) can be performed by a constant number of
sort and scan steps (details omitted from this abstract), so the total
cost of the algorithm is O(SORT(N) log(N

M
)) I/Os.

Since this practical algorithm allows redundant union operations,
one immediate application is a straightforward implementation of
Kruskal’s algorithm for computing MSTs. Given a graph G, we
sort all edges of G by weight, and construct a union-find sequence
by issuing two FIND and one UNION operations on its two end-
points for each edge in order. After solving this batched union-find
problem we check the two FIND results for each edge e. If they
are different, we declare that e is in the MST. This simple algo-
rithm runs in deterministic O(SORT(N) log(N

M
)) I/Os. Previously

Algorithm 1 Recursive call UNION-FIND(Σ).
input: a sequence Σ of union and find operations;
output: a set R of (x, %(x)) pairs for each element x involved
in Σ.

if Σ can be processed in main memory then
Call an internal memory algorithm;

else
Split Σ into two halves Σ1 and Σ2;
R1 = UNION-FIND(Σ1);

(a) For ∀(x, %(x)) ∈ R1, replace all occurrences of x in Σ2

with %(x);
R2 = UNION-FIND(Σ2);

(b) For ∀(x, %(x)) ∈ R1, if ∃(y, %(y)) ∈ R2 s.t. y = %(x),
replace (x, %(x)) with (x, %(y)) in R1;
return R1 ∪ R2.

the only known practical external memory MST algorithm [14]
was randomized with O(SORT(N) log(N

M
)) I/Os expected. Sim-

ilarly we can compute the connected components of a graph I/O-
efficiently using our practical union-find algorithm.

4. TOPOLOGICAL PERSISTENCE
Let M be a triangulation of R

2 in which a height is associated
with its every vertex. M defines a piecewise-linear height func-
tion f : R

2 → R. It will be convenient to assume f(u) 6= f(v)
for all vertices u 6= v in M. The lower link Lk−(u) of u is the
set of vertices adjacent to u whose heights are smaller than f(u)
and the set of edges connecting them. The upper link Lk+(u) is
defined similarly. There are three types of critical vertices on M:
minima, saddles, and maxima, distinguished by the number of con-
nected components in u’s lower link. Refer to Figure 3. For ease of
representation we assume that each saddle is simple, i.e., Lk−(u)
for each saddle u consists of exactly two connected components.
When Lk−(u) has more than two connected components (e.g. the
rightmost case in Figure 3), we can unfold it into a number of sim-
ple saddles [15].

Let M<h = {x ∈ R
2 | f(x) < h}, i.e., the portion of the

function below some threshold h; define M>h similarly. Roughly
speaking, topological persistence of f (or M) is defined as follows.
Suppose we sweep a horizontal plane in the direction of increasing
values of f , and keep track of M<h as we increase h. A component
of M<h starts at a minimum and ends at a saddle when it merges
with another, older component. A hole of M<h starts at a saddle
and ends when it is closed off at a maximum. Based on this obser-
vation, Edelsbrunner et al. [16] propose a scheme to pair a critical
point that creates a component or a hole with the one that destroys
it. For each minimum-saddle or maximum-saddle pair, the absolute
difference between their heights is defined as the persistence of that
pair of critical vertices. See [15, 16] for a formal definition.

We first sketch the algorithm in [15, 16], and then describe how
to modify it. We focus on the minimum-saddle pairs, as the other
case is symmetric. The algorithm first sorts all vertices by their
height, then we sweep a horizontal plane bottom-up and maintain
the connected components of M<h when the sweep plane passes
through f(x) = h. For each component of M<h, we maintain its
minimum-height vertex as its representative. When we pass a mini-
mum, a new component is created. When we pass a saddle, the two
components adjacent to the saddle get merged if they were differ-
ent. If so, between the two representatives of the two components,
we choose the lower one to continue to represent the merged com-

minimum regular point saddle maximum 2−fold saddle

Figure 3: Classification of a vertex based its lower link. The lower link is marked black.

ponent, while the other is paired with the saddle. Passing regular
points or maxima does not change the set of components.

After the initial sorting, the sweep can be implemented using a
batched union-find algorithm, as follows. When passing a regu-
lar vertex u, we pick an arbitrary vertex v in Lk−(u) and issue a
UNION(u, v) operation. When passing a saddle u, we first issue
two find operations: For each of the two connected components of
Lk−(u), an arbitrary vertex v in the component is chosen and a
FIND(v) is issued. Next for each such v, we issue the union op-
eration UNION(u, v). After sweeping over all vertices, we invoke
our batched union-find algorithm on the resulting sequence Σ. Us-
ing Remark 1, we can use the vertex of the lowest height as the
representative of the component it belongs to. Finally, we scan the
results of the find queries. If the answers to the two FIND queries
of a saddle are different, we pair the higher one with the saddle. It
can be checked that the union graph of Σ is planar, so we conclude
the following.

THEOREM 4. Topological persistence of a height function de-
fined by a triangular mesh in R

2 with N vertices can be computed
using O(SORT(N)) I/Os.

5. CONTOUR TREES
Let M be a triangular mesh as defined in Section 4. A contour

in M is a connected component of the level set of f at some height
h (i.e., {x ∈ R

2 | f(x) = h}). As we vary h, the contours vary
continuously but their structure changes only at the critical vertices
of M. If we increase the height, then a new contour appears at a
minimum, a contour disappears at a maximum, two contours join
at a saddle, or a contour splits into two at a saddle. The contour tree
is a graph (actually, a tree) that tracks these changes. Its nodes are
the critical vertices in M. Each edge (u, v) in the tree corresponds
to a contour that is created at v and destroyed at u. See Figure 4 for
an example. In the augmented contour tree, we add each regular
vertex w to the contour tree by splitting the edge (u, v) to (u, w)
and (w, v) if the contour corresponding to (u, v) contains w. We
only describe how we build the augmented contour tree C, but our
algorithm can be easily modified to build the contour tree. We omit
the word “augmented” from now on.

We follow the same approach as in [11]. We first construct the
so-called join and split trees of M and then merge them to construct
C. The join tree JM represents all joins in C, and the split tree
SM represents all splits in C. JM is a tree in which (u, v), with
f(u) > f(v), is an edge if v is the highest vertex in a connected
component of M<f(u) that contains a vertex of Lk−(u). The tree
SM is defined symmetrically by negating the function f . For any
edge (u, v) ∈ JM with f(u) > f(v), we declare u to be the parent
of v, so JM is a tree growing downward with the highest node being
the root. Similarly for any edge in the split tree, we declare the
lower node to be parent, and it becomes a tree growing upward
with the lowest node being the root.

The topological persistence algorithm can be adapted to compute
JM. We sweep a plane bottom-up and maintain the connected com-

Figure 4: An example contour tree.

ponents of M<h. When the sweep plane reaches f(u), for each
v ∈ Lk−(u), we connect u with the highest node in the connected
component of M<h that contains v. Duplicate edges are removed.
This can be done using our batched union-find algorithm in the
same way as the topological persistence case, except that here we
require the highest node to be the representative of a component,
rather than the lowest. The split tree SM is built symmetrically. As
in the persistence case, the union graph is planar, so the algorithm
takes O(SORT(N)) I/Os.

Since the definition of lower links applies to any graph in which
height is associated with its vertices, the notion of join and split
trees can be extended to C (i.e., replace M with C verbatim in the
definition) and the construction algorithm makes sense even when
applied to C instead of M. The following lemma is proved by Carr
et al. [11].

LEMMA 3 ([11]). The contour tree C and the mesh M have
the same join tree and split tree.

Carr et al. define a linear-time algorithm to construct C from
JM = JC and SM = SC using the following observation. A node v
is qualified if it is a leaf of JC (resp. SC) and has only one child in
SC (resp. JC), and we call the edge (u, v) a qualified edge, where
u is the parent of v in JC (resp. SC). A qualified node must be a
leaf of C, and any leaf of C must also be a qualified node. For a
qualified node v, let JC 	 v (or SC 	 v) be the tree obtained after
deleting the node v and the edges adjacent to it; if v is not a leaf,
connect u to the only child of v by an edge.

LEMMA 4 ([11]). A qualified edge (u, v) is an edge of C. If
v is a qualified, then JC 	 v and SC 	 v are the join and split trees
of C 	 v.

Using this lemma, Carr et al. [11] repeatedly delete a qualified
node from JC and SC, and add the corresponding qualified edge
to C. Figure 5(a)–(d) illustrate one such iteration, and Figure 5(e)
shows the final contour tree constructed. In internal memory, each
step takes O(1) time, but we cannot afford even one I/O per step.
It is difficult to batch the steps together since the set of qualified

(a) (b)

7

6

4

2
3

8

9

1

5

7

6

2
3

8

9

5

4

1

(c) (d)

7

6

4

3

8

9

1

5

7

6

3

8

9

1

5

4

JM SM JM 	 2 SM 	 2 C

(e)

7

6

2
3

8

9

1

5

4

Figure 5: Construction of a contour tree from the join tree and the split tree using Carr et al. [11]: (a) The join tree JM of a mesh M,
where the number beside each node is its height. (b) The split tree SM. All qualified nodes are circled. (c)-(d) One step of Carr et al.:
node 2 is removed and the edge between node 2 and node 4 is added to C. (e) The final contour tree C.

nodes depends on the choices of which qualified nodes to delete in
previous steps. We therefore present a different characterization of
contour tree edges, formulate the problem as a geometric problem,
and solve it using O(SORT(N)) I/Os.

As a convention, we say a node is both an ancestor and a de-
scendant of itself. For any edge e = (u, v) ∈ JM, let σ(e) be the
highest node that is a descendant of v in JM and at the same time
an ancestor of u in SM.

LEMMA 5. For any edge e ∈ JM, the node σ(e) is defined.
PROOF. it can be checked that the descendants of a node w in

JM (resp. SM) are exactly those lying in the connected component
of the closure of M<f(w) (resp. M>f(w)) that contains w. Now
consider any edge e = (u, v) ∈ JM. During the construction of
JM, u is connected to v because there is a vertex w ∈ Lk−(u) such
that v is the highest node in the connected component of M<f(u)

that contains w. So w is an descendant of v in JM.
During the construction of SM, when the edge (u, w) of M is

processed at w (recall that the vertices are swept in decreasing or-
der of their heights), w is connected to the lowest node w′ in the
connected component of M>f(w) that contains u. Hence w′, and
thus w, is an ancestor of u in SM. This shows that there exists a
vertex w that is a descendant of u in JM and an ancestor of u in SM,
thereby implying that σ(e) is defined.

The following lemma characterizes the edges of C.

LEMMA 6. For each edge e = (u, v) ∈ JM, (u, σ(e)) is an
edge of C.

PROOF. Please refer to Figure 6(a). Let e = (u, v) be any edge
of JM. We know that σ(e) is the highest node that is both a descen-
dant of v in JM and an ancestor of u in SM. Let P1 be the set of
nodes on the path of JM from u to σ(e), and P2 the set of nodes on
the path of SM from σ(e) to u. u and σ(e) are not included in P1

and P2. Note that P1 and P2 are disjoint, otherwise we would have
chosen a different σ(e).

We follow the procedure in [11], i.e., repeatedly delete quali-
fied nodes one by one except u until σ(e) becomes qualified. This
strategy always works since at any time, the remaining part of the
contour tree yet to be constructed has at least two leaves. So there
are at least two qualified nodes, and we can always find one other
than u to remove. Since u is not deleted and u was originally a
descendant of σ(e) in SM, u remains a descendant of σ(e) when
the latter becomes qualified. Since σ(e) is not a leaf in SM when
it becomes qualified, by definition, it must be a leaf in JM and has
one child in SM.

(a)

w

w
′

u

(b)

v

u

σ(e)

e

P2
P1

w

w
′

Figure 6: (a) Solid lines represent the edges of JM; dashed lines
represent the edges of SM; σ(e) is the highest node that is both
a descendant of v in JM and an ancestor of u in SM; (u, σ(e)) is
a contour tree edge. (b) Part of the contour tree C.

Next we prove that when σ(e) becomes qualified, P1 must be
empty, i.e., u is the parent of σ(e) in JM, and thus (u, σ(e)) is
added to C. Suppose on the contrary P1 6= ∅ when σ(e) becomes
qualified, and w ∈ P1 is the parent of σ(e) in JM. Since σ(e) is
qualified and is a leaf of JM, by Lemma 4, (w, σ(e)) is a contour
tree edge.

Consider the construction of SM. By Lemma 3, SM is the same
as the split tree constructed on C. During the construction of SM

using C, when the sweep plane reached f(σ(e)), we connect σ(e)
to the root of the already constructed subtree of SM that contains
w, since w is in the upper link of σ(e) in C. So σ(e) must be an
ancestor of w in SM, while it is also an ancestor of u in SM. Let w′

be the nearest common ancestor of u and w in SM. Since w′ has
at least two children in SM when σ(e) is qualified, it cannot be a
qualified node at that time, and thus w′ 6= σ(e). So w′ is a some
node in P2. As the sweep plane reaches f(w′) while constructing
SM, w′ is the node that merges the components containing u and
w together, so w′ must be on the path between u and w in C; see
Figure 6(b).

Finally consider the construction of JM. When the sweep plane
reaches f(u), u merges into the component containing w in JM,
which implies that the height of all the nodes on the path in C con-
necting u and w is less than f(u). However on the other hand, u
and w′ are still not in the same component at this point, because
otherwise w′ would be a descendant of u in JM and we would have
chosen w′ as σ(e). This means that the path in C connecting u and
w′ must have some node whose height is greater than f(u), but we
just concluded that the height of all the nodes on the path from u to

w is less than f(u), a contradiction. Hence P1 is empty, implying
that (u, σ(e)) is an edge in JM when σ(e) is qualified, which is
added to C.

Since JM has N − 1 edges e = (u, v), and (u, σ(e)) are all
different by definition. So if we can compute σ(e) for each edge of
JM, we have all the N − 1 edges of C. In the following, we show
how this maps to a geometric problem, which can be solved with
O(SORT(N)) I/Os.

First we perform an Euler tour on JM, and record for each node
its first and second appearances in the tour. This gives us an inter-
val [x1(u), x2(u)] for each node u, such that u is an ancestor of
v if and only if x1(u) < x1(v) and x2(u) > x2(v). Note that
these intervals are nested. We do the same with SM, and compute
another set of nested intervals [y1(u), y2(u)]. We map each node
u to a vertical segment s(u) with x-coordinate x1(u) and y-span
[y1(u), y2(u)], and map each edge e = (u, v) ∈ JM to a horizontal
segment s(e) with x-span [x1(v), x2(v)] and y-coordinate y1(u).
It is easy to see that for any node w and any e = (u, v) ∈ JM,
w is a descendant of v in JM and an ancestor of u in SM if and
only if s(w) intersects s(e). Thus the problem of finding σ(e) can
be formulated as follows: for the horizontal segment s(e), find the
shortest vertical segment that intersects s(e).

L1 L2 L3 L4

s(e)

Figure 7: Solving the segment-intersecting problem using dis-
tribution sweeping. The horizontal segment s(e) is broken into
three pieces: the middle piece spans slabs L2 and L3, the left
leftover piece falls inside L1, and the right leftover piece falls
inside L4.

We solve this batched problem using the distribution sweeping
technique. During the execution, with each horizontal segment we
store its shortest intersecting vertical segment found so far. Initially
we sort the endpoints of the all the segments by the y-coordinate.
Then we divide the plane into Θ(M/B) vertical slabs, each of
which contains roughly equal number of vertical segments. Next
we sweep a horizontal line top-down. During the sweep, for each
slab L we maintain an external memory stack that stores all vertical
segments that fall inside L. Whenever we reach the top endpoint of
a vertical segment, we push it into the corresponding stack; when-
ever we reach the bottom endpoint of a vertical segment, we pop
one from the corresponding stack. Since there are O(M/B) stacks,
we can allocate one memory block for each stack, so that all stack
operations take linear I/Os. When we reach a horizontal segment,
we look at all the slabs that are completely spanned by it, and check
the top element of each corresponding stack as a candidate answer.

During the sweep, we also form the instances of the subprob-
lems for each slab. The vertical segments are simply distributed to
their corresponding slabs. For each horizontal segment, we break
it into at most three pieces: a middle piece that completely spans a
number of slabs, a left leftover piece and a right leftover piece that
fall inside a slab (see Figure 7). We throw away its middle piece,
and distribute the two leftover pieces into the corresponding slab.

Note that at any level in the recursion, a horizontal segment has at
most two pieces. Thus employing standard distribution sweeping
analysis yields an O(SORT(N))-I/O bound for the algorithm.

Putting all the pieces together, we obtain the following.

THEOREM 5. The contour tree of a triangular mesh with N
vertices in R

2 can be computed using O(SORT(N)) I/Os.

REMARK 3. Our algorithm extends to higher dimensions, with
N replaced by the number of simplices in the mesh [11], except that
in d ≥ 3 dimensions the union graph when building the join and
split trees may not be planar, and the O(SORT(N) log log B)-I/O
MST algorithm or the randomized MST algorithm with expected
O(SORT(N)) I/Os needs to be used.

6. EXPERIMENTS
We have implemented our practical batched union-find algorithm

(Section 3) using the TPIE framework [7]. In this section, we re-
port some preliminary experimental results of our algorithm when
applied to some of its applications. We compared with the inter-
nal memory algorithm that uses link-by-rank and path compres-
sion [13]. We could have implemented the linear-time off-line
union-find algorithm [20], but it is quite complicated and is un-
likely to outperform the simple O(Nα(N)) on-line algorithm in
practice. In the experiments we limited the physical memory of
the test machine to 128M (unless otherwise specified) in order to
obtain a large data size to memory size ratio. In the experiments
with the internal memory algorithm, we relied on virtual memory
to handle I/Os (swapping).

We performed three sets of experiments. We first used minimum
spanning tree as a test case for the batched union-find algorithm.
Next, we applied our union-find algorithm to computing the topo-
logical persistence of a terrain. Finally, we used the persistence
values to the so-called flooding problem on terrains.

Computing minimum spanning trees. We investigated the per-
formance of our union-find algorithm when applied to Kruskal’s
algorithm for computing MSTs. We generated random graphs with
N vertices and 5N edges. For each edge, we randomly picked
its two endpoints, and also randomly picked its weight uniformly
from (0, 1). This random graph model is similar to the earlier ex-
perimental studies of MST algorithms [14, 25].

We tested the internal memory algorithm (IM) and the external
memory algorithm (EM) on eight graphs, with N between 1 mil-
lion to 8 million. The results are shown in Figure 8(a), where the
running time reported is just the time spent by the union-find al-
gorithm. It does not include the initial sorting, which is performed
by both algorithms and is only a small fraction of the total running
time. The 128M main memory can accommodate the data structure
for a graph with roughly up to 2 million vertices. As we can see,
when the memory limit is not reached, the two algorithms perform
roughly the same. In fact, in this case EM is the same as IM except
for an additional step to check whether the input can be handled in
memory. That is why EM spends a little more time for the first two
data sets. For larger graphs, the running time of IM immediately
deteriorates due to the random access pattern in its data structure.
On the other hand, the running time of EM scales roughly linearly
in the size of the input graph. On the graph with 3 million ver-
tices, IM spends roughly 22 hours, that is, 300 times more than that
of EM. We cannot run IM on the other data sets in a reasonable
amount of time.

We should point out that there exist other practical external mem-
ory MST algorithms [14] that do not use the union-find algorithm.

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

vertices (million)

ru
nn

in
g

tim
e

(s
ec

on
ds

)

IM
EM

 memory limit reached

to (3, 78720)

(a)

1 2 3 4 5 6 7 8
100

101

102

103

104

105

vertices (million)

ru
nn

in
g

tim
e

(s
ec

on
ds

)

IM
EM

 memory limit reached

(b)

Figure 8: Running time of the internal memory (IM) and the
external memory (EM) union-find algorithms for (a) comput-
ing minimum spanning trees, and (b) computing topological
persistence (running time is shown in log scale).

However, our focus is on investigating the performance of union-
find algorithms. A comprehensive experimental evaluation of MST
algorithms is beyond the scope of this paper.

Computing topological persistence on triangulated terrains. We
implemented the topological persistence algorithm using both the
internal memory (IM) and our (EM) union-find algorithm. We
tested the performance on the elevation data of the Neuse River
Basin of North Carolina, obtained from [26]. The data set, consist-
ing of over 0.5 × 109 points, is too large for the IM algorithm, so
we created eight smaller data sets by sampling 1 million to 8 mil-
lion points. We converted this data into a triangular mesh using an
I/O-efficient Delaunay triangulation algorithm [1].

The experimental results of these eight data sets are shown in
Figure 8(b) (note the log scale on the running time). Again the
running time shown is only that of the union-find algorithms. In this
set of experiments we see similar trends of both IM and EM as the
MST case, except that IM deteriorates slower in this case. This is
because the union and find operations generated by the topological
persistence algorithm have better locality than in the MST case due

to the underlying geometry. Still, the difference in running time
between IM and EM gets more significant as the data set gets larger.
On the last data set of 8 million points, the difference is more than
two orders of magnitude. Finally, we set the physical memory to
its full size (1 GB) and tried the entire Neuse River Basin data set
(with 0.5 billion points). EM finishes in about 5.22 hours, while IM
crashed after running for about 7 hours, because the 32-bit address
space is not enough to accommodate such a large data set.

Automated terrain flooding. Flow analysis of a terrain is a cen-
tral problem, which models how water flows and how river net-
works form when water is uniformly poured on a terrain. Almost
all existing flow models proposed in the literature [24, 27] assume
that once water flows into a minima, it never flows out. This is, of
course, true only if the minima corresponds to the ocean or some
big lake. However, on a mesh constructed from the elevation data
of a terrain, there are numerous minima (often called sinks), due to
either measurement noises or real pits on the terrain. As a result,
various sink-removal techniques have been proposed to remove all
the spurious sinks before computing the actual flows.

Currently, the most popular sink-removal method is flooding [24],
which has been used in many widely used GIS softwares such as
ArcInfo [17] and GRASS [6, 23]. The idea of flooding is to sim-
ulate uniformly pouring water onto the terrain until all sinks are
filled and a steady-state is reached. See Figure 9(a) and (b).

���
���
���
���
���

���
���
���
���
���

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�
�
�
� ���
���

���
���

(a) (b) (c)

Figure 9: (a) The terrain. (b) Flood the terrain until a steady-state is
reached. (c) Partially flood the terrain.

One serious problem with this flooding method is that it floods
all sinks, regardless of its importance. As such, many important
geographical features, such as big lakes or river valleys that do not
end up in the ocean will vanish after this flooding procedure. In-
stead of filling all the sinks, we can use persistence to measure the
importance of sinks on a terrain. For a user-specified threshold τ ,
we declare all sinks with persistence greater than τ to be the real
sinks, while the rest should be removed. This gives us an automated
way to flood the terrain while preserving important geographical
features. Refer to Figure 9(c).

We computed the distribution of the persistence values of all
sinks for the Neuse River Basin. The distribution is highly skewed:
A few sinks have large persistence (possible real sinks), while the
majority have very small persistence (spurious sinks). Based on
this information, we can choose an appropriate persistence thresh-
old to remove all the spurious sinks while preserving the main
features. We applied the flooding algorithm to the terrain with a
persistence threshold of τ = 30. We also ran the algorithm with
τ = ∞, i.e., flooding all sinks, which gives the same results as the
previous flooding algorithm. A portion of the original terrain, and
the flooded terrains are shown in Figure 10. With a threshold of
τ = 30, around 99.5% of the sinks have been removed, while the
major features have been preserved. On the other hand, the pre-
vious flooding procedure has undesirably eradicated some major
features.

(a) (b) (c)

Figure 10: (a) Original terrain. (b) Terrain flooded with persistence threshold τ = 30. (c) Terrain flooded with τ = ∞.

7. REFERENCES
[1] P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient construction of

constrained Delaunay triangulations. In Proc. 13rd European
Sympos. Algorithms, pages 355–366, 2005.

[2] P. K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang. Extreme
elevation on a 2-manifold. In Proc. 20th Annu. Sympos. Comput.
Geom., pages 357–365, 2004.

[3] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems. Commun. ACM, 31(9):1116–1127, 1988.

[4] L. Arge. External memory data structures. In J. Abello, P. M.
Pardalos, and M. G. C. Resende, editors, Handbook of Massive Data
Sets, pages 313–358. Kluwer Academic Publishers, 2002.

[5] L. Arge, G. S. Brodal, and L. Toma. On external memory MST,
SSSP and multi-way planar graph separation. J. Algorithms,
53(2):186–206, 2004.

[6] L. Arge, J. Chase, P. Halpin, L. Toma, D. Urban, J. S. Vitter, and
R. Wickremesinghe. Flow computation on massive grid terrains.
GeoInformatica, 7(4):283–313, 2003.

[7] L. Arge, O. Procopiuc, and J. S. Vitter. Implementing I/O-efficient
data structures using TPIE. In Proc. 10th European Sympos.
Algorithms, pages 88–100, 2002.

[8] L. Arge, D. E. Vengroff, and J. S. Vitter. External-memory
algorithms for processing line segments in geographic information
systems. Proc. 3rd European Sympos. Algorithms, pages 295–310,
1995.

[9] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An
asymptotically optimal multiversion B-tree. VLDB Journal,
5(4):264–275, 1996.

[10] P. T. Bremer, V. Pascucci, H. Edelsbrunner, and B. Hamann. A
topological hierarchy for functions on triangulated surfaces. IEEE
Trans. Vis. Comput. Graphics, 10:385–396, 2004.

[11] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. Comput. Geom. Theory Appl., 24:75–94, 2003.

[12] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E.
Vengroff, and J. S. Vitter. External-memory graph algorithms. In
Proc. 6th ACM-SIAM Sympos. Discrete Algorithms, pages 139–149,
1995.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, 2nd Edition. The MIT Press, Cambridge,
Mass., 2001.

[14] R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn. Engineering an
external memory minimum spanning tree algorithm. In Proc. 3rd
IFIP Intl. Conf. on Theoretical Computer Science, pages 195–208,
2004.

[15] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse
complexes for piecewise linear 2-manifolds. In Proc. 17th Annu.
Sympos. Comput. Geom., pages 70–79, 2001.

[16] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological
persistence and simplification. In Proc. 41st IEEE Sympos. Found.
Comput. Sci., pages 454–463, 2000.

[17] Environmental Systems Research Inc. ARC/INFO Professional GIS,
1997. Version 7.1.2.

[18] F. W. Fredman and D. E. Willard. Trans-dichotomous algorithms for
minimum spanning trees and shortest paths. In Proc. 31st IEEE
Sympos. Found. Comput. Sci. pages 718–725, 1990.

[19] M. L. Fredman and M. E. Saks. The cell probe complexity of
dynamic data structures. In Proc. 21st ACM Sympos. Theory
Comput., pages 345–354, 1989.

[20] H. Gabow and R. Tarjan. A linear time algorithm for a special case
of disjoint set union. J. Comput. Syst. Sci., 30:209–221, 1985.

[21] B. A. Galler and M. J. Fisher. An improved equivalence algorithm.
Commun. ACM, 7(5):301–303, 1964.

[22] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter.
External-memory computational geometry. In Proc. 34th IEEE
Sympos. Found. Comput. Sci., pages 714–723, 1993.

[23] GRASS Development Team. GRASS GIS homepage.
http://www.baylor.edu/grass/.

[24] S. Jenson and J. Domingue. Extracting topographic structure from
digital elevation data for geographic information system analysis.
Photogrammetric Engineering and Remote Sensing,
54(11):1593–1600, 1988.

[25] B. M. E. Moret and H. D. Shapiro. An empirical analysis of
algorithms for constructing a minimum spanning tree. In Proc.
Workshop Algorithms Data Struct., pages 400–411, 1991.

[26] North Carolina Flood Mapping Program.
http://www.ncfloodmaps.com.

[27] J. F. O’Callaghan and D. M. Mark. The extraction of drainage
networks from digital elevation data. Computer Vision, Graphics and
Image Processing, 28, 1984.

[28] R. Seidel and M. Sharir. Top-down analysis of path compression.
SIAM J. Comput., 34(3):515–525, 2005.

[29] S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in 3D
in O(n log n) steps. In Proc. 14th Annu. Sympos. Comput. Geom.,
pages 68–75, 1998.

[30] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
J. ACM, 22:215–225, 1975.

[31] R. E. Tarjan. A class of algorithms that require nonlinear time to
maintain disjoint sets. J. Comput. and Sys. Sci., 18:110–127, 1979.

[32] R. E. Tarjan and J. V. Leeuwen. Worst-case analysis of set union
algorithms. J. ACM, 31:245–281, 1984.

[33] M. van den Bercken, B. Seeger, and P. Widmayer. A generic
approach to bulk loading multidimensional index structures. In Proc.
Intl. Conf. Very Large Databases, pages 406–415, 1997.

[34] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and
D. Schikore. Contour trees and small seed sets for isosurface
traversal. In Proc. 13th Annu. Sympos. Comput. Geom., pages
212–219, 1997.

[35] J. S. Vitter. External memory algorithms and data structures: Dealing
with MASSIVE data. ACM Comput. Surveys, 33(2):209–271, 2001.

[36] A. Zomorodian. Topology for Computing. Cambridge University
Press, 2005.

