Incremental Maintenance of XML Structural Indexes

Ke Yi*t Hao He*
Dept. Computer Science
Duke University
yike@cs.duke.edu

Duke University
haohe@cs.duke.edu

ABSTRACT

Increasing popularity of XML in recent years has generated

much interest in query processing over graph-structured data.

To support efficient evaluation of path expressions, many
structural indexes have been proposed. The most popular
ones are the l-index, based on the notion of graph bisimi-
larity, and the recently proposed A(k)-index, based on the
notion of local similarity to provide a trade-off between in-
dex size and query answering power. For these indexes to be
practical, we need effective and efficient incremental mainte-
nance algorithms to keep them consistent with the underly-
ing data. However, existing update algorithms for structural
indexes essentially provide no guarantees on the quality of
the index; the updated index is usually larger size than nec-
essary, degrading the performance for subsequent queries.
In this paper, we propose update algorithms for the 1-
index and the A(k)-index with provable guarantees on the
resulting index quality. Our algorithms always maintain a
minimal index, i.e., merging any two index nodes would
result in an incorrect index. For the 1l-index, if the data
graph is acyclic, our algorithm further ensures that the in-
dex is minimum, i.e., it has the least number of index nodes
possible. For the A(k)-index, we show that the minimal in-
dex our algorithm maintains is also the unique minimum
A(k)-index, for both acyclic and cyclic data graphs. Fi-
nally, through experimental evaluation, we demonstrate that
our algorithms bring significant improvement over previous
methods, in terms of both index size and update time.

1. INTRODUCTION

Increasing popularity of XML in recent years has gener-

*Part of the work was done while the author was visiting
IBM T. J. Watson Research Center.

TSupported in part by the National Science Foundation
through CAREER grant CCR~9984099 and ITR grant EIA-
0112849.

fSupported by a National Science Foundation CAREER
Award under grant I11S-0238386.

Permission to make digital or hard copies of all or part of this work for

Dept. Computer Science

loana Stanoi Jun Yang?

IBM T. J. Watson
Research Center
irs@us.ibm.com

Dept. Computer Science
Duke University
junyang@cs.duke.edu

ated much interest in query processing over graph-structured
data. A number of commercial database vendors are mak-
ing significant efforts to support XML natively, rather than
convert it to the traditional relational model. One of the ma-
jor challenges of this task is to provide support for efficient
query processing over XML. To summarize the structure of
such data and to support path expression [4] evaluation,
novel structural indexes have been proposed [11, 9, 17, 7].
Among the most popular ones are the 1-index [11], based
on the notion of graph bisimilarity, and the recently pro-
posed A(k)-index [9], based on the notion of local similarity
to provide a trade-off between index size and query answer-
ing power. Some structural indexes have also been used as
statistical synopses for estimating selectivities of path ex-
pressions [3, 16].

Compared with traditional relational indexes, much less
attention has been directed to the problem of maintaining
structural indexes for XML, with the exception of recent
work in [8]. After an XML document is updated, its struc-
tural index must be properly maintained so that subsequent
queries have a view of the summarized data that is con-
sistent with the updated document. For structural indexes
to be practical, we need efficient index maintenance algo-
rithms that guarantee the accuracy and efficiency of these
indexes for querying. There are two basic approaches to
index maintenance: reconstruction and incremental mainte-
nance. Reconstruction is simple and usually leads to high-
quality indexes, but the overhead of reconstruction makes
it unattractive even for databases with moderate update
rates. The second approach, incremental maintenance, up-
dates the existing index incrementally as soon as the un-
derlying database changes. The cost of computing and ap-
plying incremental index updates can be potentially much
lower than that of reconstruction.

Designing good maintenance algorithms is challenging be-
cause of the delicate balance between efficacy and efficiency.
Efficacy means preserving the quality of the structural sum-
mary. For the same underlying data, there are many cor-
rect structural summaries, but they vary greatly in size and
hence in query performance. The algorithm should ensure
that the updated index is not expanded unnecessarily. On
the other hand, efficiency here means that the algorithm
itself should be efficient. In some cases, obtaining the small-

personal or classroom use is granted without fee provided that copies areest possible structural summary is very expensive, so set-
not made or distributed for profit or commercial advantage, and that copies tling on a reasonably small structural summary would be

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
SIGMOD 2004June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 $5.00.

more preferable. Finding the right balance in this trade-
off is not trivial. Reconstruction provides perfect efficacy,
but severely lacks efficiency. In contrast, although the pre-

viously proposed update algorithms in [9] are efficient, we
show that their efficacy is lacking: the updated index usu-
ally has a much larger size than necessary, degrading the
performance for subsequent query evaluations.

In this paper, we demonstrate that it is possible to achieve
high degrees of both efficacy and efficiency in designing in-
cremental maintenance algorithms for structural indexes.
We focus on three types of updates: edge insertion, edge
deletion, and subgraph addition. Edge insertion and dele-
tion constitute the basic operations upon which other kinds
of updates (e.g., node insertion and deletion) can be based.
Although subgraph addition can also be processed by insert-
ing edges one at a time, we provide a separate, more efficient
algorithm for it since it is such a common operation. We re-
strict ourselves to the l-index and the A(k)-index, but we
believe our techniques can also be used for other structural
indexes based on node partitioning. We develop efficient
update algorithms for the 1-index and the A(k)-index that,
in contrast to previous algorithms, provide provable guaran-
tees on the resulting index quality. More precisely, we make
the following contributions:

1. Our algorithms always maintain a minimal index, i.e.,
merging any two index nodes would result in an incor-
rect index.

2. If the data graph is acyclic, we show that there is a
unique minimal 1-index that is also minimum, i.e., it
has the least number of index nodes possible. This
result further ensures that our algorithm always main-
tains the minimum 1-index for acyclic data graphs.

3. For cyclic data graphs, where there might be more
than one minimal 1-indexes, we show by experiments
that the minimal 1-index maintained by our algorithm
is always very close to the minimum, if not the same.

4. For any data graph (acyclic or cyclic), we show that
there is a unique minimal A(k)-index that is also min-
imum, which ensures that our algorithm always main-
tains the minimum A(k)-index for any data graph.

5. Through an extensive experimental study, we demon-
strate that our algorithms are not only effective in pre-
serving index quality, but also very efficient in terms
of computation cost.

The rest of the paper is organized as follows. We first
survey previous work in Section 2. In Section 3, we present
the data model of XML and its structural indexes, as well as
the basic concepts related to the theory and algorithms. We
give a general overview of our algorithms in Section 4, fol-
lowed by the detailed update algorithms for the 1-index and
A(k)-index in Section 5 and 6, respectively. We study their
practical performance experimentally in Section 7. Finally,
we conclude in Section 8.

2. PREVIOUS WORK

Query optimization for XML has been a popular subject
of study [10, 5]. Indexing is essentially used to avoid ex-
haustive traversal of the documents for query processing.
Signature-based techniques have the same goal of reducing
the search space. They have been used extensively in infor-
mation retrieval and have also been adapted for XML data
recently in [14, 15]. With this approach, each node of the
XML tree is annotated with the bitwise OR of the hash val-
ues of its child nodes. Existence of a tag in the subtree of

a node can therefore be estimated by comparing the hashed
value of the child tag with the signature of the node. Up-
dates may however lead to recomputation of signatures of
all ancestors.

Structural summaries for XML have been used for index-
ing, query pruning and rewriting, and selectivity estimation.
DataGuides [6] was one of the first structural summaries
used in XML query processing. The notion of simulation,
more commonly used in graph theory, was applied in [5] to
schema validation as well as query pruning and rewriting
for semistructured data. A number of structural indexes
based on simulation followed. The 1-index [11] partitions
data nodes into equivalence classes based on bisimilarity.
To reduce the size of the 1-index, the A(k)-index was pro-
posed [9]. It uses local similarity for partitioning, thereby
compressing the 1-index at the cost of losing some structural
information about the underlying data. Very recently, other
techniques [17, 7] have been proposed to further improve the
flexibility and efficiency of the A(k)-index.

Three important issues need to be considered for any
index: construction, query evaluation, and maintenance.
Paige and Tarjan [12] gave an iterative splitting algorithm
to construct a l-index in O(mlogn) time, where m is the
number of edges and n is the number of nodes in the data
graph. In [9], an algorithm based on similar ideas is used
to construct an A(k)-index in time O(km). Many differ-
ent query evaluation strategies use these structural indexes;
see [11, 9] for details. In this paper, we only focus on the
maintenance issue.

The only known update algorithm for the 1-index is the
propagate algorithm from [8], which uses Paige and Tarjan’s
construction algorithm [12] to handle edge changes. This
algorithm essentially provides no guarantee on the quality
of the resulting index. In the experiments of [8], the index
was shown to have 3%-5% more nodes than the minimum
index after a relatively small number of edge insertions (500
in a data graph with about 200,000 nodes); no performance
results were reported for deletions. A subgraph addition
algorithm based on reconstruction was also given in [8].

Intuitively, because of its locality, the A(k)-index should
be easier to maintain than the 1-index. However, no good
update algorithm for the A(k)-index has been proposed so
far, except for some simple algorithms mentioned in [8, 17].
These approaches all suffer from the same problem of gener-
ating too many unnecessary nodes, which undermines the
compactness advantage of the A(k)-index. Designing ef-
ficient incremental maintenance algorithms for the A(k)-
index was left as an interesting area for future research in [8].

3. PRELIMINARIES

Data model.In this paper, we model XML or other semi-
structured data as a directed, labeled graph G = (V, E,
root, ¥, label, oid, value). Each edge in E indicates an
object-subobject or IDREF relationship. Each node in V'
is labeled with a string from X via the label function and
with a unique identifier via the oid function. It may also
optionally have a value given by the value function. There
is a single root node with the distinguished label ROOT with
no incoming edges. An example XML document under this
model is shown in Figure 1, where object-subobject relations
are shown in solid lines, and IDREF relations are shown in
dashed lines. A database with multiple XML documents

regions auctions

iter_ item
S

N

\\person person person _ -

Figure 1: An XML database example.

can be modeled as a single data graph with an artificial root
connecting graphs corresponding to the individual files.

We refer to the nodes and edges in V and E as data nodes
and data edges, or dnodes and dedges, respectively, to differ-
entiate from those in an index graph, to be introduced below.
We will use u, v, . .. to denote dnodes, and Succ(u) to denote
the set of u’s successors, i.e., Succ(u) = {v|(u,v) € E}.

Structural indexesA structural index (or structure sum-
mary) for a data graph takes the form of another labeled di-
rected graph (Vr, Er), which is built by the following general
procedure: (1) partition the dnodes into classes according
to some equivalence relation, (2) make an index node (or in-
ode) for each equivalence class, with all dnodes in this class
being its extent, and (3) add an indez edge (or iedge) from
inode I to inode J if there is a dedge from some dnode in the
extent of I to some dnode in the extent of J. We use ®(G)
to denote a structural index built for data graph G, and I[v]
to denote the inode whose extent contains dnode v. From
now on, we will not distinguish between an inode and its
extent when there is no confusion. Since a structural index
is completely determined by its partition of the dnodes, we
also do not distinguish between an index and its dnodes par-
titions. We define Succ(l) to be |J,; Succ(u), the dnodes
successors of dnodes in I, and ISucc(I) = {J|(I,J) € Er},
the index successors of I. We use Z, 7, ... to represent sets
of inodes, and define Succ(Z) = U7 Suce(I).

Evaluation of path expressions can often be made faster
with a structural index ®(G) by executing the path expres-
sion R on ®(G), which is often much smaller than the orig-
inal data graph G. The results of R is contained in the
union of the extents of the inodes that match R, because
any structural index that is constructed by the procedure
above is safe. However, not all structural indexes are pre-
cise, i.e., the result of some query R on ®(G) may contain
false positives.

Different structural indexes can be obtained by choosing
different equivalence relations in step (1) above. The 1-
index [11] uses bisimilarity [13] to partition the dnodes. For
our purpose, we use the following equivalent definition for
the 1-index based on the notion of stability [12]:

Definition 1. An inode I is stable with respect to J if

either I C Suec(J) or I NSuce(J) = 0. For a data graph G,
an index ®(G) is stable w.r.t. index ®'(G) if for any inode
I€®(G),I' e ®'(G), I is stable w.r.t. I'.

Definition 2. A structural index ®(G) is called a I-index
if (1) all dnodes in any inode of ®(G) have the same label,
and (2) it is stable with respect to itself. A minimum 1-index
is the 1-index with the minimum number of inodes.

Note that if I is not stable w.r.t. J, we can make it stable
by splitting I into I N Succ(J) and I — I N Suce(J). This is
the basic operation for ensuring the correctness of the index
in the construction algorithm of [12] and our algorithms.

There may be more than one l-index for a given data
graph, all of which can be used in the same way for query
evaluation. Of course they differ in performance: the smaller
the index, the better the performance. The best one is the
minimum 1-index, while the worst is the data graph itself
(also a valid 1-index) where we do not gain anything from
using it. In [12], the following result gives the relationship
between the minimum 1-index and other 1-indexes.

Definition 8. For a data graph G, a structural index ®(G)
is a refinement of another index ®'(G) if for any inode I €
®(@G), there exists an inode I’ € ®'(G) such that I C I'.

LEMMA 1. There is a unique minimum I-index for any
given data graph, and any other 1-inder is a refinement of
the minimum I-index.

However, even the minimum 1-index can sometimes have
too many inodes, especially for highly irregular data graphs,
resulting in poor query performance. To alleviate the prob-
lem, the A(k)-index [9] was proposed to shrink the index
size by using k-bisimilarity to partition dnodes. We use the
following equivalent definition for the A(k)-indexes.

Definition 4. Given any data graph G, the A(0)-index is
the structural index obtained by simply partitioning the
dnodes of G by their labels. For 1 < i < k, a structural
index ®(G) is called an A(7)-index if there exists an A(i—1)-
index ®'(G) such that ®(G) is a refinement of ®'(G) and it
is stable with respect to ®'(G). A minimum A(k)-index is
the A(k)-index with the minimum number of inodes.

Note that the A(k)-index is not precise any more, because
it only preserves paths of length up to k. For path expres-
sions longer than k, it may generate false positives and we
need a wvalidation step on the original data graph to elimi-
nate them. Nevertheless, in [9], it was shown by experiments
that even with this extra validation step, the total evalua-
tion cost is much less than that of 1-index, due to the small
sizes of the A(k)-indexes, for typical values of k = 2,...,5.

A result parallel to Lemma 1 holds for the A(k)-index [9]:

LEMMA 2. For any given data graph G, there is a unique
minimum A (k)-index. Any other A(k)-indez is a refinement
of the minimum A (k)-indez.

Quality of indexesWhen there are updates to the data
graph G, it is sometimes difficult and costly to maintain the
minimum index, but as discussed before, there are many
correct indexes and any of them can be used for query pro-
cessing in the same way as the minimum index. However,

they range from the minimum index to the data graph itself,
hence differ greatly in performance [9, 17]. Thus, we would
like to keep the index size as small as possible when doing
maintenance. To measure the effectiveness of our update
algorithms, we define the quality of the index to be

inodes in the index

inodes in the minimum index ’

which we would like to keep as close to zero as possible.
Note that this is the same metric used by [8] to measure the
quality of the index after a sequence of updates.

4. ALGORITHMS OVERVIEW

The basic idea behind our new update algorithms is to it-
eratively make local improvements after correctness is first
ensured. All our algorithms consist of a split phase and a
merge phase. Therefore we will sometimes generally refer to
them as split/merge algorithms. The split phase uses ideas
from the index construction algorithms to first make the in-
dex correct by splitting some inodes, while the merge phase
tries to merge nearby inodes together without violating any
constraint, one pair at a time, until no more merges can be
made. Both split and merge phases are carried out in an it-
erative and local manner: we start from the newly inserted
(or deleted) edge, and proceed step by step. In each step,
we try to split (or merge) the children of some new inode
generated from previous splits (or merges). The nice prop-
erty of our algorithms is that, although these operations are
carried out in a local manner, each inode in the resulted
index cannot be merged with any other inode without vio-
lating the stability constraint. We say that such an index
is minimal. The precise definitions of minimal indexes take
slightly different forms for the 1-index and the A(k)-index,
so we will defer them to the respective sections. From Lem-
mas 1 and 2, we know that the minimum index is unique.
However, there might be more than one minimal indexes
for a given data graph. Nonetheless, in many cases we can
prove that there is a unique minimal index, i.e., for acyclic
1-indexes and general A(k)-indexes. In these cases, our al-
gorithms can further guarantee that the minimum index is
always maintained.

5. UPDATES FOR THE 1-INDEX

5.1 Edge Insertion and Deletion

The aIgorithms.We first use a running example to demon-
strate how our algorithm updates the 1-index when a dedge
is inserted into the data graph. See Figure 2. The data
graph is shown in (a), where we use letters to represent la-
bels and numbers to represent dnodes. The new dedge to be
inserted is shown with a dashed line. The 1-index before the
update is shown in (b), where the inodes’ extents are shown
in brackets. The split phase first checks if there is an iedge
between the two inodes containing the source and sink of the
new dedge. In this case there is not, so we split the inode
{3,4} in (b) into an inode that contains dnode 4 and one
that contains the rest of dnodes (Figure 2(c)). Then, this
split triggers the split of inode {6, 7} because it now becomes
unstable with respect to the two new inodes resulted from
the previous split (Figure 2(d)). Now, every inode is stable
with respect to every inode and the split phase ends. The

merge phase starts by looking for an inode among the sib-
lings of {4}, the inode containing the sink of the new dedge,
to see if there is an inode that has the same label and the
same set of index parents. We find inode {5} in this case
and then merge inodes {4} and {5} together (Figure 2(e)).
Next, we iteratively consider the possible merges among the
children of newly generated inodes from previous merges.
In this example, we will merge inodes {7} and {8} together.
The final result of the update is shown in Figure 2(f).

More formally, our algorithm first checks if the new edge
(u,v) makes v not bisimilar with the rest of the dnodes in
I[v]. If yes, we split I[v] into one inode containing v itself
and one that contains the rest of the dnodes. A compound
block is a set of inodes that are the new inodes resulted from
a previous split. The split phase basically uses the Paige-
Tarjan’s 1-index construction algorithm to iteratively split
inodes until we get a stable partition with respect to itself
(hence correct). We start with only one compound block
consisting of the two new inodes. In each of the split steps,
we take out a compound block Z, pick an inode I € Z such
that 1| < 3., 1J], and make all other inode stable with
respect to Succ(I) and Succ(Z—{I}). This in turn may split
other inodes and generate new compound blocks, which are
added to the queue of compound blocks. The split phase
ends when queue is empty.

The merge phase starts from I[v] and tries to merge inodes
together iteratively until no more merges can be made. We
first look for an inode with the same label and index parents
as I[v]. If one exists, we merge it with I[v], and put the
newly merged inode into a queue of merged inodes. In each
of the following merge steps, we take out one merged inode
I from the queue, and consider the possible merges among
the index successors of I. We also add newly merged inodes
into the queue. The merge phase ends when the queue is
empty.

Our complete 1-index edge insertion algorithm is described
in Figure 3. The edge deletion algorithm differs only slightly.
For simplicity of presentation, we assume that there is no
self-cycles in the 1-index (i.e., an inode that points to itself),
which is true for virtually all XML databases. Our algo-
rithms can be modified to take care of self-cycles as well,
only that some details get a little messy. Note that in the
algorithm description we only specify how the partition of
dnodes gets updated; we do not bother to state explicitly
how iedges are handled, because they are completely deter-
mined from the partition by the definition of structural in-
dexes (Section 3). These iedges can also be easily maintained
as we update the inode extents, using techniques similar to
those in [8].

Efficacy. Now we give the formal definition for minimal 1-
indexes.

Definition 5. For a data graph G, a 1-index ®(G) is min-
tmal if for any two inodes I, J € ®(G), either (1) they have
different labels, or (2) there exists an inode K € ®(G) such
that I U J is not stable with respect to K.

For example, for the data graph in Figure 2(a) after the
dedge insertion, the index in 2(f) is a minimal 1-index (and
minimum at the same time), the ones in 2(d) and (e) are
not minimal, and the one in 2(c) is not even a valid 1-index.
Note that a 1-index is minimal if and only if it has no two
inodes that have the same label and the same set of index

(a) Datagraph (b) old 1-index

(c) split phase begins (d) split phase ends

Figure 2: An example of updating the 1-index after a dedge insertion.

procedure insert_1_index_edge(u,v)
begin
add a dedge from u to v;
if there is an iedge from I[u] to I[v] then return;
/* replace the 2 lines above with the following for deletions:
delete the dedge from (u,v);
if there exist u’ € I[u],v" € I[v] and there is a dedge
from v’ to v’ then return; */
// split phase
Q=0
if |I[v]| > 1 then
split I[v] into I1 = {v} and I = I — {v};
Q = ({11, I.});
while Q # 0 do
pick any Z € @, remove it from Q;
pick I € Zst. [I|<3Y 7170
if |Z| > 3 then insert Z — {I} into Q;
foreach inode K € ISucc(I) do
split K into K1 = K N Suce(I) and K2 = K — K;;
split K into K11 = K1 N Suce(Z — {I}) and
Ki2 = K1 — Ki1;
let IC = {K117K12,K2} — {(Z)},
if |IC| > 2 then
if37 € Q s.t. K € J then
replace K in J with the inodes in IC;
else add K to Q;
// merge phase
Q=10
look for an inode J with the same label as v among I[v]’s
siblings that have the same set of index parents as I[v];
if such an inode J exists then
merge I[v] and J into K = J U I[v];
Q={K};
while Q # () do
pick any I € @, remove I from Q;
let Z = ISucc(I);
partition Z into equivalent classes according to their
labels and index parents;
foreach equivalent class J C 7 do
if |J| > 2 then
merge the inodes in J into J = |J J;
R=Q-J;
insert J into Q;
end

Figure 3: Insert an edge into 1-index

(a) Datagraph (b) minimum 1-indexc) minimal (but not
minimum) 1-index

Figure 4: Minimal 1-indexes might not be unique.

parents, which follows directly from the definition of stabil-
ity. Minimal 1-indexes might not be unique. For example,
the indexes in Figure 4(b) and 4(c) are both minimal 1-
indexes for the data graph in 4(a), but only the one in 4(b)
is minimum.

LEMMA 3. If the 1-index before the update is minimal,
the new index generated by the split/merge algorithm is also
a minimal 1-index.

PROOF. Let (u,v) be the dedge just inserted (or deleted).
The algorithm first checks if this edge update changes any
index predecessor-successor relations. If no, it simply re-
turns. The resulted index is still a minimal 1-index simply
because the index before the update is a minimal 1-index.

Assume now the update indeed causes some changes to
the index. Let us call the data graph before the update
Go, and the one after the update G2. Imagine we relabel
v of G2 with a new label that is different from all others,
and call this data graph G1. We call the 1-index before the
update ®o(Go), the one after the split phase but before the
merge phase ®1(G1) (with relabeled v), and the final 1-index
D3 (G2). We will show that if ®o(Go) is a minimal 1-index,
then ®1(G1) and ®2(G2) are both minimal 1-indexes, too.

If v is in an inode by itself in ®o(Go), the split phase does
nothing. In this case, the only inode in ®1(G1) that may
have a different set of index parents than in ®o(Go) is I[v],
which by definition, has a distinguished label in ®1(G1),
therefore it cannot be merged with any other inode. So
®1(G1) is minimal in this case.

Suppose otherwise that v shares an inode with some other
dnodes in ®o(Go). After insertion, v has a different set of
index parents than these other dnodes, and is then singled
out by the split phase, which afterwards propagates the split
using the Paige-Tarjan’s algorithm. That ®1(G1) is indeed
a correct 1-index follows from the correctness of the Paige-

(e) merge phase begins (f) merge phase ends

Tarjan’s algorithm, which always returns the coarsest self-
stable refinement of the starting partition. To see it is also
minimal, we define the index parents of a dnode w to be
the set of inodes, each of which contains at least one of w’s
parents, i.e., the set {I[w'] | w € Succ(w’)}, and we will
show that the split phase maintains the invariant that no
two dnodes in different inodes have the same label and the
same index parents. Note that if the index is a valid 1-
index, the index parents of any dnode w are the same as the
index parents of I[w], so this invariant is true in a l-index
if and only if this 1-index is minimal. The invariant is true
before the split phase because ®o(Go) is a minimal 1-index.
It is still maintained when we relabel v and single it out
as a separate inode, because v’s label is now different from
any others. In each of the following split steps, whenever
we split an inode into two, the newly generated two inodes
must have at least one different index parent — otherwise
they will not get split. Since we already know ®1(G1) is a
1-index, it is also minimal because the invariant holds.

Next, we need to show that ®2(G2) is a minimal 1-index,
which is the result of labeling v back to its original label
and applying the merge phase on ®1(G1). It is easy to see
that it is a 1-index because the merge phase only merges
inodes that have the same label and index parents. Since
®1(G1) is minimal, and the only difference between G1 and
G2 is v’s label, the only possible two inodes that may have
the same label and the same index parents in ®;(G2) are
I[v] and some other inode. The merge phase exactly starts
by looking for this only possible merge. Further notice that
after two inodes are merged, it can only trigger new possi-
ble merges among the inode successors of the newly merged
inode because the index parents of all other inodes remain
unchanged. Therefore, when the merge phase completes, no
two inodes in ®2(G2) can be merged, so ®2(G2) is mini-
mal.

Keeping the 1-index minimal is probably the best one can
do with reasonable cost, since it is much cheaper to check if
the 1-index is minimal, as our algorithms do, than to deter-
mine if it is minimum. For example, in order to find out the
1-index in Figure 4(c) is not minimum, we need to be able to
detect two merges simultaneously, and the number of such
simultaneous merges might be as high as ©(n). In practice,
it is often good enough to keep the 1-index minimal, and
in many cases, the minimal 1-index indeed turns out to be
the minimum 1-index. Even if we are unlucky to get stuck
in a minimal 1-index that is not minimum, our experiments
show that the difference between the two is often very small.

Many data graphs are acyclic. For example, in a bibliog-
raphy database, if we want to model the reference relations
with IDREF edges, it is an acyclic graph as a paper can
only reference papers that appear earlier in time. Many
other XML databases that model hierarchical relations are
naturally acyclic, or even trees. For such databases, our al-
gorithms can provide an even stronger guarantee that the
minimum 1-index is always maintained, because the mini-
mal 1-index is unique in this case.

LEMMA 4. For any acyclic data graph G, there is a unique
minimal 1-index ®(G), which is also minimum.

PrOOF. First we show that any 1-index of G is also acyclic.

Suppose there was a cycle in the 1-index. By definition, for
any iedge I — J, any dnode in J has at least one parent

in I. By following iedges backwards in a cycle, we know
there exists a path of arbitrary length in G, which could
only happen if G is cyclic, too.

Suppose that ®(G) is the minimum 1-index and ®'(G) is
a minimal 1-index different from ®(G). We order the inodes
in ®(G) topologically and pick the first inode I that does
not appear in ®'(G). By Lemma 1, ®'(G) is a refinement of
®(G), so there exists at least two inodes I, I5 € ®(G) such
that I1 C I,15 C I and I and I} have the same label. For
any index parent J of I, J also appears in ®' (G) because J
is before I in the topological order. Then J is also an index
parent of I1 and I3 in ®'(G) because each dnode in I has at
least one parent in J. For any inode J that is not an index
parent of I, J cannot be an index parent of I] or I3, either,
because J does not contain any parent of any dnode in I,
and both I and I are subsets of I. So I and I5 have the
same set of index parents, which are the same as those of I.
This contradicts with the fact that ®'(G) is minimal. [

Combining Lemma 3 and 4, we have:

THEOREM 1. For acyclic data graphs, the split/merge al-
gorithm always maintains the minimum 1-index during edge
insertions and deletions. For cyclic data graphs it always
maintains a minimal 1-indez.

Efficiency. Theorem 1 gives a theoretical guarantee on the
efficacy of the split/merge algorithm, but how costly it is
in terms computation cost? We continue to use ®o(Go),
D1(G2), P2(G2) to denote the index before the update, be-
tween the split and merge phase, and after the update, re-
spectively. It is easy to see that the numbers of split and
merge operations are |®1(G2)| — |Po(Go)| and |P1(G2)| —
|®2(G2)|, respectively. The first part is essentially the cost
of the propagate algorithm, while the second part is the min-
imum number of merges required to shrink the intermediate
result down to minimal. Unfortunately, in the worst case,
this intermediate index ®1(G2) could have much more nodes
than the index before or after the update. See for example
Figure 5, where the triangles represent two subtrees with the
same structure. By arbitrarily enlarging these subtrees, we
can have an intermediate index that has Q(n) more nodes
than the old or the new index. This is also a problem to the
propagate algorithm and was identified in [8].

Nevertheless, the worst-case example of Figure 5 is rather
contrived and is rare in practice. As observed by [8], as well
as our own experiments with both real-life and benchmark
data, the intermediate index on average only has 0.01% more
nodes, which means that the update algorithm is really “in-
cremental”, operating only on a very small fraction of the
whole index.

Since we have an additional merge phase, the cost of the
split/merge algorithm is certainly higher than the propagate
algorithm, but we feel the merge phase is always worth do-
ing, not only because it gives us a nice theoretical guarantee
on the quality of the resulted index, but also for the following
practical considerations: (1) With the merge step, we can
effectively keep the index size small, leading to a much low-
ered reconstruction frequency. (2) The merge phase always
makes the index smaller, hence higher query performance.
Typically we have more queries than updates, so the effort
spent in improving the quality of the index very likely can be
paid back by the savings from subsequent query evaluations.

(c) Intermediate 1-index (d) Final 1-index

Figure 5: Update cost could be high in the worst
case.

Finally, as an implementation note, when we split inodes
using Suce(I) (or Suce(Z — {I})), we in fact can split all
inodes containing at least one dnode in Succ(I) at the same
time by scanning Succ(I) once and creating K N Suce(I) for
each K. The same technique is used in [12, 8].

5.2 Subgraph Addition

We model a subgraph also as a labeled, rooted directed
graph, which can certainly be added by inserting its dnodes
and their incident dedges one by one using our edge inser-
tion algorithm. But since subgraph addition occurs so fre-
quently, we design a more efficient algorithm that performs
the insertions in a “batched” manner. The basic idea is to
build the 1-index first for the new subgraph, and then add
all the edges between the new subgraph and the existing
data graph using the edge insertion algorithm.

Note that the root of the new subgraph must be in an
inode by itself in the 1-index of the subgraph. As an opti-
mization, we can insert all the incoming edges to the root of
the subgraph and then perform the merge phase just once.
The algorithm add_1_index_subgraph is shown in Figure 6.

The following corollary follows from Theorem 1.

COROLLARY 1. Algorithm add_1_index_subgraph maintains

the minimum 1-index for acyclic data graphs and a minimal
1-index for cyclic data graphs.

Naturally one would like to delete subgraphs efficiently as
well. This is easy, too. Have a special node with a distin-
guished label DELETE, and add a dedge from this node to
the root of the subgraph that we want to delete. This new
dedge will single out this subgraph from the rest of index,
and then we can just delete it from the index.

procedure add_1_index_subgraph(G")

begin
build the 1-index ®'(G’) for the new subgraph G’;
union ®'(G’) with the current 1-index ®(G);
add all incoming dedges that go into 7, the root of G’;
do merge phase of insert_1_index_edge starting at I[r];
foreach other dedge (u,v) between G’ and G do

insert_1_index_edge(u,v);
end

Figure 6: Add a subgraph in 1-index.

6. UPDATES FOR THE A(k)-INDEX

The algorithm.Our ideas and techniques for updating the
l-index can be extended to handle updates for the A(k)-
index as well. As identified in [8], the A(k)-index is diffi-
cult to maintain by itself because updating it requires in-
formation contained in an A(k — 1)-index. Thus, the basic
idea in our algorithm is to maintain all the A(0), A(1), ...,
A(k)-indexes together using our 1-index update algorithms.
When maintaining the A(4)-index, we use the A(i—1)-index
as a reference to make split and merge decisions. We will
first describe the algorithm, and then discuss how to imple-
ment it in a space- and time-efficient manner. Note that
all these A(i)-indexes can be easily while we we build the
A(k)-index; in fact, the construction algorithm [9] builds all
the A(0), A(1), ..., A(k)-indexes in order. In the following,
we only consider edge insertions and deletions; subgraph ad-
dition can be done in a very similar way as we did for the
1-index.

The A(k)-index update algorithm also consists of a split
phase to guarantee correctness and a merge phase to ensure
minimality. Suppose the new edge to be inserted (or deleted)
is (u,v). We first look for the largest ¢ such that the A(7)-
index will not be affected by the edge update. The split
phase first creates a new inode containing v itself for each of
the A(i+1) to A(k)-indexes. These “initial” splits generate
a number of compound blocks (in the 1-index, we have only
one compound block at the beginning), and we put them
in a queue. Afterwards, we iteratively split other inodes in
a way very similar to what we did for the 1-index. The
only difference is that, when we stabilize other inodes with
respect to a compound block in the A(i)-index, we need to
consider all the inodes in the A(i+ 1) to A(k)-indexes. The
merge phase also proceeds similarly as for the 1-index. For
each of the affected A(7)-indexes, we first try to merge the
inodes containing v with another inode. Next, we iteratively
merge other inodes together. In each step, if I is a new
inode in the A(%)-index generated from a previous merge,
we consider the possible merges among the inodes in the
A(i41)-index that contains at least one dnode with a parent
in [.

The detailed edge insertion (and deletion) algorithm for
the A(k)-index is shown in Figure 7. We use ®®(G) to
denote the A(i)-index of data graph G; IV, J® are some
inodes in the A(i)-index; I”[v] denotes the inode in the
A(i)-index that contains dnode v. We also use ZV, 7 to
denote sets of inodes in the A(¢)-index.

procedure insert_A(k)_index_edge(u, v)

begin
find the largest 4 s.t. v € Suce(I®[u]),
if no such 7 exists, set 1 = —1;

add a dedge from u to v;
/* replace the three lines above with the following for deletions:
delete the dedge from u to v;
find the largest 4 s.t. v € Suce(I®[u]),
if no such ¢ exists, set i = —1; */
// split phase begins
Q=0
forj=i+2tok
if |[IG)[v]| > 1 then
split 1) [v] into Ifj) = {v} and Iéj) = 1D] — {v};
if j <k—1 then
insert {Ifj)7 Iéj)} into Q;
// iterate to split others
while Q # 0 do
pick any 7 ¢ Q@ with the smallest j;
remove ZU) from Q;
pick 10 € 7G) s, |](]’)| < %Zm)ezu) ‘J(]')‘;
if |20 | > 3 then insert Z(U) — {I()} into Q;
foreach inode K, j+1 <1<k do
split K into K{l) = KW N Suce(10))
and K = KO — k),
split K" into K1) = K" A Suce(z0) — {10)})
and K1) = Kk - k{1
if/]<k—1 then
let KO = (&Y, K{Y), K"} — {0);
if K| > 2 then
if 370 e Q@ st. KO ¢ 7O then
replace K in 7 with the inodes in K(1);
else add KO to Q;
// merge phase begins
for j =i+ 2 to k do
Q=10
look for inode 1) C 1U=D[v] s.t. T() has the same
index parents in the A(j — 1)-index as () [u];
if such a inode 19 exists then
merge 1P [v] and 1) with JO) = 10 [v] U 1),
if j <k—1 then
insert JU) into Q;
// iterate to merge others
while Q # () do
pick any JAONS Q@ with the smallest [;
remove I from Q;
let ZUHD = {70+D) (w) | w € Suce(w’),w’ € ID};
partition Z(+1) into equivalent classes according to their
labels and index parents in the A(l)-index;
foreach equivalent class J(HD C 7+ do
if | 704D > 2 then
merge the inodes in J(Hl) into JU+1) = U J(Hl);
if | <k —2 then
Q=Q— g+,
insert J(+1) into Q;
end

Figure 7: Insert an edge into A(k)-index.

Efficacy. Since we are essentially using our 1-index update
algorithm to maintain ®® (G) with respect to ®~Y(Q) for
all i = 1,...,k, we can show that our algorithm maintains
a minimal set of A(¢)-indexes in the following sense.

Definition 6. For any data graph G, the set of A(7)-indexes
(@), dM(@), ..., ") (G) are minimal if for all 1 < i <
k, merging any two inodes of ®@ (@) will make it unstable
with respect to @1 (@).

LEMMA 5. The split/merge algorithm always maintains a
minimal set of A(i)-indezes.

PrOOF. Follow the same lines of reasoning in the proof
of Lemma 3. [

Since the set of A(¢)-index is built in a hierarchical man-
ner, which resembles the nature of acyclic 1-indexes, we have
the following result for the A(k)-index for any general data
graph.

LEMMA 6. For any data graph G, there is a unique min-
imal set of A(i)-indezes, each of which is also minimum.

PrOOF. Let ®(G),...,®™ (G) be the minimum A (7)-
indexes of G, and (@), ..., ¥® (@) be any minimal set
of A(i)-indexes. We will show by induction that & (G) =
V(@) for all i. The base case ®©(G) = ¥ (G) holds
by definition. Now suppose ®(G) = ¥)(G), then merg-
ing any two inodes in ¥+ (G) will make it unstable with
respect to @ (@). By Lemma 2, U0+ (@) is always a re-
finement of @+ (@). If (@) £ D (@), we would
find at least two inodes in W+ (@) that are contained in
the same inode of 1) (), merging these two inodes would
not cause U (@) to be unstable with respect to &9 ().
So we have @+ (@) = v+ (@). O

Combining Lemma 5 and 6, we have:

THEOREM 2. For any data graph G, the split/merge al-
gorithm always maintains the minimum A (k)-indez.

Efficiency. As a first impression, maintaining all the A(0)
to A(k)-indexes would take a lot of space and increase the
update cost. Below we describe a structure called the re-
finement tree, which is designed to exploit the fact that the
A(i+1)-index is always a refinement of the A(7)-index. With
this tree (a forest in general) we can maintain the A (4)-index
on top of the A(i + 1)-index, instead of manipulating mas-
sive sets of dnodes directly. The refinement tree includes
all the nodes in the A(0) to A(k)-indexes. Tree edges are
built by linking each inode in the A(¢)-index to the inodes
in the A(i + 1)-index that are contained in this inode (Fig-
ure 8). With this tree structure, there is no longer any need
to store the extents of the inodes in all the A(z)-indexes for
0 <i < k—1, as they can be fully recovered from the extents
of A(k)-index nodes.

Let us now see how to use the refinement tree to imple-
ment the algorithm insert_A(k)-index_edge, or more pre-
cisely, the two basic operations split and merge. Merges are
easy: If we merge two A(k)-index inodes, we merge their ex-
tents as we did for the 1-index. If we merge two A(4)-index
inodes for 1 < i < k — 1, we simply merge them together

(a) Datagraph

(b) A(0) (©) A(1)

Figure 8: Refinement tree: tree edges are shown in
dotted lines.

without any operation on their extents; all A(i + 1)-index
inodes that were children of the two old nodes in the refine-
ment tree now become the children of the new node.

Splits need more care. There are two kinds of splits:
the “initial” splits at the beginning of the spht phabe and
the “normal” splits using Succ(I?)) or Succ(ZTW — {19)})
(vef. Figure 7). All initial splits together create one new
inode containing only v for each of the A(j)-indexes, j =
i+ 2,...,k, so we just need to split I(k)[v] and then create
a new node on each level j of the refinement tree, pointing
only to the new tree node on level j + 1.

For normal splits using, say Succ(I(j))7 we scan through
Suce(I ()) and split all inodes whose extents intersect that of
Succ(I) at the same time. For each dnode w € Succ(I¥),
there is exactly one inode in the A(l)-index that contains w,
forl = j+1,...,
form a path in the refinement tree. For the A(k)-index inode
K™ we carry out the same procedure as with the 1-index:
create an A (k)-index inode K® for w if necessary (it might
have been created already while processing an earlier dnode
that is k-bisimilar to w), and then move w from K® to
K®_ Forl=k—1,...7+ 1, we create an A(l)-index in-
ode KO for w if necessary, and then make K% a child of
K® in the refinement tree. After all dnodes in Succ(I)
are scanned, we remove any empty inodes from the A(k)-
index, and then any A(l)-index inodes with no children in
the refinement tree, for | = k,k—1,...,7+ 1. After all pairs
are processed, all splits with respect to Suce(l G)) are com-
pleted. The same procedure applies to Succ(Z\ — {I7}).
Note that in this way we only deal with the dnodes in the
A(k)-index; maintenance of the A(7)-index only involves in-
odes in the A(i+ 1)-index, and the cost of doing so decreases
rapidly as i gets smaller.

Apart from the refinement tree edges, there are two types
of iedges we need to maintain: the normal “intra-iedges”
inside the A(k)-index, used for query processing, and the
“inter-iedges” in the refinement tree that connect inodes in
A(i) to their inode successors in A(i + 1), which are re-
quired in order for the maintenance algorithm to function
efficiently. Both types of iedges can be maintained cheaply
during the split/merge process. Optionally, one could also
maintain the “intra-iedges” inside the A(i)-indexes for ¢ =
1,...,k — 1, which will speed up the evaluation of path ex-
pressions of length less than k, but we will not explore this
option further in this paper.

(d) A(k=2)

k. These inodes, denoted by K(jH), e K(k),

Although we store more information than the A(k)-index
alone, the extra storage overhead is low. We store each
dnode only once (in the extent of an A(k)-index inode), and
we use only one hash table for the reverse mapping from
the dnodes to the A(k)-index inodes. For the A(%)-indexes
where i < k, we store only the refinement tree edges and the
inter-iedges. Since the number of inodes in the A(%)-index
decreases rapidly as i gets smaller, this storage overhead
is insignificant compared with the cost of storing extents
and the dnode-to-inode mapping, which must be paid by a
stand-alone A(k)-index as well.

7. EXPERIMENTS

In this section, we present our experimental study compar-
ing our algorithms with previous methods. All algorithms
are implemented in Java. The machine used for experiments
is a Dell PowerEdge 2600 with a 2.4GHz Xeon processor
and 1GB of RAM, running Linux with JDK 1.4.2. Our ma-
chine has enough memory to store everything and no paging
is needed during execution. We use the same performance
metrics as previous works [8, 17], i.e., we measure efficacy
in terms of the quality of the index as defined in Section 3,
and efficiency in terms of the wall-clock running time.

We use both benchmark and real-life XML databases in
our experiments. The XMark database is generated by the
XMark generator from the XML Benchmark Project [2]. It
is a highly cyclic and irregular database likely to stress the
use of structural indexes. It is 11.7MB in size and consists
of 167,865 dnodes and 198,612 dedges, among which 30,747
are IDREF edges. A sample of this database is shown in
Figure 1. Cycles in this database are caused by a large
number of person-auction edges. To see how our algorithms
handle data graphs with cycles, we intentionally remove a
portion of those edges to vary the cyclicity, which we define
to be the fraction of such edges remaining. We name these
data sets XMark(c) where c is the cyclicity; e.g., XMark(1)
is the original XMark database, and XMark(0) contains no
person-auction edges and thus no cycles, although they have
the same number of dnodes.

The real-life dataset is extracted from the Internet Movie
Database (IMDB) [1] in the following way: First we ran-
domly choose a small subset of movies and all people (ac-
tors, directors, etc.) associated with these movies. We
then extract all other movies associated with these people,
and continue this process until the desired database size is
reached. For each movie or person, we also extract a sub-
stantial amount of other information (e.g. title, year, genre).
This dataset consists of 272,567 dnodes and 285,221 dedges,
among which 12,654 are IDREF edges. Overall, it is also a
highly cyclic and irregular dataset.

7.1 Experiments on the 1-Index

Edge insertions and deletionSor the 1-index edge in-
sertions and deletions, we compare with the propagate al-
gorithm [8]. In this set of experiments we apply a mixed se-
quence of edge insertions and deletions on both the XMark
and IMDB data. For XMark, we select four datasets with
cyclicities 1, 0.5, 0.2 and 0, to see how the algorithms per-
form, since as suggested by Theorem 1, the performance
might be affected by cycles.

In order to generate edge insertions in a meaningful way,
we first remove 20% of all the IDREF edges from the data

60%

splitmerge

— - propagate ,
—— propagate + reconstruction
s0% | propag e
o
-
40% P
z -
K] -7
S 300 -
=] 7
£ e
20% -7
/
,
0% 7
/
0% ‘ ‘ f ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(insertion, deletion) pairs

Figure 9: 1-index quality over mixed edge insertions
and deletions on IMDB.

graph. These deleted edges then become a “pool” of possi-
ble insertions. Using the resulting data graph as the starting
point, we perform one edge insertion followed by one edge
deletion in each step: first a randomly selected edge is re-
moved from the pool and inserted into the data graph, and
then another randomly selected edge is deleted from the data
graph and put back into the pool. For each dataset, 5000
pairs of edge insertions and deletions are performed.

Since the propagate algorithm does not have any guaran-
tee on the quality of the updated index, the index gets pro-
gressively worse over time and it is necessary to reconstruct
the index periodically. We used the “index reconstruction”
idea of [8], i.e., run the construction algorithm on top of the
index graph (treating it as a data graph), and then “blow
up” each inode of the new index by replacing each inode
of the old index with its extent of dnodes. Since we do
not know how big the current minimum index is during the
course of a sequence of updates, we use the following simple
heuristic to trigger index reconstructions: remember the size
of the index when it was last reconstructed, and then per-
form reconstruction whenever the current index is more than
5% larger than that. Since our split/merge algorithm does
not guarantee the minimum 1-index on cyclic data graphs,
either, we use the same heuristic to trigger reconstruction.

Results for IMDB are shown in Figure 9. Performance of
propagate for the first 500 edge updates agrees with the pre-
viously reported results [8] very well: around 5% increase in
index size. In fact the result reported in [8] was a little better
than this, which can be explained by the fact that [8] only
did edge insertions, while edge deletions are a little more dif-
ficult to handle because the minimum 1-index itself usually
shrinks when edges are deleted. After that, we see that its
index quality continues to degrade almost linearly with the
number of edge updates performed. Thus, reconstruction is
triggered once about every 500 updates. On the other hand,
our split/merge algorithm maintains the index quality very
well, never exceeding 3%. This experiment shows that the
minimal 1-index maintained by our algorithm is in fact very
close to minimum for this dataset.

Results for XMark are shown in Figure 10. An interest-
ing fact is that on these datasets, our split/merge algorithm
performs extremely well: its quality curves virtually remain
zero (never exceeding 0.5%). The reason is that the IDREF
edges in the XMark datasets are generated more uniformly,
while in IMDB they tend to be clustered: related persons

are likely to get involved in related movies, creating shorter
cycles that make cases similar to Figure 4 more likely than in
XMark. For propagate, we see similar trends for all datasets:
its quality curves almost always grow linearly, although the
rate varies a lot for different cyclicities: on XMark(1), the
index quality is still better than 12% after 10000 edge up-
dates, but on XMark(0) it gets worse very quickly. The
reason is that XMark(1) is a highly irregular dataset; even
the size of its minimum 1-index is more than 40% of its data
graph size. For such a big index, there are very few possi-
ble merges during updates, so propagate algorithm performs
relatively well. However, such large 1-indexes usually lead
to bad query performance, and we usually turn to other
smaller indexes, such as A(k), for these cases. As the cyclic-
ity decreases, the data graph also gets more regular, and the
minimum 1-index shrinks. The propagate algorithm then
has increasing difficulty in keeping the index fit, and has to
perform more frequent reconstructions.

We also measured the average running times over the
10000 edge updates for each dataset. From Figure 11 we
can see that the split/merge algorithm is more costly than
the propagate algorithm, due to the extra merge phase, but
it becomes much faster if we factor in the amortized recon-
struction cost (total reconstruction cost divided by 10000).
Notice that cyclicity does not seem to affect the performance
of the split/merge algorithm, showing that cases like Fig-
ure 5 are not common. Finally, note the index is essentially
unusable during the reconstruction, while our split/merge
algorithm always responds quickly, thereby making the in-
dex more available for queries.

Subgraph additionswe also conduct experiments on sub-
graph additions with the XMark data. We extract sub-
graphs in the following manner. First we randomly select
an “auction” dnode u, and then perform a traversal down
starting from u to extract all descendents of u, which form
a subgraph. We do not traverse IDREF edges because we
want to avoid cycles, and also because the IDREF edges usu-
ally represent inter-object relationships that are not integral
parts of the entity of interest. In this way we extract 500 sub-
graphs, with an average size of 50 dnodes. For each dataset,
we first delete all these subgraphs, and then insert them one
by one. We compare three alternatives: (1) our algorithm of
Section 5.2, (2) same algorithm but using propagate instead
of insert_1_index_edge to insert the edges, and (3) the index
reconstruction algorithm of [8], which always maintains the
minimum 1-index but is extremely costly. We obtain almost
the same results again: Our algorithm keeps the quality of
1-index at 0% almost all the time, while the second alter-
native keeps increasing the index size and is very sensitive
to the structure of the data graph (Figure 12). In terms of
running cost, the first two alternatives are both very fast,
about 20 msec for each subgraph; the third one is more than
100 times slower because of the costly reconstruction.

7.2 Experiments on the Af)-Index

Since we have theoretical guarantee that our split/merge
algorithm always maintains the minimum A(k)-index, the
experiments on the A(k)-index are mainly aimed at effi-
ciency issues, namely the running cost and addition storage
overhead resulted from maintaining all the A(i)-indexes for
0 < i < k. In the experiments, we varied k£ from 2 to 5,
covering the range of k’s that give the best performances as

12% T T T T T T T T T
split/merge ~
— - propagate ~7
10% [-| — Ppropagate + reconstruction s~ 4
e -
,
8% L E
2 7
S 6%
T
x
@
°
£ 4%
2%
0%
.
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
(insertion, deletion) pairs
(a) XMark(1)
25% T T T T T T T T
split/merge
— - propagate
—— propagate + reconstruction g N
20% - |
> 15%¢ -7 1
ﬁ 7
E -
53 —
3 -7
S 10% - 1
= 7
e
5% [1
0% L L L L L L L L L]
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
(insertion, deletion) pairs
(b) XMark(0.5)
60% T T T T T T T T
split/merge
— - propagate
50% | | — Propagate + reconstruction _ o~
-~ ¢ -
40% - P~ 1
/s
= P
S -
3 30%r P 1
x -
@ -
o
£ -
20% - 7 1
v
/
10% / 4
/VWWA/W/M
0% L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
(insertion, deletion) pairs
(c) XMark(0.2)
200% T iy T T T T T T T
split/merge
/ — - propagate
/ —— propagate + reconstruction
’
150% - ! b
/
- /
] J
E
S 100% - ! b
x
3] I
o
£ !
/
50% -/ 1
/
/
/

0% MMM AR A A A A A
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
(insertion, deletion) pairs

(d) XMark(0)

Figure 10: 1-index quality over mixed edge inser-
tions and deletions on XMark.

50

T
Hl splittmerge
[amortized reconstruction
I propagate

30r R

running time per update (msec)

XMark(1) XMark(0.5) XMark(0.2) XMark(0) IMDB

Figure 11: Running times of 1-index algorithms.

50%

XMark(1)

T
[
| — - XMark(0.5)
| — XMark(0.2)
40%, — — XMark(0)
|
|
[
2 30% M]
£
2 [
o
x [
S |
£ 20%*‘ 1
I
10%‘i E
I [
ool e T
0 50 100 150 200 250 300 350 400 450 500

subgraph added

Figure 12: 1-Index quality during a sequence of sub-
graph additions with the propagate algorithm.

reported by [9]. The cyclicities of datasets are not tweaked
here because the performance of our algorithms are not af-
fected by cycles. We only present the experiments on edge
insertions and deletions for the A(k)-index in this paper.

We compare with the following simple algorithm, obtained
by fixing a minor mistake in the one mentioned at the end
of [17]. After an dedge (u,v) is inserted or deleted, we
do a breadth-first search to find all the potentially affected
dnodes in the data graph. These dnodes are descendants of
v up to a maximum depth of £k—1. The corresponding inodes
containing these dnodes are possibly unstable and need to
be partitioned into new inodes according to k-bisimilarity.
Since the A(k)-index does not retain enough information
to compute k-bisimilarity, we have to go back to the data
graph and compute by definition. Notice that the cost of
this simple algorithm is exponential in k. Since this algo-
rithm does not provide any guarantee on the index quality,
we also consider the option of periodic index reconstructions
in the experiments, like what we did with the 1-index.

For the experiments, we only perform 1000 pairs of inser-
tions and deletions since it is already enough to see a clear
trend. The simple algorithm, as expected, blows up the in-
dex size rapidly without reconstructions, especially for small
k’s. The result on the XMark database are shown in Fig-
ure 13. The result on IMDB is similar and omitted. When
the reconstruction threshold is set to 5%, this simple algo-
rithm triggers frequent reconstructions, as shown in Table 1.

Running times of our split/merge algorithm and this sim-

200%

k=3

150%
k=4

100% -

index quality

50% |-

0%
0 100 200 300 400 500 600 700 800 900 1000
(insertion, deletion) pairs

Figure 13: A(k)-index quality of the simple algo-
rithm.

ple algorithm are compared in Table 2, from which we can
see that our algorithm is superior in all experiments. When
k is large, where the simple algorithm does relatively fine in
terms of index quality, its efficiency degrades dramatically.
On the other hand, our algorithm is not affected much by &,
proving the effectiveness of our implementation techniques
in Section 6.

Finally, we also measure the addition storage required by
the split/merge algorithm for storing the refinement tree and
the inter-iedges, which are not part of a stand-alone A(k)-
index. In our implementation, each dnode, inode, or pointer
takes 4 bytes. Table 3 summarizes the estimated space con-
sumption for newly constructed A(7)-indexes for different
configurations. The extra space used in our algorithm is
always below 15% of the space occupied by a stand-alone
A(k)-index, which is dominated by the storage of inode ex-
tents; we avoid storing extents in A(i)-indexes where i < k,
as discussed in Section 6. We have also observed that this
ratio does not change much during updates, since our algo-
rithm always maintains the minimum set of A(i)-indexes.

8. CONCLUSION

In this paper, we present new incremental maintenance
algorithms for the 1-index and the A(k)-index for graph-
structured databases. We have demonstrated the efficacy (in
preserving the minimality of indexes) and efficiency (in up-
date time) of these algorithms both in theory and in experi-
ments. Although we have only looked at these two structural
indexes, we believe that these ideas can also be extended to
handle other structural indexes as well.

Acknowledgmentwe would like to thank Lars Arge, Raghav

Kaushik and Sriram Padmanabhan for carefully reading the
early drafts of this paper.

9. REFERENCES

[1] The Internet Movie Database. http://www.imdb.com.

[2] The XML benchmark project,
http://www.xml-benchmark.org.

[3] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton.
Estimating the selectivity of XML path expressions
for internet scale applications. In VLDB, 2001.

[4] J. Clark and S. DeRose. XML path language XPath
http://www.w3.org/ TR /xpath. 1999.

Dataset | A(2) | A(3) | A(4) | A(5)
XMark | 18.6 | 25.8 | 46.6 85.2
IMDB | 32.2 69 126.4 | 142.2

Table 1: Average number of updates during two
consecutive reconstructions for the simple algorithm
over 2000 updates.

| k [2 [3 [4] 5 |
split/merge (XMark) 31 | 33 | 34 44
simple+reconstruction (XMark) | 42 | 203 | 566 | 675
split/merge (IMDB) 112 | 115 | 127 | 153
simple+reconstruction (IMDB) | 176 | 305 | 342 | 1030

Table 2: Average running times over 2000 updates
(in msec) of different algorithms.

| k [2 | 3 [4 [5 |
stand-alone A (k) (XMark) | 2023 | 2044 | 2112 | 2192
A(0) to A(k) (XMark) | 2035 | 2081 | 2224 | 2479
Additional storage (%) 6% | 1.8% | 5.3% | 13%
stand-alone A(k) (IMDB) | 3292 | 3332 | 3378 | 3422
A(0) to A(k) (IMDB) | 3312 | 3403 | 3576 | 3818
Additional storage (%) 6% | 2.1% | 5.9% | 11.6%

Table 3: Storage requirement of the split/merge al-
gorithm (in KB).

[6] M. F. Fernandez and D. Suciu. Optimizing regular
path expressions using graph schemas. In ICDE, 1998.

[6] R. Goldman and J. Widom. DataGuides: Enabling
query formulation and optimization in semistructured
databases. In VLDB, 1997.

[7] H. He and J. Yang. Multiresolution indexing of XML
for frequent queries. In ICDE, 2004.

[8] R. Kaushik, P. Bohannon, J. F. Naughton, and
P. Shenoy. Updates for structure indexes. In VLDB,
2002.

[9] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes.
Exploiting local similarity for indexing paths in
graph-structured data. In ICDE, 2002.

[10] J. McHugh and J. Widom. Query optimization for
XML. In The VLDB Journal, pages 315-326, 1999.

[11] T. Milo and D. Suciu. Index structures for path
expressions. In ICDT, 1999.

[12] R. Paige and R. Tarjan. Three partition refinement
algorithms. SIAM Journal on Computing, 16(6), 1987.

[13] D. Park. Concurrency and automata on infinite
sequences. In Theoretical Computer Science, 5th
GI-Conf., LNCS 104, pages 167-183. 1981.

[14] S. Park, Y. Choi, and H.-J. Kim. XML query
processing using signature and dtd. In Proc. of the 3rd
Intl. Conf. EC-Web, 2002.

[15] S. Park and H.-J. Kim. A new query processing
technique for XML based on signature. In Proc. of the
7th Intl. Conf. on Database Systems for Advanced
Applications, 2001.

[16] N. Polyzotis and M. Garofalakis. Statistical synopses
for graph-structured data. In SIGMOD, 2002.

[17] C. Qun, A. Lim, and K. W. Ong. D(k)-index: An
adaptive structural summary for graph-structured
data. In SIGMOD, 2003.

